
Example-based Rendering of Textural Phenomena

A Thesis
Presented to

The Academic Faculty

by

Vivek Kwatra

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

August 2005

Copyright c© 2005 by Vivek Kwatra

Example-based Rendering of Textural Phenomena

Approved by:

Dr. Aaron Bobick, Advisor
College of Computing
Georgia Institute of Technology

Dr. Irfan Essa, Co-Advisor
College of Computing
Georgia Institute of Technology

Dr. Ramesh Raskar
Mitsubishi Electric Research Labs

Dr. Jarek Rossignac
College of Computing
Georgia Institute of Technology

Dr. Steven Seitz
Department of Computer Science and
Engineering
University of Washington at Seattle

Dr. Greg Turk
College of Computing
Georgia Institute of Technology

Date Approved: 21 June 2005

In loving memory of my father, Dr. Suresh Kumar Kwatra, who has been my greatest
inspiration in life

ACKNOWLEDGEMENTS

I am indebted to my advisor, Aaron Bobick, and co-advisor, Irfan Essa, for their exceptional
support and guidance. They gave me the freedom to explore research ideas at will, but were
always there to educate and guide me. I would also like to thank the rest of my committee
members including Greg Turk, Jarek Rossignac, Ramesh Raskar, and Steve Seitz for their
excellent insights and advice.

I am grateful to my friends and colleagues for making the last six years at Georgia Tech
immensely enjoyable. I would especially like to thank members of the Computational Per-
ception Lab, the Geometry Group, and the Wall Lab. I sincerely cherish my engaging dis-
cussions with the ever helpful Gabriel Brostow, and collaboration with the insightful Arno
Scḧodl. I thank Drew Steedly, Antonio Haro, Amos Johnson, Rawesak “Tee” Tanawong-
suwan, Eugene Zhang, Stephanie Brubaker, Raffay Hamid, Mike Terry, Delphine Nain,
Brooks Van Horn, Mark Carlson, and Jerry Choi for the many fruitful interactions I have
had with them. I also thank Ravi Ruddarraju, Yifan Shi, Gaurav Chanda, Mitch Parry, Jie
Sun, Pei Yen, Charlie Brubaker, Samir Batta, Nick Diakopoulos, Yan Huang, Siddhartha
Maddi, and Howard Zhou for their help and support.

I would like to express my gratitude towards the GVU office staff including but not
limited to Joan Morton, Chrissy Hendricks, Wanda Abbott, Jacquelyn Berry, Joi Adams,
Leisha Chappell, Vivian Chandler, and David White, as well as Barbara Binder and Becky
Wilson at the CoC, who have taken utmost care of me all these years. I also thank Spencer
Reynolds, Jonathan Shaw, and Steve Park, who have been outstanding GVU Lab managers,
as well as Peter Wan, Bernard Bomba-Ire, Pam Buffington, Karen Carter, and the rest of
CNS for providing excellent and prompt systems support.

I have a deep regard for my wife, Aditi, who has always been supportive of me and
provided me with immeasurable love and inspiration. I am profoundly thankful to my
parents for creating all the opportunities for me and for their love, affection, and encour-
agement – my mother’s determination and father’s vision have been of great significance
in my life. I thank my grandmother for her blessings that have been with me at every step.
My brother, Nipun, has been a great friend as well as colleague, and it was a great expe-
rience to collaborate with him on research, which I hope will continue. I would like to
thank my brother-in-law, Aditya, for his extensive support and friendship. I also thank my
parents-in-law for providing me with abundant love, care, and valuable guidance all these
years.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES .viii

SUMMARY .xii

I INTRODUCTION . 1

1.1 Example-based Synthesis. 2

1.2 Controllable Texture Synthesis. 3

1.3 Contributions . 3

1.3.1 Image and Video Synthesis using Graph Cuts. 4

1.3.2 Framework for Rendering Animations using Texture Exemplars. 4

1.3.3 Texture Optimization for Unconstrained Synthesis. 5

1.3.4 Controllable Synthesis - Flowing Image Textures. 5

1.3.5 Flowing Video Textures. 6

II BACKGROUND . 7

2.1 Image-based Rendering. 7

2.2 Texture Synthesis. 7

2.3 Markov Random Fields. 9

2.4 Controllable Texture Synthesis. 9

III IMAGE AND VIDEO TEXTURE SYNTHESIS USING GRAPH CUTS . . 11

3.1 Patch Fitting using Graph Cuts. 13

3.1.1 Accounting for Old Seams. 15

3.1.2 Surrounded Regions. 16

3.2 Patch Placement & Matching. 17

3.3 Extensions & Refinements. 19

3.4 Image Synthesis. .20

3.5 Video Synthesis. .27

3.6 Summary. .33

v

IV RENDERING ANIMATIONS USING TEXTURE EXEMPLARS 34

4.1 Definitions .35

4.2 Animation Synthesis using Example Imagery. 35

4.3 Probabilistic Formulation. 38

4.3.1 Assumptions. .40

4.3.2 Appearance Estimation. 41

4.4 Summary. .45

V TEXTURE OPTIMIZATION FOR UNCONSTRAINED SYNTHESIS . . . 47

5.1 Texture Optimization .48

5.2 Robust Formulation. .52

5.3 Gradient-based Energy. 53

5.4 Multi-level Synthesis .54

5.5 Results. .55

5.5.1 Discussion. .59

5.6 Summary. .59

VI CONTROLLABLE SYNTHESIS: FLOWING IMAGE TEXTURES 62

6.1 Controllable Synthesis. .63

6.1.1 Adapting Texture Optimization for Controllability. 63

6.2 Flow-guided Synthesis using Image Textures. 66

6.2.1 Approach .68

6.3 Handling Obstacles. .69

6.4 Results. .70

6.4.1 Discussion. .74

6.5 Summary. .77

VII FLOWING VIDEO TEXTURES . 78

7.1 Approach. .80

7.2 Results and Discussion. 82

7.2.1 Analysis. .84

vi

7.3 Potential Improvements. 85

7.4 Summary. .86

VIIICONCLUSIONS AND FUTURE WORK 87

8.1 Future Directions .87

8.1.1 Decoupling Flow and Evolution in Video. 87

8.1.2 Other Characteristics besides Motion. 88

8.1.3 Interactive Video Editing. 90

REFERENCES .91

vii

LIST OF FIGURES

Figure 1 Example of video texture synthesis. The input river sequence has been
extended spatially as well as temporally in the output. Shown are single
frames from the input and output video sequences. This result was syn-
thesized using our texture synthesis technique based on graph cuts (see
Chapter3 for more details). 2

Figure 2 Animating texture using a flow field. Shown are keyframes from texture
sequences that follow the sink flow field shown on the top (see Chapter5
and Chapter6 for more details). 4

Figure 3 Image texture synthesis by placing small patches at various offsets fol-
lowed by the computation of a seam that enforces visual smoothness
between the existing pixels and the newly placed patch.. 12

Figure 4 This figure illustrates the process of synthesizing a larger texture from an
example input texture. Once the texture is initialized, we find new patch
locations appropriately so as to refine the texture. Note the irregular
patches and seams. Seam error measures that are used to guide the patch
selection process are shown. This process is also shown in the video.. . 14

Figure 5 (Left) Schematic showing the overlapping region between two patches.
(Right) Graph formulation of the seam finding problem, with the red line
showing the minimum cost cut.. 15

Figure 6 (Left) Finding the best new cut (red) with an old seam (green) already
present. (Right) Graph formulation with old seams present. Nodess1 to
s4 and their arcs toB encode the cost of the old seam.. 16

Figure 7 (Left) Placing a patch surrounded by alreadyfilled pixels. Old seams
(green) are partially overwritten by the new patch (bordered in red).
(Right) Graph formulation of the problem. Constraint arcs toA force
the border pixels to come from old image. Seam nodes and their arcs are
not shown in this image for clarity.. 17

Figure 8 2D texture synthesis results. The smaller images are the example images
used for synthesis. Shown areCHICK PEAS, ESCHER, TEXT, andNUTS

from left to right and top to bottom.. 21

Figure 9 2D synthesis results for natural images. The smaller images are the ex-
ample images used for synthesis. Shown are MACHU PICCHU c©Adam
Brostow,CROWDSandSHEEPfrom top to bottom. 22

viii

Figure 10 Comparison of our graph cut algorithm with Image Quilting [18]. Shown
are KEYBOARD and OLIVES. For OLIVES, rotation and mirroring of
patches was used to increase variety in the output. The quilting result for
KEYBOARD was generated using our implementation of Image Quilting;
the result forOLIVES is courtesy of Efros and Freeman.. 24

Figure 11 Images synthesized using multiple scales yield perspective effects.
Shown areBOTTLES andLILIES c©Brad Powell. We have, from top to
bottom: input image, image synthesized using one scale, and image
synthesized using multiple scales.. 25

Figure 12 Example of interactive blending of two source images. Shown are inputs
HUT and MOUNTAIN c©Erskine Wood in the top row, and the result in
the bottom row. In the bottom right image, the computed seams are also
rendered on top of the results.. 26

Figure 13 Another example of interactive blending of two source images. Shown
are inputsRAFT andRIVER c©Tim Seaver in the top row, and the result
in the bottom row. In the bottom right image, the computed seams are
also rendered on top of the results.. 27

Figure 14 TheSIGGRAPHbanner at the top was generated by merging the source
images shown below it. Image credits: (b)c©East West Photo, (c)c©Jens
Grabenstein, (e)c©Olga Zhaxybayeva.. 28

Figure 15 Illustration of seams for temporal texture synthesis. Seams shown in 2D
and 3D for the case of video transitions. Note that the seam is a surface
in case of video. .29

Figure 16 The various videos that we have synthesized using our approach.. 32

Figure 17 Animation Synthesis using Texture Exemplars. For explanation, see
Section4.2 .36

Figure 18 Parameter & Structure Estimation. Shown is a generate and test method-
ology for searching control variables. The synthesized and extracted
characteristics are being compared for consistency inside a feedback loop.37

Figure 19 Example-based Rendering. The source imagery, source characteristics
and target characteristics form the input to the EBR algorithm. The out-
put of this algorithm is the mapped target. The target is compared with
source imagery to measure appearance similarity, and with all inputs to
measure consistency of characteristics.. 39

Figure 20 The appearance similarity and characteristic consistency operations of
the EBR algorithm are formulated as prior and likelihood, respectively
(also see Figure19 for comparison).. 43

ix

Figure 21 Specializing example-based rendering to only consider appearance sim-
ilarity. The faded components of the schematic are ignored from the
formulation. This reduces the problem to texture synthesis.. 47

Figure 22 Schematic demonstrating our texture similarity metric. The energy of
neighborhoodxp centered around pixelp is given by its distance to the
closest input neighborhoodzp. When two neighborhoodsxp andxq over-
lap, then any mismatch betweenzp andzq will lead to accumulation of
error in the overlapping region (shown in red).. 50

Figure 23 Texture energy plotted as a function of number of iterations. Also shown
is the synthesized texture after each resolution and scale (neighborhood
size) level. Level 1 shows the random initialization. Level 2 shows syn-
thesis at (1/4 resolution, 8×8 neighborhood), Level 3: (1/2, 16×16),
Level 4: (1/2, 8×8), Level 5: (1, 32×32), Level 6: (1, 16×16), Level
7: (1, 8×8). .55

Figure 24 Results for image texture synthesis. For each texture, the input is on the
left and the output on the right.. 56

Figure 25 Comparison with various other texture synthesis techniques. The input
textures are shown in the top row. The bottom two rows show the com-
parison. .57

Figure 26 Examples of videos textures that were synthesized using texture opti-
mization. .58

Figure 27 Correcting a deformed texture using Texture Optimization. The origi-
nal texture (top) is deformed by applying different degrees of twirl to it
(shown in second row). The third row shows texture optimization ap-
plied to these deformed textures at only the finest resolution. The fourth
row shows results for multi-resolution synthesis.. 60

Figure 28 Specializing example-based rendering for synthesizing flowing image
textures. Characteristic consistency is replaced by flow consistency.
Source texture does not have its own flow, which simplifies the frame-
work: no need to compute source flow, and flow consistency only
depends on target flow and target appearance (mapped target).. 67

Figure 29 Flow-guided synthesis using different flow-fields. Shown is the 25th
frame of each sequence (for both textures). All sequences for a given
texture start with the same frame (not shown).. 71

Figure 30 Animating texture using a flow-field. Shown are keyframes from texture
sequences that follow a sink flow-field.. 72

Figure 31 Animating texture using a flow-field. Shown are keyframes from texture
sequences that follow a stream flow-field.. 73

x

Figure 32 Comparison of our flow-guided synthesis results with simple warping.
The keys on the keyboard maintain their orientation while rotating.. . . 74

Figure 33 Handling obstacles. Shown (in the top two rows) are intermediate frames
of sequences in which texture flows around an obstacle. The bottom row
shows the mask (with its components) for each frame. The obstacle
is shown in red with a white border around it (for clarity). The mask
component representing empty space is shown in blue.. 75

Figure 34 Flow-guided synthesis using a checkerboard pattern. The top row con-
sists of the first frames for sequences corresponding to each input tex-
ture type – original, filtered, half-scale, or double-scale. The middle row
shows an intermediate frame from the sequence synthesized with a sink
flow-field, for each input texture type. The bottom row shows interme-
diate frames obtained with a source flow-field.. 76

Figure 35 Specializing example-based rendering for synthesizing flowing video
textures. Flow information from the source video needs to be extracted.
Also, flow consistency now depends on the source appearance (video)
and source flow in addition to target flow and target appearance (mapped
target). .79

Figure 36 (a) Examples of video textures that were experimented with for synthe-
sizing flowing video textures. (b) Flow fields that were used for synthesis
are shown in the top row. The bottom row shows frames from synthe-
sized pond sequences corresponding to each flow field.. 83

Figure 37 Breaking Wave.. .88

Figure 38 Changing time of the day (courtesy: Mike Terry).. 89

Figure 39 Fire and Smoke.. .90

xi

SUMMARY

This thesis explores synthesis by example as a paradigm for rendering real-world

phenomena. In particular, phenomena that can be visually described as texture are consid-

ered. We exploit, for synthesis, the self-repeating nature of the visual elements constituting

these texture exemplars. Techniques for unconstrained as well as constrained/controllable

synthesis of both image and video textures are presented.

For unconstrained synthesis, we present two robust techniques that can perform spatio-

temporal extension, editing, and merging of image as well as video textures. In one of these

techniques, large patches of input texture are automatically aligned and seamless stitched

with each other to generate realistic looking images and videos. The second technique is

based on iterative optimization of a global energy function that measures the quality of the

synthesized texture with respect to the given input exemplar.

We also present a technique for controllable texture synthesis. In particular, it allows

for generation of motion-controlled texture animations that follow a specified flow field.

Animations synthesized in this fashion maintain the structural properties like local shape,

size, and orientation of the input texture even as they move according to the specified

flow. We cast this problem into an optimization framework that tries to simultaneously

satisfy the two (potentially competing) objectives of similarity to the input texture and

consistency with the flow field. This optimization is a simple extension of the approach

used for unconstrained texture synthesis.

A general framework for example-based synthesis and rendering is also presented. This

framework provides adesign spacefor constructing example-based rendering algorithms.

The goal of such algorithms would be to use texture exemplars to render animations for

which certain behavioral characteristics need to be controlled. Our motion-controlled tex-

ture synthesis technique is an instantiation of this framework where the characteristic being

controlled is motion represented as a flow field.

xii

CHAPTER I

INTRODUCTION

Textural phenomena are ubiquitous in our environment. Examples include static textures
such as reptile skin, wood grain, brick wall, keys on a keyboard, surface of bread, etc, and
dynamic textures such as ocean waves, waterfall, smoke from a chimney, fire burning in a
fireplace, grass fields waving in the wind, etc. According to the Free Online Dictionary of
Computing (FOLDOC) [30], texture is defined as “a measure of the variation of the inten-
sity of a surface, quantifying properties such as smoothness, coarseness and regularity”. A
common characteristic among textural phenomena is that their appearance is statistically
self-similar over space and/or time. One of the long standing goals of computer graphics is
to achieve photo-realism in the animation and rendering of such phenomena.

This dissertation presents techniques for realistic synthesis of both static and dynamic
textural phenomena usingexemplars– sample images and videos from the real world.
Specifically, we consider the following problems:

Unconstrained Texture Synthesis: Given a sample image, we want to extend it spatially
such that the appearance of the synthesized image is texturally similar to input. In other
words, properties like shape, size, orientation, etc ofelementsthat compose the input tex-
ture should be maintained in the output. The same problem is also considered in the case
of video texture. For video textures, we want to maintain, not only the spatial appearance
of texture elements, but also their dynamic appearance as they evolve over time.

Animating Image Textures using Flow: Given a flow field and an image texture as
input, we want to synthesize an animation that has the same perceived motion as that rep-
resented by the flow field. However, at the same time, we want to maintain the structure
of texture elements in the synthesized animation. We consider only two-dimensional (2D)
flows specified as vector fields that may be time-varying,i.e., dynamically changing over
time.

Animating Video Textures using Flow: Here, we want to extend the notion of flow-
guided texture animation to use video textures as input. In general, for a textural video, the
change in appearance is a combination of flow as well as texture evolution. We want the
synthesized animation to convey the motion described by the input flow-field but evolve
the texture according to input video. This thesis only partially addresses this problem.

We also present a general framework for controllable synthesis, of which flow-guided
synthesis can be considered an instantiation. This framework can be thought of as a design
space for addition of constraints and control parameters to the synthesis process.

1

INPUT OUTPUT

Figure 1: Example of video texture synthesis. The input river sequence has been extended
spatially as well as temporally in the output. Shown are single frames from the input and
output video sequences. This result was synthesized using our texture synthesis technique
based on graph cuts (see Chapter3 for more details).

1.1 Example-based Synthesis
Traditionally, the computer graphics community has relied on simulation of physical pro-
cesses to achieve realism. For example, global illumination methods that simulate light
transport in the scene have been researched very thoroughly and are very mature. Even
then, achieving photo-realism for the phenomena mentioned here is a difficult task. This
is so because besides simulating light transport, we also need to accurately model the be-
havior and appearance of the material being rendered. Moreover, in the case of dynamic
phenomena, the behavior keeps changing over space and time, adding to the complexity
of the rendering process. In recent times, researchers have experimented with the use of
real-world images for rendering novel views of a static scene in place of purely simulation
based rendering. By using actual samples of the real world, these techniques alleviate some
problems associated with modeling of the real world.

Example-based techniques that are specifically concerned with textural phenomena
usually exploit the Markov Random Field (MRF) property of textures. This property re-
quires thatlocality andstationaritybe satisfied. Locality implies that the color at a pixel’s
location is dependent only on a neighborhood of pixels around it, and stationarity implies
that this dependency is independent of the actual location of the pixel. The MRF property
has been extensively used for analysis and synthesis of image textures in both graphics and
vision communities. The primary objective in image texture synthesis is to extend a given
input texture sample spatially; the extension being such that the input sample appears to
be a fragment of the extended texture. To some extent, researchers have been successful in
adapting these techniques to the video domain as well. In the case of video, the goal is to
extend the video not only spatially but also temporally, or to transform it into a continuous
loop that can be played infinitely. Most techniques for image texture synthesis cannot be
trivially extended to video because of the increase in dimensionality, and at times, due to

2

the lack of isotropy and stationarity in the temporal dimension. In this thesis, we present
a framework for synthesizing both image and video textures in a unified fashion using
MRF-based optimization techniques that scale well with increase in dimensionality. Fig-
ure1 shows an example of spatio-temporal extension of video achieved using our texture
synthesis technique based on graph cuts (explained in Chapter3).

1.2 Controllable Texture Synthesis
In order to make texture synthesis more effective, it is imperative to make it more con-
trollable. This is especially true if we want to use it as an alternative to purely synthetic
rendering of general scenes. For example, we may want to use a sample image or video
of a waterfall to render a synthetic waterfall for which the flow has been computed through
physical simulation. The shape and flow of the waterfall in the sample may be significantly
different from that of the synthetic one,e.g.,the synthetic waterfall may have an obstacle in
its path, where the input sample had none. A synthesis technique that only looks at the out-
put size will fail to match the characteristics of the synthetic waterfall. In this scenario, the
physical simulation can be thought of as providing a control mechanism for the rendering
of the waterfall: we still want a real looking waterfall similar to the input sample; however,
we want it to be constrained to match the characteristics output by the simulation.

We present such a synthesis technique that not only maintains visual similarity between
the synthesized output and input sample, but also provides a mechanism for controlling
certain characteristics of the synthesized output. Our formulation for controllable texture
synthesis is cast in the context of rendering dynamic scenes using exemplars. In a way,
this formulation is a generalization of classical image-based rendering. In image-based
rendering, the objective is to synthesize novel views of a static scene, given images of the
scene from certain other viewpoints. We generalize this notion by allowing the scene to be
dynamic, as well as by providing a framework for editing scene properties other than just
the viewpoint. However, we are also specializing image-based rendering by only allowing
scenes that are textural in nature.

We demonstrate our controllable texture synthesis approach by synthesizing dynamic
scenes where the motion is controlled using flow-fields, while the appearance is rendered
using example textures. Flow is specified as a two-dimensional vector-field (or a sequence
of it) that may be dynamically changing over time. We have experimented with both image
and video textures as input exemplars. Figure2 shows examples of image textures being
animated using a sink flow field (Chapter5 and Chapter6 describe the technique used to
synthesize these results).

1.3 Contributions
The contributions of this thesis consist of (i) a set of robust techniques for solving the
texture synthesis problem for both images and videos, (ii) formulation of a probabilistic
(optimization-based) framework for example-based rendering of textural phenomena, and
(iii) techniques for animating textures using flow-fields, which demonstrate the power of

3

SINK FLOW

FRAME 1 FRAME 17 FRAME 1 FRAME17

Figure 2: Animating texture using a flow field. Shown are keyframes from texture se-
quences that follow the sink flow field shown on the top (see Chapter5 and Chapter6 for
more details).

the synthesis framework formulated in (ii). Following is a brief description of upcoming
chapters and how they relate to these contributions.

1.3.1 Image and Video Synthesis using Graph Cuts

This chapter describes a novel patch-based technique for image and video texture synthe-
sis. The output texture is synthesized by copying patches of arbitrary shape and size from
the input to the output. There are two key steps in the synthesis process that are repeated
iteratively – patch placement and seam optimization. Patch placement finds an appropriate
location for the new patch by searching for regions in the input that match well the current
state of the output texture. Our search procedure looks for long range interactions between
pixels. This facilitates good alignment among the various patches constituting the output
texture. Once the location for the new patch is ascertained, seam optimization determines
the best portion (arbitrary cut-out) of this new patch that should be copied to the output.
This procedure uses a local color-based similarity metric to determine the cost of the seam
(boundary of cut-out region that is copied over). The optimization itself is done by embed-
ding the texture into a graph for which themincutcorresponds to the minimum-cost seam.
This embedding does not impose any constraint on the dimensionality of the texture, and
therefore both image and video textures can be synthesized within the same framework.

1.3.2 Framework for Rendering Animations using Texture Exemplars

The synthesis technique based on graph cuts described above is able to generate very re-
alistic looking textures. However, there is limited control over the synthesis process. This

4

chapter describes a general framework for designing rendering techniques that borrow ap-
pearance information from example textures, but at the same time allow control over certain
characteristics of the output,e.g.,motion and shape.

We are interested in rendering dynamic scenes (animations) for which these charac-
teristics can be expressed locally. We define a probabilistic formulation for solving such
problems, where the goal is to estimate the maximuma posteriori(MAP) appearance of
the output. The source (input) texture exemplar serves as aprior on the appearance of the
target (output). This prior is based on the MRF assumption described earlier. The consis-
tency of the synthesized target with its desirable characteristics is expressed as alikelihood
function. We only give a general description of the likelihood function in this chapter,
as one needs to design a special likelihood function for each specific characteristic that is
being controlled.

1.3.3 Texture Optimization for Unconstrained Synthesis

This chapter builds off from the probabilistic formulation described in the previous chapter.
However, here we focus on a novel texture synthesis algorithm that is only based on the
prior term described above. The prior term models the similarity of the synthesized target
to the source exemplar. Hence, on removal of the likelihood term, the MAP estimate of
target appearance corresponds to computing a target texture that is optimally similar to
the source texture. In this chapter, we describe a prior model based on a specific texture
similarity metric, as well as an algorithm to optimize for it. The similarity metric measures
distances between local neighborhoods of the source and target. We optimize for it using
an Expectation-Maximization (EM)-like algorithm that iteratively decreases the distance
between these local neighborhoods. Note that, in general, it isNP-hard to compute the
globally optimum target texture corresponding to our prior. Consequently, our optimization
technique is designed to only find a locally optimum texture. As with the algorithm based
on graph cuts, we can handle both image and video textures with this approach too.

1.3.4 Controllable Synthesis - Flowing Image Textures

In this chapter, we incorporate the characteristic likelihood term of our probabilistic formu-
lation into the optimization-based texture synthesis algorithm mentioned above. We first
describe this augmented controllable synthesis algorithm for general likelihood functions.
We consider likelihoods that can be expressed as an optimizable energy function. This en-
ergy function should measure the cost of the synthesized target with respect to desirable
target characteristics. During each iteration of the EM algorithm mentioned above, we
optimize for the likelihood energy in addition to the texture similarity metric.

In the same chapter, we also consider the specific scenario where flow is the target
characteristic being controlled while the input exemplar is an image texture. In this case, the
likelihood is encoded as the distance (in color-space) between pixels in adjoining frames (of
the target) that are connected via flow-lines. We synthesize the target animation frame-by-
frame, where each synthesized frame is warped using the target flow to provide an estimate
for the next frame. This estimated frame is then used to define the likelihood measure for

5

the new frame. The synthesized texture sequence moves according to the specified flow-
field, but maintains textural appearance similar to the source image, even as it evolves over
time. We also discuss how to add obstacles in the path of the flow-field and synthesize
textures accordingly.

1.3.5 Flowing Video Textures

This chapter extends the flow-guided synthesis scenario described above to the case when
the input exemplar is a video texture. Although the likelihood is similar in essence to the
one used for image exemplars, in this case, the entire target video is synthesized at once,
i.e.,not frame-by-frame. This is because the texture similarity metric for video exemplars
compares spatio-temporal neighborhoods that span multiple frames. Hence, it is natural to
model the output as a 3D spatio-temporal texture as opposed to a sequence of 2D textures.

Synthesis using video exemplars is a much harder optimization problem than synthesis
using image exemplars. This is so because the texture at source moves according to its own
flow field. At the same time, it may be evolving over time,i.e., texture elements may be
changing even if they are not flowing. Decoupling these two processes is a difficult problem
and is not addressed in this thesis. Instead, to achieve source-like texture dynamics at the
target, we search for source regions with similar flow as that desired at the target on the
fly during synthesis. The quality of synthesis is then limited by the degree of mismatch
between source and target flow. We analyze this limitation in more detail and explore
possible future research directions to improve synthesis quality for video exemplars, at the
end of this chapter.

6

CHAPTER II

BACKGROUND

Our research is related most closely to image-based rendering and texture synthesis. It
aims at generalizing image-based rendering by allowing modification of scene properties
other than just the viewpoint. The mathematical and computational tools employed in the
process borrow from as well as add to the texture synthesis literature.

2.1 Image-based Rendering
Image-based rendering is primarily concerned with the synthesis of novel views of a static
scene, given a set of existing views. The sophistication and complexity of a particular
image-based rendering technique generally depends on the freedom it affords in the choice
of viewing configurations. The simplest case is when all images share the same view-
point, but differ in viewing angles. Novel view synthesis then amounts to creation of
panoramic mosaics [10, 60, 56], i.e., alignment and stitching of the given images. In the
most general case, one can reconstruct the entire 5-dimensional plenoptic function [41],
which determines the distribution of light at any location and orientation in space. Re-
searchers have experimented with projections of this function into lower dimensional sub-
spaces [24, 36, 53, 55] – these subspaces correspond to various kinds of constraints on the
camera locations and orientations used for obtaining source images or synthesizing novel
ones.

The limitation of static scenes in image-based rendering is also its strength. It allows
for a physically sound treatment of the problem, leading to solutions that can be easily
tested for correctness. Our interest lies in synthesizing videos of phenomena that may be
dynamic in nature. The editing capabilities we desire not only include novel viewpoints but
also novel scene characteristics. This requires us to make additional assumptions about the
scene: we have chosen to deal with phenomena that can be visually described as texture.

2.2 Texture Synthesis
The objective in texture synthesis is to generate a newer form of output from a smaller
example. The need for such a capability is widely recognized to be important for computer
graphics applications. For example, sample-based image texture synthesis methods are
needed to generate large realistic textures for rendering of complex graphics scenes. Tex-
ture is usually defined as an infinite pattern that can be modeled by a stationary stochastic
process. For synthesizing texture from a given example, one needs to mimic the underlying
stochastic process responsible for generating the example. These arguments hold equally
well for both spatial (image) and temporal (video) textures. However, in the case of video
textures, the stochastic process in the temporal dimension is generally separate from the

7

process in the spatial dimensions.
Texture synthesis techniques that generate an output texture from an example input can

be roughly categorized into three classes. The first class uses a fixed number of param-
eters within a compact parametric model to describe a variety of textures. Heeger and
Bergen [28] use color histograms across frequency bands as a texture description. Por-
tilla and Simoncelli’s model [46] includes a variety of wavelet features and their relation-
ships, and is probably the best parametric model for image textures to date. Szummer
and Picard [61], Soatto et al. [57], and Wang and Zhu [63] have proposed parametric repre-
sentations for video. Brand [5] uses low-dimensional subspaces to model high-dimensional
video sequences. Parametric models cannot synthesize as large a variety of textures as other
models described here, but provide better model generalization and are more amenable to
introspection and recognition [47]. They therefore perform well for analysis of textures
and can provide a better understanding of the perceptual process.

The second class of texture synthesis methods is non-parametric, which means that
rather than having a fixed number of parameters, they use a collection ofexemplarsto
model the texture. DeBonet [14], who pioneered this group of techniques, samples from a
collection of multi-scale filter responses to generate textures. Efros and Leung [17] were
the first to use an even simpler approach, directly generating textures by copying pixels
from the input texture. Wei and Levoy [64] extended this approach to multiple frequency
bands and used vector quantization to speed up the processing. BarJoseph et al. [2] invented
a pixel-based technique for synthesis of video. All these techniques generate textures one
pixel at a time.

The third, most recent class of techniques generates textures by copying wholepatches
from the input. Ashikmin [1] made an intermediate step towards copying patches by using
a pixel-based technique that favors transfer of coherent patches. Liang et al. [38], Efros
and Freeman [18], and Guo et al. [26] explicitly copy whole patches of input texture at a
time. Cohen et al. [11] pre-compute a set of image patches called Wang Tiles, which they
then use for synthesizing textures. Wu and Yu [67] combine feature-guided search with
patch-based synthesis. Schödl et al. [51] perform video synthesis by copying whole frames
from the input sequence. This last class of techniques arguably creates the best synthesis
results on the largest variety of textures. These methods, unlike the parametric methods
described above, yield a limited amount of information for texture analysis.

The texture synthesis techniques presented in this thesis are most naturally classified
as patch-based techniques. We present two techniques for unconstrained texture synthesis.
Our first technique, based on graph cuts, stitches large patches of arbitrary sizes along per-
ceptually optimal seams. On the other hand, our texture optimization technique considers
patch sizes that vary from large to small and attempts to decrease the mismatch between
overlapping patches. This technique is really intermediate between patch and pixel-based
techniques; however, the primary structure of the synthesized texture is still determined by
the larger patches. This variability in the patch size also allows us to extend the technique
to handle controllable synthesis.

8

2.3 Markov Random Fields
Across different synthesis techniques, textures are often described as Markov Random
Fields (MRFs) [14, 43, 17, 18, 64]. This interpretation allows texture to be analyzed or
synthesized by only considering interactions between neighboring pixels. Analysis and op-
timization in MRFs have been studied extensively in the context of computer vision [37].
Within the context of MRFs, researchers have also investigated multi-resolution [9, 8, 14,
64] and cluster-based [45, 39, 64, 71] approaches for representing textures. These have
proven to be useful as compact descriptions of textures, besides aiding in the development
of efficient sampling and optimization techniques for texture analysis and synthesis.

Our techniques for texture synthesis also formulate texture as a Markov Random Field.
For our patch stitching technique, we use a measure for seam quality that is defined in terms
of pairs of pixels. This is a standard way of representing costs in an MRF; we use a graph
cut technique to optimize the likelihood of the MRF. Among other techniques using graph
cuts [25], we have chosen a technique by Boykov et al. [4], which is particularly suited for
the type of cost function found in texture synthesis.

Note that the graph cut algorithm uses the MRF formulation to define only the seam
cost, which is used to paste a single patch over an existing synthesized output. In our texture
optimization technique, however, we have extended the MRF formulation to define a cost
for the entire texture as a whole. This cost measures the quality of the synthesized texture
with respect to the input texture. We have developed a novel technique for MRF optimiza-
tion in this context using the Expectation-Maximization (EM) [40] algorithm. There also
exist other techniques that use MRF optimization for texture synthesis. In particular, Paget
and Longstaff [43] have used local annealing over a multi-scale MRF for texture synthe-
sis. However, they consider only pixel-to-pixel interactions. In contrast, our technique can
handle interactions between large neighborhoods by virtue of being patch-based. Also, our
EM-based optimization is faster than their annealing-based approach, but still gives high
quality results. Freeman et al. [23] have used belief propagation over an MRF for super-
resolution. They can handle interactions across large neighborhoods. However, theirs is a
fully discrete optimization while our approach is semi-discrete-continuous, which leads to
a simpler optimization algorithm. Additionally, this also implies that in our approach, all
synthesized pixels are not necessarilycopiedfrom the input, which makes the technique
more flexible and accommodating for constrained synthesis.

In image analysis, Jojic et al. [32] use a distance metric similar to our texture energy
metric for computing image epitomes. Fitzgibbon et al. [21] also use a similar metric as
texture prior for image-based rendering, while Wexler et al. [66] use it for hole-filling in
video. Wei and Levoy [65] use a global pixel-based approach for texture synthesis where
non-causal neighborhoods are used to simultaneously determine each pixel of the evolving
texture; we, on the other hand, directly combine these neighborhoods as patches within our
optimization.

2.4 Controllable Texture Synthesis
Although most work in texture synthesis has been focussed on unconstrained synthesis,
there has been some research for adding higher-level user control to these methods.

9

Ashikhmin [1], requires a user to specify the large scale properties of the output texture
through a painting-like interface. Efros and Freeman [18] perform texture transfer on
arbitrary images by matching correspondence maps. Hertzmann et al. [29] synthesize
the output of a filter or painting operation on a given image by learning the operation
from a prior input-output image pair. Brooks and Dodgson [7] perform texture editing by
replicating local editing operations globally over the texture using self-similarity. Tonietto
and Walter [62] allow local scale variations by blending textures at different resolutions
appropriately. Zhang et al. [70] control features like scale, orientation, and shape of the
synthesized texture by explicitly modeling texture elements. All of the above methods
support some sort of a higher-level control for spatial synthesis.

For video textures, Schödl et al. [51] blend multiple videos at varying speeds to control
the speed of the synthesized video. They also use video sprites for synthesizing character
animations from video [51, 49, 50]. Doretto and Soatto [16] edit the speed, intensity,
and scale of video textures by editing parameters of a Linear Dynamical System (LDS).
Yuan et al. [68] use a closed-loop linear dynamical system to synthesize dynamic textures.
Bregler et al. [6] and Ezzat et al. [20] use speech to control facial animation synthesis
from video data. Sun et al. [59] extract wind speed and harmonic oscillator parameters to
control the motion of synthetic objects in a real natural scene. All of the above are examples
of higher level control (i.e., specified trajectories, matching to data, or speech) applied to
temporal synthesis.

Bhat et al. [3] provide an interactive system for editing video by specifying flow lines
in the input and output sequences. Unlike other efforts on controlled video synthesis, the
goal of this work is similar to that of ours as in low-level control is imparted to synthesize
new video. However, our controllable synthesis algorithms differ completely. Our synthe-
sis technique can also be considered more general as it can handle arbitrary time-varying
flow-fields, and can also use image textures as input. Additionally, we provide a general
framework for controllable texture synthesis that can be specialized to control other char-
acteristics besides flow.

10

CHAPTER III

IMAGE AND VIDEO TEXTURE SYNTHESIS USING
GRAPH CUTS

In this chapter, we present a new method for texture synthesis in both the image and the
video domain1. Our technique is example-based; using a small example patch of the tex-
ture, we generate a larger pattern with similar stochastic properties. Specifically, our ap-
proach for texture synthesis generates textures by copying input texture patches. Our algo-
rithm first searches for an appropriate location to place the patch; it then uses agraph cut
technique to find the optimal region of the patch to transfer to the output. In our approach,
textures are not limited to spatial (image) textures, and include spatio-temporal (video) tex-
tures. In addition, our algorithm supports iterative refinement of the output by allowing for
successive improvement of the patch seams.

When synthesizing a texture, we want the generated texture to be perceptually similar
to the example texture. This concept of perceptual similarity has been formalized as a
Markov Random Field (MRF). The output texture is represented as a grid of nodes, where
each node refers to a pixel or a neighborhood of pixels in the input texture. The marginal
probability of a pair of nodes depends on the similarity of their pixel neighborhoods, so
that pixels from similar-looking neighborhoods in the input texture end up as neighbors in
the generated texture, preserving the perceptual quality of the input. The goal of texture
synthesis can then be restated as the solution for the nodes of the network, that maximizes
the total likelihood. This formulation is well-known in machine-learning as the problem of
probabilistic inference in graphical models and is proven to beNP-hard in case of cyclic
networks. Hence, all techniques that model the texture as a MRF [14, 17, 18, 64] compute
some approximation to the optimal solution.

In particular, texture synthesis algorithms that generate their output by copying patches
(or their generalizations to higher dimensions) must make two decisions for each patch: (1)
where to position the input texture relative to the output texture (theoffsetof the patch),
and (2) which parts of the input texture to transfer into the output space (the patchseam)
(Figure3). The primary contribution of this research is an algorithm for texture synthesis,
which after finding a good patch offset, computes the best patch seam (the seam yielding the
highest possible MRF likelihood among all possible seams for that offset). The algorithm
works by reformulating the problem as a minimum cost graph cut problem: the MRF grid
is augmented with special nodes, and a minimum cut of this grid between two special
terminal nodes is computed. This minimum cut encodes the optimal solution for the patch
seam. We also propose a set of algorithms to search for the patch offset at each iteration.
These algorithms try to maintain the large scale structure of the texture by matching large

1This work was done in collaboration with Arno Schödl and a related joint publication is [35]. This
chapter presents all parts of the associated research for completeness. Please also refer to Arno Schödl’s
thesis [48] for exhaustive review.

11

offset (relative placement of input texture)

output texture

seam (area of input
that is transferred to
output texture)

input texture

additional
patches

Figure 3: Image texture synthesis by placing small patches at various offsets followed by
the computation of a seam that enforces visual smoothness between the existing pixels and
the newly placed patch.

input patches with the output. An important observation is that the flexibility of the our
seam optimization technique to paste large patches at each iteration in a non-causal fashion
is really what permits the design of our offset search algorithms. The offset searching and
seam finding methods are therefore complementary to each other, and work in tandem to
generate the obtained results.

Efros and Freeman [18] were the first to incorporate seam finding by using dynamic
programming. However, dynamic programming imposes an artificial grid structure on the
pixels and therefore does not treat each pixel uniformly. This can potentially mean miss-
ing out on good seams that cannot be modeled within the imposed structure. Moreover,
dynamic programming is a memoryless optimization procedure and cannot explicitly im-
prove existing seams. This restricts its use to appending new patches to existing textures.
Our graph cut method treats each pixel uniformly and is also able to place patchesoverex-
isting texture. Unlike dynamic programming, which is restricted to 2D, the seam optimiza-
tion presented here generalizes to any dimensionality. Based on this seam optimization,
we have developed algorithms for both two and three dimensions to generate spatial (2D,
images) and spatio-temporal (3D, video) textures.

Finally, we have extended our algorithm to allow for multiple scales and different ori-
entations which permits the generation of larger images with more variety and perspective
variations. We have also implemented an interactive system that allows for merging and
blending of different types of images to generate composites without the need for any a
priori segmentation.

12

3.1 Patch Fitting using Graph Cuts
We synthesize new texture by copying irregularly shaped patches from the sample image
into the output image. The patch copying process is performed in two stages. First a can-
didate rectangular patch (or patch offset) is selected by performing a comparison between
the candidate patch and the pixels already in the output image. We describe our method of
selecting candidate patches in a later section (Section3.2). Second, an optimal (irregularly
shaped) portion of this rectangle is computed and only these pixels are copied to the out-
put image (Figure3). This process is repeated iteratively so as to improve the perceptual
quality of the synthesized texture, as shown in Figure4. The portion of the patch to copy is
determined by using a graph cut algorithm, and this is the heart of our synthesis technique.

In order to introduce the graph cut technique, we first describe how it can be used
to perform texture synthesis in the manner of Efros and Freeman’s image quilting [18].
Later we will see that it is a much more general tool. In image quilting, small blocks
(e.g., 32× 32 pixels) from the sample image are copied to the output image. The first
block is copied at random, and then subsequent blocks are placed such that they partly
overlap with previously placed blocks of pixels. The overlap between old and new blocks
is typically 4 or 8 pixels in width. Efros and Freeman use dynamic programming to choose
the minimum cost path from one end of this overlap region to the other. That is, the chosen
path is through those pixels where the old and new patch colors are similar (Figure5(left)).
The path determines which patch contributes pixels at different locations in the overlap
region.

To see how this can be cast into a graph cut problem, we first need to choose a matching
quality measure for pixels from the old and new patch. In the graph cut version of this
problem, the selected path will runbetweenpairs of pixels. The simplest quality measure,
then, will be a measure of color difference between the pairs of pixels. Lets andt be two
adjacent pixel positions in the overlap region. Also, letA(s) andB(s) be the pixel colors at
the positions in the old and new patches, respectively. We define the matching quality cost
M between the two adjacent pixelss andt that copy from patchesA andB respectively to
be:

M(s, t,A,B) = ‖A(s)−B(s)‖+‖A(t)−B(t)‖ (1)

where‖ ·‖ denotes an appropriate norm. We consider a more sophisticated cost function in
a later section. For now, this match cost is all we need to use graph cuts to solve the path
finding problem.

Consider the graph shown in Figure5(right) that has one node per pixel in the overlap
region between patches. We wish to find a low-cost path through this region from top to
bottom. This region is shown as 3×3 pixels in the figure, but it is usually more like 8×32
pixels in typical image quilting problems (the overlap between two 32×32 patches). The
arcs connecting the adjacent pixel nodessandt are labelled with the matching quality cost
M(s, t,A,B). Two additional nodes are added, representing the old and new patches (A and
B). Finally, we add arcs that have infinitely high costs between some of the pixels and the
nodesA or B. These areconstraintarcs, and they indicate pixels that we insist will come
from one particular patch. In Figure5, we have constrained pixels 1, 2, and 3 to come from
the old patch, and pixels 7, 8, and 9 must come from the new patch. To find out which
patch each of the pixels 4, 5, and 6 will come from is determined by solving a graph cut

13

Sample Texture

Synthesized Texture
(Initialization)

Synthesized Texture
(After 5 steps of Refinement)

Seam Boundaries

Step 2 Step 3

Step 4 Step 5

Seam Costs

Figure 4: This figure illustrates the process of synthesizing a larger texture from an exam-
ple input texture. Once the texture is initialized, we find new patch locations appropriately
so as to refine the texture. Note the irregular patches and seams. Seam error measures that
are used to guide the patch selection process are shown. This process is also shown in the
video.

14

Patch
A

Patch
B

Overlap

cut

1

2

3

4

5

6

7

8

9

Patch
A

Patch
B

∞

∞

∞

∞

∞ ∞

cut

Figure 5: (Left) Schematic showing the overlapping region between two patches. (Right)
Graph formulation of the seam finding problem, with the red line showing the minimum
cost cut.

problem. Specifically, we seek the minimum cost cut of the graph, that separates nodeA
from nodeB. This is a classical graph problem called min-cut or max-flow [22, 52] and
algorithms for solving it are well understood and easy to code. In the example of Figure5,
the red line shows the minimum cut, and this means pixel 4 will be copied from patchB
(since its portion of the graph is still connected to nodeB), whereas pixels 5 and 6 will be
from the old patchA.

3.1.1 Accounting for Old Seams

The above example does not show the full power of using graph cuts for texture synthesis.
Suppose that several patches have already been placed down in the output texture, and that
we wish to lay down a new patch in a region where multiple patches already meet. There
is a potential for visible seams along the border between old patches, and we can measure
this using the arc costs from the graph cut problem that we solved when laying down these
patches. We can incorporate these old seam costs into the new graph cut problem, and thus
we can determine which pixels (if any) from the new patch should cover over some of these
old seams. To our knowledge, this cannot be done using dynamic programming – the old
seam and its cost at each pixel needs to beremembered; however, dynamic programming is
a memoryless optimization procedure in the sense that it cannot keep track of old solutions.

We illustrate this problem in Figure6. In the graph formulation of this problem, all
of the old patches are represented by a single nodeA, and the new patch isB. SinceA
now represents a collection of patches, we useAs to denote the particular patch that pixel
s copies from. For each seam between old pixels, we introduce aseam nodeinto the graph
between the pair of pixel nodes. We connect each seam node with an arc to the new patch
nodeB, and the cost of this arc is the old matching cost when we created this seam,i.e.,
M(s, t,As,At) wheres andt are the two pixels that straddle the seam. In Figure6, there is
an old seam between pixels 1 and 4, so we insert a seam nodes1 between these two pixel
nodes. We also connects1 to the new patch nodeB, and label this arc with the old matching
costM(1,4,A1,A4). We label the arc from pixel node 1 tos1 with the costM(1,4,A1,B)
(the matching cost when only pixel 4 is assigned the new patch) and the arc froms1 to pixel
node 4 with the costM(1,4,B,A4) (the matching cost when only pixel 1 is assigned the

15

Existing
Pixels

A

New
Patch

B

Overlap
1

2

3

4

5

6

7

8

9

∞

∞

∞

∞

∞ ∞

Existing
Pixels

A

old
cut

new
cut

S1

S2 S3

S4

old
cut

new
cut

New
Patch

B

Figure 6: (Left) Finding the best new cut (red) with an old seam (green) already present.
(Right) Graph formulation with old seams present. Nodess1 to s4 and their arcs toB encode
the cost of the old seam.

new patch). If the arc between a seam node and the new patch nodeB is cut, this means
that the old seam remains in the output image. If such an arc isnot cut, this means that the
seam has been overwritten by new pixels, so the old seam cost is not counted in the final
cost. If one of the arcs between a seam node and the pixels adjacent to it is cut, it means
that a new seam has been introduced at the same position and a new seam cost (depending
upon which arc has been cut) is added to the final cost. In Figure6, the red line shows the
final graph cut: the old seam ats3 has been replaced by a new seam, the seam ats4 has
disappeared, and fresh seams have been introduced between nodes 3 and 6, 5 and 6, and 4
and 7.

This equivalence between seam cost and the min-cut of the graph holds if and only if
at most one of the three arcs meeting at the seam nodes is included in the min-cut. The
cost of this arc is the new seam cost, and if no arc is cut, the seam is removed and the
cost goes to zero. This is true only if we ensure thatM is a metric (satisfies the triangle
inequality) [4], which is true if the norm in (1) is a metric. Satisfying the triangle inequality
implies that picking two arcs originating from a seam node is always costlier than picking
just one of them, hence at most one arc is picked in the min-cut, as desired. Our graph cut
formulation is equivalent to the one in [4] and the addition of patches corresponds to theα-
expansion step in their work. In fact, our implementation uses their code for computing the
graph min-cut. Whereas they made use of graph cuts for image noise removal and image
correspondence for stereo, our use of graph cuts for texture synthesis is novel.

3.1.2 Surrounded Regions

So far we have shown new patches that overlap old pixels only along a border region. In
fact, it is quite common in our synthesis approach to attempt to place a new patch over a
region where the entire area has already been covered by pixels from earlier patch place-
ment steps. This is done in order to overwrite potentially visible seams with the new patch,
and an example of this is shown in Figure7. The graph formulation of this problem is
really the same as the problem of Figure6. In this graph cut problem, all of the pixels in
a border surrounding the placement region are constrained to come from existing pixels.

16

New Patch B

New
Patch

B

Existing
Pixels

A

old
cut

new
cut

Existing
Pixels

A

Figure 7: (Left) Placing a patch surrounded by alreadyfilled pixels. Old seams (green)
are partially overwritten by the new patch (bordered in red). (Right) Graph formulation of
the problem. Constraint arcs toA force the border pixels to come from old image. Seam
nodes and their arcs are not shown in this image for clarity.

These constraints are reflected in the arcs from the border pixels to nodeA. We have also
placed a single constraint arc from one interior pixel to nodeB in order to force at least one
pixel to be copied from patchB. In fact, this kind of a constraint arc to patchB isn’t even
required. To avoid clutter in this figure, the nodes and arcs that encode old seam costs have
been omitted. These omitted nodes make many connections between the central portion
of the graph and nodeB, so even if the arc toB were removed, the graph would still be
connected. In the example, the red line shows how the resulting graph cut actually forms a
closed loop, which defines the best irregularly-shaped region to copy into the output image.

Finding the best cut for a graph can have a worst-caseO(n2) cost for a graph withn
nodes [52]. For the kinds of graphs we create, however, we never approach this worst-case
behavior. Our timings appear to beO(nlog(n)).

3.2 Patch Placement & Matching
Now we describe several algorithms for picking candidate patches. We use one of three
different algorithms for patch selection, based on the type of texture we are synthesizing.
These selection methods are: (1)random placement, (2) entire patch matching, and (3)
sub-patch matching.

In all these algorithms, we restrict the patch selection to previously unused offsets.
Also, for the two matching-based algorithms, we first find a region in the current texture
that needs a lot of improvement. We use the cost of existing seams to quantify the error in
a particular region of the image, and pick the region with the largest error. Once we pick
such anerror-region, we force the patch selection algorithm to pick only those patch lo-
cations that completely overlap the error-region. When the texture is being initialized,i.e.,
when it is not completely covered with patches of input texture, the error-region is picked
differently and serves a different purpose: it is picked so that it contains both initialized

17

and uninitialized portions of the output texture – this ensures that the texture is extended
by some amount and also that the extended portion is consistent with the already initialized
portions of the texture.

Now we discuss the three patch placement and matching methods in some detail. The
same three placement algorithms are used for synthesis of image (spatial) and video (spatio-
temporal) textures, discussed in Sections3.4 and3.5 respectively. Note that patch place-
ment is really just a translation applied to the input before it is added to the output.

Random placement: In this approach, the new patch, (the entire input image), is trans-
lated to a random offset location. The graph cut algorithm selects a piece of this patch to
lay down into the output image, and then we repeat the process. This is the fastest synthesis
method and gives good results for random textures.

Entire patch matching: This involves searching for translations of the input image that
match well with the currently synthesized output. To account for partial overlaps between
the input and the output, we normalize the sum-of-squared-differences (SSD) cost with the
area of the overlapping region. We compute this cost for all possible translations of the
input texture as:

C(t) =
1
|At | ∑

p∈At

|I(p)−O(p+ t)|2 (2)

whereC(t) is the cost at translationt of the input,I andO are the input and output images
respectively, andAt is the portion of the translated input overlapping the output. We pick
the new patch location stochastically from among the possible translations according to the
probability function:

P(t) ∝ e−
C(t)
kσ2 (3)

whereσ is the standard deviation of the pixel values in the input image andk controls
the randomness in patch selection. A low value ofk leads to picking of only those patch
locations that have a very good match with the output whereas a high value ofk leads
to more random patch selection. In our implementation, we variedk between 0.001 and
1.0. Note that we also constrain the selected patch to overlap the error-region as described
above. This method gives the best results for structured and semi-structured textures since
their inherent periodicity is captured very well by this cost function.

Sub-patch matching: This is the most general of all our patch selection techniques. It is
also the best method for stochastic textures as well as for video sequences involving textural
motion such as water waves and smoke (Section3.5). The motion in such sequences is
spatially quite unstructured with different regions of the image exhibiting different motions;
however, the motion itself is structured in that it is locally coherent. In sub-patch matching,
we first pick a small sub-patch (which is usually significantly smaller than the input texture)
in the output texture. In our implementation, thisoutput-sub-patchis the same or slightly
larger than the error-region that we want to place the patch over. We now look for a sub-
patch in the input texture that matches this output-sub-patch well. Equivalently, we look

18

for translations of the input such that the portion of the input overlapping the output-sub-
patch matches it well – only those translations that allow complete overlap of the input with
the output-sub-patch are considered. The cost of a translation of the input texture is now
defined as:

C(t) = ∑
p∈SO

|I(p− t)−O(p)|2 (4)

whereSO is the output-sub-patch and all other quantities are the same as in (2). The patch
is again picked stochastically using a probability function similar to (3).

3.3 Extensions & Refinements
Now we briefly describe a few improvements and extensions that we have implemented for
image and video synthesis. These extensions include improvements to the cost functions
that account for frequency variations, inclusion of feathering and multi-resolution tech-
niques to smooth out visible artifacts, and speed ups in the SSD-based algorithms used in
patch matching.

Adapting the Cost Function: The match cost in (1) used in determining the graph cut
does not pay any attention to the frequency content present in the image or video. Usually,
discontinuities or seam boundaries are more prominent in low frequency regions rather than
high frequency ones. We take this into account by computing the gradient of the image or
video along each direction – horizontal, vertical and temporal (in case of video) – and scale
the match cost in (1) appropriately, resulting in the following new cost function.

M′(s, t,A,B) =
M(s, t,A,B)

‖Gd
A(s)‖+‖Gd

A(t)‖+‖Gd
B(s)‖+‖Gd

B(t)‖
(5)

Here,d indicates the direction of the gradient and is the same as the direction of the edge
betweens andt. Gd

A andGd
B are the gradients in the patchesA andB along the direction

d. M′ penalizes seams going through low frequency regions more than those going through
high frequency regions, as desired.

Feathering and multi-resolution splining: Although graph cuts produce the best possi-
ble seam around a given texture patch, it can still generate visible artifacts when no good
seam exists at that point. It is possible to hide these artifacts by feathering the pixel values
across seams. For every pixels close enough to a seam, we find all patches meeting at that
seam.

The pixels is then assigned the weighted sum of pixel valuesP(s) corresponding to
each such patchP. Most of the time, this form of feathering is done using a Gaussian
kernel.

We also use multi-resolution splining [8] of patches across seams, which is helpful
when the seams are too obvious, but it also tends to reduce the contrast of the image or
video when a lot of small patches have been placed in the output. In general, we have
found it useful to pick between feathering and multi-resolution splining on a case-by-case
basis.

19

FFT-Based Acceleration: The SSD-based algorithms described in Section3.2 can be
computationally expensive if the search is carried out naively. Computing the costC(t)
for all valid translations isO(n2) wheren is the number of pixels in the image or video.
However, the search can be accelerated usingFast Fourier Transforms (FFT)[33, 58] . For
example, we can rewrite (4) as:

C(t) = ∑
p

I2(p− t)+∑
p

O2(p)−2∑
p

I(p− t)O(p) (6)

The first two terms in (6) are sum of squares of pixel values over sub-blocks of the image
or video and can be computed efficiently inO(n) time using summed-area tables [13]. The
third term is a convolution of the input with the output and can be computed inO(nlog(n))
time using FFT. Sincen is extremely large for images and especially for video, we get
a huge speed up using this method – for a 150×100×30 video sequence,n≈ 106, and
the time required to search for a new patch reduces from around10 minutes(using naive
search) to5 seconds(using FFT-based search).

3.4 Image Synthesis
We have applied our technique for image and texture synthesis to generate regular, struc-
tured and random textures as well as to synthesize extensions of natural images. Figures8,
9, 10, and11show results for a variety of two-dimensional image textures. We usedentire
patch matchingas our patch selection algorithm for theTEXT, NUTS, ESCHER, andKEY-
BOARD images, whilesub-patch matchingwas used for generatingCHICK PEAS, MACHU

PICCHU, CROWDS, SHEEP, OLIVES, BOTTLES, andLILIES. The computation for images
is quite fast, mainly due to the use of FFT-based search. All image synthesis results pre-
sented here took between 5 seconds and 5 minutes to run. TheLILIES image took 5 minutes
because it was originally generated to be 1280×1024 in size. We also compare some of
our results with that of Image Quilting [18] in Figure10. Now we briefly describe a few
specialized extensions and applications of our 2D texture synthesis technique.

A. Additional Transformations of Source Patches: Our algorithm relies on placing the
input patch appropriately and determining a seam that supports efficient patching of in-
put images. Even though we have only discussed the possibility of translating the input
patch over the output region, one could generalize this concept to include othertransfor-
mationsof the input patch like rotation, scaling, affine or projective. For images, we have
experimented with the use ofrotated, mirrored, andscaledversions of the input texture.
Allowing more transformations gives us more flexibility and variety in terms of the kind of
output that can be generated. However, as we increase the potential transformations of the
input texture, the cost of searching for good transformations also increases. Therefore, we
restrict the transformations other than translations to a small number. Note that the number
of candidate translations is of the order of the number of pixels. We generate the trans-
formed versions of the input before we start synthesis. To avoid changing the searching
algorithm significantly, we put all the transformed images into a single image juxtaposed
against each other. This makes the picking of any transformation equivalent to the picking

20

Figure 8: 2D texture synthesis results. The smaller images are the example images used
for synthesis. Shown areCHICK PEAS, ESCHER, TEXT, andNUTS from left to right and top
to bottom.

21

Figure 9: 2D synthesis results for natural images. The smaller images are the example
images used for synthesis. Shown are MACHU PICCHU c©Adam Brostow,CROWDS and
SHEEPfrom top to bottom.

22

of a translation. Then, only the portion containing the particular transformed version of the
image is sent to the graph cut algorithm instead of the whole mosaic of transformations.

In Figure10, we make use of rotational and mirroring transformations to reduce re-
peatability in the synthesis of theOLIVES image. Scaling allows mixing different sizes
of texture elements together. One interesting application of scaling is to generate images
conveying deep perspective. We can constrain different portions of the output texture to
copy from different scales of the input texture. If we force the scale to vary in a monotonic
fashion across the output image, it gives the impression of an image depicting perspective.
For example, seeBOTTLES andLILIES in Figure11.

B. Interactive Merging and Blending: One application of the graph cut technique is
interactive image synthesis along the lines of [42, 7]. In this application, we pick a set
of source images and combine them to form a single output image. As explained in the
section on patch fitting for texture synthesis (Section3.1), if we constrain some pixels of
the output image to come from a particular patch, then the graph cut algorithm finds the
best seam that goes through the remaining unconstrained pixels. The patches in this case
are the source images that we want to combine. For merging two such images, the user first
specifies the locations of the source images in the output and establishes the constrained
pixels interactively. The graph cut algorithm then finds the best seam between the images.

This is a powerful way to combine images that are not similar to each other since the
graph cut algorithm finds any regions in the images thatare similar and tries to make the
seam go through those regions. Note that our cost function as defined in (5) also favors
the seam to go through edges. Our results indicate that both kinds of seams are present in
the output images synthesized in this fashion. In the examples in Figure12 and Figure13,
one can see that the seam goes through (a) the middle of the water which is the region of
similarity between the source images, and (b) around the silhouettes of the people sitting
in the raft which is a high gradient region.

The SIGGRAPH banner in Figure14 was generated by combining flowers and leaves
interactively: the user had to place a flower image over the leaves background and constrain
some pixels of the output to come from within a flower. The graph cut algorithm was then
used to compute the appropriate seam between the flower and the leaves automatically.
Each letter of the wordSIGGRAPHwas synthesized individually and then these letters were
combined, again using graph cuts, to form the final banner – the letterG was synthesized
only once, and repeated. Approximate interaction time for each letter was in the range of
5-10 minutes.

It is worthwhile to mention related work on Intelligent Scissors by Mortensen and Bar-
rett [42] in this context. They follow a two-step procedure of segmentation followed by
composition to achieve similar effects. However, in our work, we don’t segment the ob-
jects explicitly; instead we leave it to the cost function to choose between object boundaries
and perceptually similar regions for the seam to go through. Also, the cost function used
by them is different than ours. Perez et al. [44] on the other hand, blend pre-selected image
regions using gradient-domain fusion.

23

Input Image Quilting Graph cut

Input Image Quilting Graph cut with Transforms

Figure 10: Comparison of our graph cut algorithm with Image Quilting [18]. Shown
areKEYBOARD andOLIVES. For OLIVES, rotation and mirroring of patches was used to
increase variety in the output. The quilting result forKEYBOARD was generated using our
implementation of Image Quilting; the result forOLIVES is courtesy of Efros and Freeman.

24

Figure 11: Images synthesized using multiple scales yield perspective effects. Shown are
BOTTLES and LILIES c©Brad Powell. We have, from top to bottom: input image, image
synthesized using one scale, and image synthesized using multiple scales.

25

Figure 12: Example of interactive blending of two source images. Shown are inputsHUT

and MOUNTAIN c©Erskine Wood in the top row, and the result in the bottom row. In the
bottom right image, the computed seams are also rendered on top of the results.

26

Figure 13: Another example of interactive blending of two source images. Shown are
inputsRAFT andRIVER c©Tim Seaver in the top row, and the result in the bottom row. In
the bottom right image, the computed seams are also rendered on top of the results.

3.5 Video Synthesis
One of the main strengths of the graph cut technique proposed here is that it allows for a
straightforward extension to video synthesis. Consider a video sequence as a 3D collection
of voxels, where one of the axes is time. Patches in the case of video are then the whole 3D
space-time blocks of video, which can be placed anywhere in the 3D (space-time) volume.
Hence, the same two steps from image texture synthesis, patch placement and seam finding,
are also needed for video texture synthesis.

Similar to 2D texture, the patch selection method for video must be chosen based on
the type of video. Some video sequences just show temporal stationarity whereas others
show stationarity in space as well as time. For the ones showing only temporal stationarity,
searching for patch translations in all three dimensions (space and time) is unnecessary. We
can restrict our search just to patch offsets in time,i.e.,we just look for temporal translations
of the patch. However, for videos that are spatially and temporally stationary, we do search
in all three dimensions.

We now describe some of our video synthesis results. We start by showing some ex-
amples of temporally stationary textures in which we find spatio-temporal seams for video
transitions. These results improve upon video textures [51] and compare favorably against

27

Figure 14: TheSIGGRAPHbanner at the top was generated by merging the source images
shown below it. Image credits: (b)c©East West Photo, (c)c©Jens Grabenstein, (e)c©Olga
Zhaxybayeva.

28

Input Video

Input VideoInput Video

Similar Frames

Computed

Seam

Window in

which seam

computed

Output Video

Shown in 3D

Figure 15: Illustration of seams for temporal texture synthesis. Seams shown in 2D and
3D for the case of video transitions. Note that the seam is a surface in case of video.

29

dynamic textures [57]. Then we discuss spatio-temporally stationary type of video synthe-
sis that improves upon [64, 2].

A. Finding Seams for Video Transitions: Video textures [51] turn existing video into an
infinitely playing form by finding smoothtransitionsfrom one part of the video to another.
These transitions are then used to infinitely loop the input video. This approach works only
if a pair of similar-looking frames can be found. Many natural processes like fluids and
small-scale motion are too chaotic for any frame to reoccur. To ease visual discontinuities
due to frame mismatches, video textures used blending and morphing techniques. Unfor-
tunately, a blend between transitions introduces an irritating blur. Morphing also does not
work well for chaotic motions because it is hard to find corresponding features. Our seam
optimization allows for a more sophisticated approach: the two parts of the video interfac-
ing at a transition, represented by two 3D spatio-temporal texture patches, can be spliced
together by computing the optimal seam between the two 3D patches. The seam in this
case is actually a 2D surface that sits in 3D (Figure15).

To find the best relative offset of the spatio-temporal texture patches, we first find a
good transition by pair-wise image comparison as described in [51]. We then compute
an optimal seam for a limited number of good transitions within a window around the
transition. The result is equivalent to determining the time of the transition on a per-pixel
basis rather than finding a single transition time for the whole image. The resulting seam
can then be repeated to form a video loop as shown in Figure15.

We have generated several (infinitely long) videos using this approach. For each se-
quence, we compute the optimal seam within a 60-frame spatio-temporal window centered
around the best transition. Examples includeWATERFALL A , GRASS, POND, FOUNTAIN,
andBEACH. WATERFALL A andGRASShave been borrowed from Schödl et al. [51]. Their
results on these sequences look intermittently blurred during the transition. Using our
technique, we are able to generate sequences without any perceivable artifacts around the
transitions, which eliminates the need for any blurring. We have also applied (our imple-
mentation of) dynamic textures [57] to WATERFALL A , the result of which is much blurrier
than our result. TheBEACH example shows the limitations of our approach. Although the
input sequence is rather long – 1421 frames – even the most similar frame pair does not
allow a smooth transition. During the transition, a wave gradually disappears. Most dis-
concertingly, parts of the wave vanish from bottom to top, defying the usual dynamics of
waves.

B. Random Temporal Offsets For very short sequences of video, looping causes very
noticeable periodicity. In this case, we can synthesize a video by applying a series of input
texture patches, which are randomly displaced in time. The seam is computed within the
whole spatio-temporal volume of the input texture.

We have applied this approach toFIRE, SPARKLE, OCEAN, and SMOKE. The result
for FIRE works relatively well and, thanks to random input patch displacements, is less
repetitive than the comparable looped video. TheSPARKLE result is also very nice, al-
though electric sparks sometimes detach from the ball. In the case ofOCEAN, the result is
overall good, but the small amount of available input footage causes undesired repetitions.

30

SMOKE is a failure of this method. There is no continuous part in this sequence that tiles
well in time. Parts of the image appear almost static. The primary reason for this is the
existence of a dominant direction of motion in the sequence, which is very hard to capture
using temporal translations alone. Next, we discuss how to deal with such textures using
spatio-temporal offsets.

C. Spatio-Temporally Stationary Videos: For videos that show spatio-temporal station-
arity (like OCEAN and SMOKE), only considering translations in time does not produce
good results. This is because, for such sequences, there usually is some dominant direc-
tion of motion for most of the spatial elements, that cannot be captured by just copying
pixels from different temporal locations; we need to move the pixels around in both space
and time. We apply the sub-patch matching algorithm in 3D for spatio-temporal textures.
Using such translations in space and time for spatio-temporal textures shows a remarkable
improvement over using temporal translations alone.

TheOCEAN sequence works very well with this approach, and the motion of the waves
is quite natural. However, there are still slight problems with sea grass appearing and
disappearing on the surface of the water. EvenSMOKE shows a remarkable improvement.
It is no longer static, as was the case with the previous method, showing the power of
using spatio-temporal translations.RIVER, FLAME, and WATERFALL B also show very
good results with this technique.

We have compared our results forFIRE, OCEAN, andSMOKE with those of Wei and
Levoy [64] – we borrowed these sequences and their results from Wei and Levoy’s web
site. They are able to capture the local statistics of these temporal textures quite well but
fail to reproduce their global structure. Our results show an improvement over them by
being able to reproduce both the local and the global structure of the phenomena.

D. Temporal Constraints for Video One of the advantages of constraining new patch
locations for video to temporal translations is that even though we find a spatio-temporal
seam within a window of a few frames, the frames outside that window stay as is. This
allows us to loop the video infinitely (see Figure15). When we allow the translations
to be in both space and time, this property is lost and it is non-trivial to make the video
loop. It turns out, however, that we can use the graph cut algorithm to perform constrained
synthesis (as in the case of interactive image merging) and therefore looping. We fix the
first k and lastk frames of the output sequence to be the samek frames of the input (k = 10
in our implementation). The pixels in these frames are now constrained to stay the same.
This is ensured by adding links of infinite cost between these pixels and the patches they
are constrained to copy from, during graph construction. The graph cut algorithm then
computes the best possible seams given that these pixels don’t change. Once the output has
been generated, we remove the firstk frames from it. This ensures a video loop since the
kth frame of the output is the same as its last frame before this removal operation.

Using this technique, we have been able to generate looped sequences for almost all
of our examples. One such case isWATERFALL B, which was borrowed from [2]. We are
able to generate an infinitely long sequence for this example, where as [2] can extend it to
a finite length only.SMOKE is one example for which looping does not work very well.

31

WATERFALL A GRASS POND

FOUNTAIN BEACH FIRE

OCEAN SMOKE SPARKLE

FLAME RIVER WATERFALL B

Figure 16: The various videos that we have synthesized using our approach.

32

E. Spatial Extensions for Video We can also increase the frame-size of the video se-
quence if we allow the patch translations to be in both space and time. We have been
able to do so successfully for video sequences exhibiting spatio-temporal stationarity. For
example, the spatial resolution of theRIVER sequence was increased from 170×116 to
210×160. By using temporal constraints, as explained in the previous paragraph, we were
even able to loop thisenlargedvideo sequence.

The running times for our video synthesis results ranged from 5 minutes to 1 hour de-
pending on the size of video and the search method employed – searching for purely tem-
poral offsets is faster than that for spatio-temporal ones. The use of FFT-based acceleration
in our search algorithms was a huge factor in improving efficiency.

3.6 Summary
We have demonstrated a new algorithm for image and video synthesis. Our graph cut ap-
proach is ideal for computing seams of patch regions and determining placement of patches
to generate perceptually smooth images and video. We have shown a variety of synthesis
examples that include structured and random image and video textures. We also show
extensions that allow for transformations of the input patches to permit variability in syn-
thesis. We have also demonstrated an application that allows for merging of two different
source images interactively. In general, we believe that our technique significantly im-
proves upon the state of the art in texture synthesis by providing the following benefits: (a)
no restrictions on shape of the region where seam will be created, (b) consideration of old
seam costs, (c) easy generalization to creation of seam surfaces for video, and (d) a simple
method for adding pixel constraints.

The last point also leads to the remaining part of the thesis. While the approach pre-
sented in this chapter allows for constraints on pixel values, it is generally hard to provide
a finer degree of control over the behavior of the synthesized texture,e.g.,it is conceivably
impossible to synthesize a video using graph cuts in which the texture appears to follow
a pre-specified flow field. The primary reason for this is that this approach is based on
copying large patches to the output. Hence one patch placement step can change the ap-
pearance of a large number of pixels. This may not be desirable when one needs a finer
level of control. Also, the graph cut approach lacks the notion of a metric that can mea-
sure the global quality of the synthesized texture – the seam cost is only a local measure
and does not tell if the overall structures and elements present in the synthesized texture
are consistent with the input. In the next few chapters, we generalize the notion of texture
synthesis to example-based rendering of animations and present a general framework for
designing such algorithms. We also develop a similarity metric for comparing input and
output textures and extend it to incorporate metrics that measure consistency with control
criteria. Techniques that optimize for these metrics are also presented.

33

CHAPTER IV

RENDERING ANIMATIONS USING TEXTURE
EXEMPLARS

In this chapter, we propose a framework for using appearance information from example
textures to render synthetic animations. The animation acts as a controller for the rendering
process by guiding it to convey output characteristics like motion, shape, etc. This can
also be viewed as a generalization of the texture synthesis work presented in Chapter3.
In the texture synthesis work, only the size and length of the output could be specified,
while here we wish to provide a much finer degree of control through the use of animation
characteristics.

We considerphenomena that can be visually described as texture and dynamically de-
scribed as fluid flow. Water flowing down a stream, smoke rising from a chimney, and fire
burning in a fireplace are all examples of such phenomena. We are interested in lending
novel appearance to these phenomena by using different texture exemplars as sources. The
current state-of-the-art in animating fluid phenomena is dominated by physical simulation
techniques. These techniques use the physics of fluids to synthesize flow in space and
time. Besides flow, other physical characteristics of the fluid like free-surface location and
orientation, density, temperature, etc. can also be computed within the same simulation
framework. Once this information is generated, the fluid is rendered using some desirable
rendering technique like global illumination, sub-surface scattering, etc.

The choice of the rendering technique is more or less independent of the method used
to synthesize the animation – it is usually based on simulation of an illumination model
under known lighting conditions. The quality of synthesis depends on the photo-realism of
the rendering technique and accuracy of the parameters of the material being rendered. On
the other hand, a sample of the fluid material imaged from the real world is a photo-realistic
rendering of the phenomenon, by definition. Our goal is to exploit this fact by replacing the
synthetic rendering step with an example-based rendering (EBR) step. This step maps
appearance from the source texture (of fluid material) to target physical characteristics
generated by the simulation.

One can situate example-based rendering in the context of the general problem of ani-
mation synthesis using example imagery (image or video). For example, starting with the
video of a waterfall as example imagery, one might want to synthesize an animation that
partially changes the flow of water in the video by adding obstacles in its path. In such
a scenario, it is extremely desirable that the appearance of the edited (target) video match
the appearance of the source video. Also, the target flow obtained after adding the obstacle
should be physically plausible. In the following sections, we present a general framework
for achieving this,i.e.,synthesizing animations by manipulating example imagery.

The focus of our research is the example-based rendering aspect of this framework.
However, we explain the general animation synthesis framework to put our work in its

34

broader context. Subsequently, we present a probabilistic formulation for constructing EBR
algorithms within this framework.

4.1 Definitions
We first describe a few terms that will be frequently used in the rest of the chapter.

Source and Target: Source is used in reference to the example imagery that is employed
for rendering the animation. The imagery could be an image or video of the phenomenon
being animated. Target refers to the animation being rendered.

Animation Mechanism: The technique used for synthesizing the animation is referred
to as animation mechanism. In our work, we have primarily used manual design/editing of
flow fields as the animation mechanism. However, it is not a restriction of our framework
and might as well be any other technique,e.g.,physical simulation.

Rendering Variables: The appearance of an image depends upon various factors in-
cluding lighting conditions, viewpoint location, intrinsic properties of the material being
rendered (or imaged) like its bidirectional reflectance distribution function (BRDF) and
texture, and its extrinsic properties like shape, density and temperature distribution, and
flow, to name a few. We refer to these factors, whose complete knowledge is sufficient to
definitively determine the appearance of an image or video, as rendering variables.

Characteristic: This term is used to refer to any physical characteristic that is either
generated by the animation mechanism or extracted from the source exemplar,e.g.,flow,
surface normal, density, temperature, etc. A characteristic does not have to be strictly
physical; it may very well be an abstract characteristic that is supplied by the user. However,
conceptually, characteristics are deemed as functions of rendering variables, and usually
constitute a subset of the set of all rendering variables.

4.2 Animation Synthesis using Example Imagery
Given example (source) imagery of a particular phenomenon, synthesis of animation using
that imagery requires (i) identifying characteristics of the phenomenon that define/represent
the animation, (ii) understanding the underlying parameters that govern these characteris-
tics, (iii) extracting characteristics and parameters from source imagery, (iv) modifying
these parameters as desirable in order to generate new characteristics for the target anima-
tion, and (v) applying the example-based rendering step for producing target imagery that
is similar to the source in appearance but consistent with the target characteristics at the
same time. Note that the characteristics generated at the target may not all be available at
the source. For example, if the source exemplar is an image, then it may not be possible
to extract flow from it. However, the target animation may still be defined as a flow-field.

35

23

Target
CharacteristicsMapped Target

Source Imagery Source
Characteristics Estimate

Control Variables

Edit
Control Variables

Animation Mechanism

Example-based
Rendering

Example-based
Rendering

Extract
Characteristics

Figure 17: Animation Synthesis using Texture Exemplars. For explanation, see Section4.2

In such cases, the consistency of target characteristics needs to be measured without the
knowledge of source characteristics.

For fluid animation, examples of characteristics include flow, shape, density, temper-
ature distribution, etc. These characteristics are governed by intrinsic parameters of the
animated fluid and extrinsic structure of the scene. For example, viscosity is an intrinsic
parameter of the fluid, while the external forces and obstacles form the extrinsic scene struc-
ture. For the waterfall scenario described earlier where we want to modify flow by adding
obstacles, the steps for animation synthesis outlined above would require (i) extracting flow,
viscosity and scene structure from the source video, (ii) modifying the scene structure to
add an obstacle, followed by computing the corresponding target flow, and (iii) rendering
the target using an example-based rendering algorithm. A framework for performing these
steps algorithmically in the general case is shown schematically in Figure17. A description
of each step of the framework is as follows:

1. Extraction of source characteristics: A suite of algorithms for extracting charac-
teristics should first be applied to the source exemplar to compute various character-
istics; we call theseextracted source characteristics. For example, one might use an
optic flow computation algorithm to determine source flow, or a shape from shading
algorithm to determine shape.

2. Parameter & structure estimation: The goal of parameter & structure estimation
(Figure18) is to compute control variables (parameters and structure) governing the

36

Compare

Extracted
Characteristics

Synthesized
Characteristics

Estimated
Control Variables

Feedback

Figure 18: Parameter & Structure Estimation. Shown is a generate and test methodology
for searching control variables. The synthesized and extracted characteristics are being
compared for consistency inside a feedback loop.

example phenomenon using information from source characteristics. One way of de-
termining whether an instance of control variables mimics the source is to synthesize
source characteristics using the control variables and then compare them with the
extracted source characteristics. For this, one requires a generative model for syn-
thesizing characteristics from control variables and also needs the characteristic ex-
traction procedure to be trustworthy. One can use this generate and test methodology
to do a search for the control variables. However, the space of possible parameters
and structures is usually too large to search exhaustively. Hence, a more efficient
approach for estimating the control variables needs to be explored on a case-by-case
basis.

3. Generating target parameters and characteristics:Once the control variables for
the source have been estimated, they need to be edited to generate the target control
variables. For example, in the case of fluid animation, one might change the viscos-
ity of the fluid, modify external forces, or add/remove obstacles. The framework is
relatively agnostic about the nature of this editing procedure. These parameters are
then be passed to the animation mechanism in order to synthesize the target anima-
tion and corresponding characteristics. If the parameters used are physical in nature,
e.g.,viscosity, then simulation would be an appropriate animation mechanism for
generating target characteristics. However, it could also be an interactive procedure,
where the target characteristics are manually (interactively) designed or generated by
editing the source characteristics.

4. Example-based rendering of the target:The role of the EBR algorithm (Figure19)

37

within this framework is to generate appearance for the target animation using infor-
mation from source imagery. This step of the framework is the primary focus of our
research. The EBR algorithm can be considered as an independent module in our
framework; it is oblivious to the exact nature of the parameter & structure estima-
tion algorithm or the editing procedure used to generate target characteristics. Note
that the target animation may be synthesized in 3D space, but the eventual render-
ing is done from the vantage of a particular viewpoint. We assume that the animation
mechanism is able to synthesize target characteristics as projected onto this particular
viewpoint. For example, if the synthesized characteristic is flow, then the animation
mechanism wouldrenderthe 2D target flow as seen by the viewpoint of interest in the
target image plane. The EBR algorithm would then find a mapping from the rendered
characteristics to appearance values in order to generate a rendering of the target –
we call it themapped target. In the process, it may make use of extracted source
characteristics to generate the mapping. An important observation about the map-
ping from target characteristics to source appearance is that it may be multi-valued,
i.e., the same target characteristic value may be mapped to different source appear-
ance values. Intuitively, this is a consequence of two potentially conflicting goals of
any EBR algorithm: it needs to be as close as possible to the source in appearance
space, and as close as possible to the target in characteristic space. The next section
describes these two objectives mathematically using a probabilistic formulation.

The framework presented here is general in terms of the characteristics it can handle.
However, the choice of the characteristic may determine the exact nature of the EBR al-
gorithm or parameter estimation procedure used. Note that the source characteristics used
by parameter & structure estimation may be different from those supplied to the EBR al-
gorithm. For example, the estimation algorithm may use surface normals to determine
appropriate parameters, while the rendering algorithm may be provided a flow-field for
appearance mapping.

The subsequent sections and chapters focus on the example-based rendering step of
the animation synthesis framework. Some aspects of target characteristic generation using
interactive editing are also discussed. Even though extraction of source characteristics
as well as automatic parameter estimation and editing are important components of the
framework, we envision that they require considerable research effort of their own and
therefore leave them for future work.

4.3 Probabilistic Formulation
The EBR algorithm needs to compute appearance values for the target, given source appear-
ance, target characteristics and (optionally) source characteristics. Specific algorithms will
depend on the nature of given characteristics and exemplars. However, the general princi-
ples governing their design may be the same. Here, we develop a probabilistic formulation
to aid the design of general EBR algorithms.

Notation: We denote the source and target byS and T , respectively. The rendering
variables are collectively denoted byV, and are defined on a per-pixel basis:V(p) contains

38

Target
CharacteristicsMapped Target

Source Imagery Source
Characteristics

Appearance
Similarity

Characteristic
Consistency

Extract
Characteristics

Animation
Mechanism

Figure 19: Example-based Rendering. The source imagery, source characteristics and
target characteristics form the input to the EBR algorithm. The output of this algorithm
is the mapped target. The target is compared with source imagery to measure appearance
similarity, and with all inputs to measure consistency of characteristics.

39

the values of the rendering variables as observed at pixelp. This notation naturally extends
to a set of pixelsP :

V(P) =
⋃
p∈P

V(p).

Characteristics are denoted byC. They constitute the subsets ofV (or functions of it)
that are either extracted from the source or rendered at the target. The appearance (i.e.,
pixel intensities) of an image or video is denoted byE. As in the case ofV, we denote
the characteristics or appearance at pixelp (set of pixelsP) by C(p) or E(p) (C(P) or
E(P)), as appropriate. When used without a pixel or set index, the corresponding variable
represents the entirefield of values taken by that variable in the source or target domain.
Additionally, when necessary, we specialize these variables using subscriptsS andT to
distinguish between the source and the target. Hence,VS , CS , andES denote the source
variables, whileVT , CT , andET denote the target variables.

4.3.1 Assumptions

Since we want to use the source imagery to render the target, it is desirable that the source
and target rendering variables be as close as possible. In the limit when all variables are
the same, the appearance of the target is identical to the source. On the other hand, if all
variables are free to be arbitrarily different in the source and the target, it may be impossible
to infer the appearance of the target from the source – for example, the source and target
may consist of different materials in which case the source appearance is unusable for
the target. Hence, in order to make the problem tractable, we make a few simplifying
assumptions on the nature of rendering variables:

1. Material assumption: The material being rendered in the target is same as the one
imaged in the source. This constrains the source and the target to have similar intrin-
sic properties like BRDF and texture.

2. Lighting and Viewing assumption: The lighting and viewing conditions are same
for both the source and the target. The consequence of this assumption is that the
source and target can be considered part of the same scene. Effectively, we are as-
suming that, given sufficient knowledge of the rest of the rendering variables, the
effect of lighting and viewing conditions may be ignored.

3. Locality & Homogeneity assumption: The values of rendering variables at a par-
ticular pixel completely determine the intensity at that pixel. In other words, the
appearance at a pixel is a function of only the rendering variables at that pixel. Also,
this function is homogenous w.r.t. position,i.e., it is independent of the location of
the pixel. If we denote this function byf , then for all pixelsp∈ S ,T

E(p) = f (V(p))

which can be probabilistically written as

P(E(p)|V(p)) = δ(E(p)− f (V(p))).

40

Note that the functionf is the same for both the source and the target. This is a con-
sequence of our previous assumptions that the material, lighting, and viewpoint are
common for both the source and the target. We explicitly express this commonality
of f to S andT as

P(ET (p)|VT (p) = v) = P(ES (p)|VS (p) = v). (7)

The actual location of the pixelp in this equation is irrelevant because of the homo-
geneity assumption. These assumptions are necessary for making the synthesis of
target appearance computationally tractable; we use them when defining similarity
measures between source and target appearance, and consistency measures between
target characteristics and target appearance. Assuming locality and homogeneity also
imposes certain limitations: we lose the ability to directly reason about or synthesize
global illumination effects like inter-reflections, shadows, and refraction through air.
We make the following assumption to partially compensate for these limitations.

4. Distribution assumption: The rendering variables in a pixel neighborhood follow a
joint probability distribution, which is presumed responsible for any observed struc-
ture in the appearance of neighborhoods. We don’t assume knowledge of this distri-
bution; only that it is the same for both the source and the target rendering variables.
Mathematically,

P(VT (Np) = v) = P(VS (Np) = v) (8)

where,Np is a neighborhood of pixels centered atp. This assumption allows us
to implicitly model short-range interactions between neighboring pixels and conse-
quently, between corresponding points on the material.

5. Markov Random Field (MRF) assumption: The appearance of both the source
and the target behaves like a spatio-temporal texture, which is modeled as a Markov
Random Field. In a texture modeled as an MRF, the intensity at a particular pixel
depends only on the intensity of a small set of neighboring pixels. Mathematically,

P(E(p)|E(p̄)) = P(E(p)|E(Np\p)) (9)

where p̄ denotes the set of all the pixels in the domain other thanp, andNp\p de-
notes the set of pixels in the neighborhoodNp other than the pixelp itself. This
assumption, along with the locality, homogeneity, and distribution assumptions, is
useful for computing similarity between source and target appearance in a tractable
fashion.

4.3.2 Appearance Estimation

From a probabilistic point of view, we want to synthesize the most probable target appear-
ance, given the target characteristics, the source appearance and the source characteristics.
The maximuma posteriori(MAP) estimate ofET is

ÊT = argmax
ET

P(ET |CT ,ES ,CS).

41

This posterior implicitly encodes two objectives: in terms of characteristics, we wantET
to be consistent withCT , while in terms of appearance, we wantET to be close toES . We
can express these goals explicitly, by applying the Bayes rule:

P(ET |CT ,ES ,CS) =
P(CT |ET ,ES ,CS).P(ET |ES ,CS)

P(CT |ES ,CS)
.

The normalization term,P(CT |ES ,CS), is constant for allET . Hence, it can be ignored for
MAP estimation:

P(ET |CT ,ES ,CS) ∝ P(CT |ET ,ES ,CS).P(ET |ES ,CS).

Of the two terms on the RHS, the first term,P(CT |ET ,ES ,CS), is the likelihood, and mea-
sures the consistency of the synthesized target appearance with the target characteristics.
The second term,P(ET |ES ,CS) represents the prior, and measures the closeness between
the source and the target in appearance space (see Figure20). These terms also contain
CS as a conditioning variable. In the case of likelihood,CS may be useful for learning
a relationship between appearance and characteristics, usingES andCS as training data.
However, for the prior, we assume thatCS does not provide any extra information and drop
it from the expression. This is reasonable under our interpretation of the prior that it mea-
sures proximity only in appearance space. Hence, we obtain the following expression for
the MAP estimate:

ÊT = argmax
ET

P(CT |ET ,ES ,CS).P(ET |ES). (10)

Prior: The prior predicts the target appearance without any knowledge of the rendering
variables at the target,VT . This capability is significant because of two reasons. Firstly,
we have only incomplete knowledge ofVT – in the form of characteristics,CT – which is
not sufficient to deterministically obtainET . Secondly, even if we knewVT completely,
the function that mapsVT to ET is unknown. In order to establish a prior under such
under-determined conditions, we will invoke the assumptions made earlier in this section.
We start by applying the MRF assumption. Consider the probability of observing the in-
tensityET (p) at a target pixelp, given the intensities at all other pixels in the target. Then,
according to the MRF assumption (9) applied toT ,

P(ET (p)|ET (p̄)) = P(ET (p)|ET (Np\p)).

We can marginalize the RHS over all possible target rendering variables inNp, to get

P(ET (p)|ET (Np\p)) = ∑
VT (Np)

P(ET (p),VT (Np)|ET (Np\p))

= ∑
VT (Np)

P(ET (p)|VT (Np),ET (Np\p)).P(VT (Np)|ET (Np\p)).

(11)

42

Target
CharacteristicsMapped Target

Source Imagery Source
Characteristics

Prior

Likelihood

Extract
Characteristics

Animation
Mechanism

Figure 20: The appearance similarity and characteristic consistency operations of the
EBR algorithm are formulated as prior and likelihood, respectively (also see Figure19 for
comparison).

The first term inside the summation in (11), P(ET (p)|VT (Np),ET (Np\p)), is the probabil-
ity of observing the target intensityET (p) at pixelp, given the rendering variablesVT (Np)
in the neighborhoodNp around that pixel and also the rest of the intensitiesET (Np\p) in
that neighborhood. According to our locality assumption,ET (p) is independent of all other
variables ifVT (p) is known. Therefore,

P(ET (p)|VT (Np),ET (Np\p)) = P(ET (p)|VT (p)). (12)

The second term inside the summation in (11), P(VT (Np)|ET (Np\p)), can be rewritten
after applying the Bayes rule, as

P(VT (Np)|ET (Np\p)) =
P(ET (Np\p)|VT (Np)).P(VT (Np))

P(ET (Np\p))

=
P(ET (Np\p)|VT (Np)).P(VT (Np))

∑VT (Np) P(ET (Np\p)|VT (Np)).P(VT (Np))
. (13)

The termP(ET (Np\p)|VT (Np)) in (13) measures the probability of pixel intensities in the
neighborhoodNp (excludingp itself), given the rendering variables in that neighborhood.

43

The locality assumption can also be applied to this term, which reduces it to

P(ET (Np\p)|VT (Np)) = ∏
q∈Np\p

P(ET (q)|VT (q)). (14)

We can substitute the simplifications from (12), (13), and (14) into (11) to obtain the fol-
lowing equation:

P(ET (p)|ET (Np\p)) =
∑VT (Np) ∏q∈Np

P(ET (q)|VT (q)).P(VT (Np))

∑VT (Np) ∏q∈Np\pP(ET (q)|VT (q)).P(VT (Np))
. (15)

The only difference between the numerator and denominator in (15) is that the product in
the numerator includes all pixels in the neighborhoodNp while the denominator excludes
the term corresponding to pixelp itself. We further recall that the functionf that governs
the relationship betweenE(p) andV(p) is the same for bothS and T (see (7)). Also,
according to our distribution assumption,VT (Np) follows the same distribution asVS (Np)
(see (8)). Incorporating this information into (15), we get

P(ET (p)|ET (Np\p)) =
∑VS (Np) ∏q∈Np

P(ES (q) = ET (q)|VS (q)).P(VS (Np))

∑VS (Np) ∏q∈Np\pP(ES (q) = ET (q)|VS (q)).P(VS (Np))
.

We can reverse the steps between (11) and (15) and apply them to the RHS to get the
following result:

P(ET (p)|ET (Np\p)) = P(ES (p) = ET (p)|ES (Np\p) = ET (Np\p)),

or equivalently

P(ET (p) = e|ET (Np\p) = e) = P(ES (p) = e|ES (Np\p) = e). (16)

This is the key equation for our prior. It says that the conditional probability of observing
a particular intensity at a pixel, given its neighbors, is the same for both the source and
the target. Additionally, this probability is independent of the location of the pixel. Since
the source appearance is known, we can use it to predict the appearance of the target using
(16). In fact, this prior reflects the same assumptions as are made by MRF based texture
synthesis algorithms. If we remove the likelihood from the objective function – this would
happen when no target characteristics are available – the problem reduces to that of texture
synthesis. Our formulation generalizes the notion of texture synthesis to incorporate the
handling of desirable target characteristics. In Chapter5, we present a novel technique for
texture synthesis based on optimization of the prior term alone.

Likelihood: As mentioned above, likelihood measures the consistency of synthesized tar-
get appearance with desirable target characteristics. Semantically, this notion of likelihood
is slightly different from its conventionally accepted interpretation. Usually, likelihood
refers to the probability of making an observation, given the hidden variables governing
the generation of that observation. In other words, there is an underlying generative model
that predicts the observation from the given hidden variables. Likelihood then measures the

44

similarity between the predicted and measured observations. Under this convention,CT is
the observation, whileET is the hidden variable. However, in reality,CT is not an exper-
imental observation. It is a desired value explicitly set by the animation mechanism.ET ,
on the other hand,inducesa characteristic field over the target. The induced characteristic
field is the characteristic field perceived from the synthesized target appearanceET – what
one may obtain by running the characteristic extraction algorithm onET instead ofES . The
goal of the EBR algorithm is to infer anET for which the induced characteristics at the tar-
get are as close as possible toCT . Thus, likelihood is interpreted as a measure of similarity
between the induced and the desired characteristics. The actual form of this likelihood and
the corresponding EBR algorithm will depend on the characteristics in question.

The computation of likelihood may not necessarily useES or CS , in which case the ex-
pression would simplify, as appropriate, toP(CT |ET ,CS), P(CT |ET ,ES), or P(CT |ET).
One reason for this could be that the characteristic of interest may be difficult or even im-
possible to estimate at the source. The primary benefit of having the knowledge of source
characteristics is that one can use it to establish a relationship between characteristics and
the appearance. This relationship can then be used to map target characteristics to target
appearance. In the scenario where source characteristics are not available, one needs to
use prior domain knowledge about the specific characteristic to measure the consistency
between appearance and characteristics.

Later, in Chapter6 and Chapter7, we discuss the design of likelihood functions for the
special case where flow is the target characteristic, and image and video textures are source
exemplars. Note that flow is not defined at the source if the exemplar used is an image
texture. Our EBR algorithm takes this into account by defining likelihood using only target
flow and target appearance. In the case of video exemplars, source flow is meaningful.
However, it is usually difficult to compute it accurately for textural videos, because the
dynamics of appearance change in the video is a complex combination of texture evolution
and flow. Hence, even in the case of video, we avoid the explicit computation of source
flow. Instead, we have developed a technique that implicitly searches for source regions
with flow similar to that desired at the target.

4.4 Summary
In this chapter, example-based rendering has been presented in the general context of syn-
thesizing animations using texture imagery. We treat example-based rendering as a mecha-
nism for rendering target animations with pre-specified characteristics like flow, shape, etc.
Under this interpretation, an EBR algorithm should not only maintain similarity between
target and source appearance, but also make sure that the synthesized target is consis-
tent with the desirable characteristics. This generalizes the notion of texture synthesis as
presented in the previous chapter. We have presented a probabilistic formulation for the
design of EBR algorithms in general. This formulation casts synthesis as maximuma pos-
teriori (MAP) appearance estimation, where appearance similarity serves as the prior and
characteristic consistency serves as the likelihood. In the next few chapters, we present
specific techniques designed using this formulation. The next chapter deals with synthesis
using the prior term only, which leads to a novel optimization-based algorithm for texture

45

synthesis. In chapters after that, we incorporate likelihood into our synthesis algorithm.
Specifically, our experimentation consists of using flow as a characteristic and image/video
exemplars as source appearance.

46

CHAPTER V

TEXTURE OPTIMIZATION FOR UNCONSTRAINED
SYNTHESIS

In the last chapter, we developed general principles for example-based rendering. We now
present a specific technique that makes use of those principles. Recall that we formulated
appearance similarity and characteristic consistency as prior and likelihood in a probabilis-
tic appearance estimation framework. In this chapter, we present a technique for texture
synthesis based on specializing the probabilistic formulation to only consider the prior
term, i.e., we ignore characteristics and only optimize for appearance similarity – shown
schematically in Figure21. The next chapter extends this technique to also consider char-
acteristics (with a specific implementation for flow). A related publication is [34].

Target
CharacteristicsMapped Target

Source Imagery Source
Characteristics

Characteristic
Consistency

Extract
Characteristics

Animation
Mechanism

Appearance
Similarity

Figure 21: Specializing example-based rendering to only consider appearance similarity.
The faded components of the schematic are ignored from the formulation. This reduces the
problem to texture synthesis.

47

The texture synthesis technique presented here is based on optimization over an appear-
ance similarity metric. This similarity metric is motivated by the Markov Random Field
(MRF)-based similarity criterion used in most local pixel-based synthesis techniques. Our
contribution is to merge these locally defined similarity measures into a global metric that
can be used to jointly optimize the entire texture. This global metric allows modeling of
interactions between large neighborhoods; nevertheless, it can be optimized using a simple
iterative algorithm with reasonable computational cost.

We make use of the fact that maximuma posterioriestimation over a probability func-
tion can be transformed into an equivalent optimization over an energy function. IfP(x)
is the probability function, thenU(x) = −logP(x) is the equivalent energy function. We
define an energy function for measuring the quality of the synthesized texture with respect
to a given input texture by comparing local neighborhoods in the two textures. This energy
function is then optimized using an Expectation Maximization (EM)-like algorithm [40].

In contrast to most example-based techniques that do region-growing, this is a joint
optimization approach that progressively refines the entire texture. This joint optimization
results in progressive refinement of the entire texture as it is improved through successive
iterations of our algorithm. This form of progressive refinement of textures would be very
useful in situations that demand fast or real-time computations with level-of-details aspects
like computer games. Additionally, this approach is ideally suited for extending the energy
formulation to allow for controllable synthesis of textures.

5.1 Texture Optimization
To convert our probabilistically defined MRF prior on the texture into an energy function,
we employ the following property of MRFs: the conditional probability density locally
describing an MRF (such asP(ET (p)|ET (Np\p)) in (15)), can be converted into a product
of joint probability densities over these local variables. This is commonly known as the
Markov-Gibbs Equivalence[37]. A Gibbs Random Field (GRF) is a set of random variables
whose configurations obey the Gibbs distribution. A Gibbs distribution takes the following
form:

P(x) ∝ exp−U(x),

whereU(x) is an energy function expressible as a sum ofclique potentialsover all possible
cliquesC :

U(x) = ∑
c∈C

Vc(x).

For a given neighborhood system defined byN over an image latticeS , cliques are subsets
of pixels that are fully connected within that system,i.e.,all pixels in a clique are neighbors
of each other. According to the Hammersley-Clifford theorem [27], an MRF onS with
respect toN is also a GRF onS with respect toN and vice-versa. This means that an
MRF-governed local probability density of the formP(x(p)|x(Np\p)) can be equivalently
written as a global GRF-governed probability density of the form:

P(x) ∝ exp−∑c∈C Vc(x)

= ∏
c∈C

exp−Vc(x)

48

= ∏
c∈C

Pc(x) (17)

whereP(x) denotes the probability of observing the entire imagex, whilePc(x) is the prob-
ability of a local clique of pixels. In what follows we will use an energy-based formulation
of (17), i.e.,we will define an energy function over the image lattice expressed as a sum of
energies over local cliques:

U(x) = ∑
c∈C

Vc(x)

Also, from now onwards we will use the wordneighborhoodto actually mean a clique of
pixels over which local energy measures are defined.

We now describe ourtexture energymetric that measures the similarity of the synthe-
sized texture to the input sample. We define this energy in terms of the similarity of local
neighborhoods in the texture to local neighborhoods in the input. We postulate that asuf-
ficientcondition for a texture to be similar to the input sample is that all neighborhoods in
the texture are similar to some neighborhood in the input. This requires that the neighbor-
hood size be large enough to capture the repeating elements in the texture. We define the
energy of a single neighborhood to beits distance to the closest neighborhood in the input.
The total energy of the texture is then equal to the sum of energies over individual local
neighborhoods in the texture.

Formally, letX denote the texture over which we want to compute the texture energy
andZ denote the input sample to be used as reference. Letx be thevectorizedversion ofX,
i.e., it is formed by concatenating the intensity values of all pixels inX. For a pre-specified
neighborhood widthw, let Np represent the neighborhood inX centered around pixelp.
Then, thesub-vectorof x that corresponds to the pixels inNp is denoted byxp. Further,
let zp be the vectorized pixel neighborhood inZ that is closest toxp under the Euclidean
norm. Then, we define the texture energy overX to be

Ut(x;{zp}) = ∑
p∈X†

‖xp−zp‖2. (18)

This is shown schematically in Figure22. We only consider neighborhoods centered around
pixels in a setX†⊂ X for computing the energy. We do so because in practice, it is redun-
dant and computationally expensive to compute the energy over all neighborhoods in the
texture – the primary computational expense lies in the search for input neighborhoodszp.
Therefore, we pick a subset of neighborhoods that sufficiently overlap with each other and
define the energy only over this subset. We have chosenX† to consist of neighborhood
centers that arew/4 pixels apart, wherew is the width of each neighborhood.

We can use the above formulation to perform texture synthesis by iteratively refining
an initial estimate of the texture, decreasing the texture energy at each iteration. During
each iteration, we alternate betweenx and{zp : p ∈ X†} as the variables with respect to
which (18) is minimized. Given an initialization of the texture,x, we first find the closest
input neighborhoodzp corresponding to each output neighborhoodxp. We then updatex
to be the texture that minimizes the energy in (18) – note that we treatx as a real-valued
continuous vector variable. Sincex changes after this update step, the set of closest input
neighborhoods{zp} may also change. Hence, we need to repeat the two steps iteratively

49

Error

Output X
(Texture that is being optimized)Input Z

(Texture Sample)

neighborhood N
with width w,

centered around pixel p

xq

zq

xp
zp

(for simplicity only two
neighborhoods are shown)

p

Figure 22: Schematic demonstrating our texture similarity metric. The energy of neighbor-
hoodxp centered around pixelp is given by its distance to the closest input neighborhood
zp. When two neighborhoodsxp andxq overlap, then any mismatch betweenzp andzq will
lead to accumulation of error in the overlapping region (shown in red).

until convergence,i.e., until the set{zp} stops changing. Ifx is initially unknown, then
we bootstrap the algorithm by assigning a random neighborhood from the input to eachzp.
Algorithm 1 describes the pseudocode for our texture synthesis algorithm.

Algorithm 1 Texture Synthesis

z0
p← random neighborhood inZ ∀p∈ X†

for iterationn = 0 : N do
xn+1← argminxUt(x;{zn

p})
zn+1

p ← nearest neighbor ofxn+1
p in Z ∀p∈ X†

if zn+1
p = zn

p ∀p∈ X† then
x← xn+1

break
end if

end for

Our approach is algorithmically similar to Expectation-Maximization (EM) [40]. EM
is used for optimization in circumstances where, in addition to the desired variables, the
parameters of the energy function being optimized are also unknown. Therefore, one al-
ternates between estimating the variables and the parameters in the E and the M steps
respectively. In our case, the desired variable is the texture image,x, while the parameters
are the input neighborhoods,{zp}. The two steps of our algorithm can be thought of as E

50

and M steps. The estimation ofx by minimizing the texture energy in (18) corresponds to
the E-step, while finding the set of closest input neighborhoods,{zp}, corresponds to the
M-step.

In the E-step, we need to minimize (18) w.r.t. x. This is done by setting the derivative
of (18) w.r.t. x to zero, which yields a linear system of equations that can be solved forx.
To express the equation mathematically, we first rewrite (18) as

Ut(x;{zp}) = ∑
p∈X†

(Wpx−zp)T(Wpx−zp)

whereWp is a selection matrixcorresponding to neighborhoodNp. This matrix selects
the pixels that form the sub-vectorxp from the entire image vectorx. The structure ofWp

is similar to a permutation matrix, except that it is rectangular. Each row of this matrix
contains only a single non-zero entry with value ‘1’. If theith scalar in the sub-vectorxp

corresponds to thejth scalar inx, then the entryWp(i, j) = 1. Having this selection matrix
is convenient because it allows us to easily take derivatives w.r.t.x. The linear system
consequently obtained is

∑
p∈X†

WT
pWpx = ∑

p∈X†

WT
pzp, (19)

which is an equation of the form
Mx = b, (20)

whereM is a diagonal matrix andb is a vector whose value is determined by the set of
input neighborhood sub-vectors{zp} – these sub-vectors are known after the M-step.b
is actually a sum over these input neighborhoods, where the neighborhoods are displaced
to be centered over the appropriate pixel locations before summation. The LHS sums
over unknown pixel values inxp. Note that since the same pixel may appear in multiple
neighborhoodsxp, the LHS will sum over the same pixel multiple times. The solution of
this equation is to assign to each output pixel, the average value of input neighborhood
pixels that correspond to that location. Note that for a quadraticUt(x;{zp}) (as in (18)),
this minimization is equivalent to computing the expected value (or mean) ofx under the
following probability distribution1:

p(x;{zp}) ∝ exp(−Ut(x;{zp})).

The M-step of our algorithm minimizes (18) with respect to the set of input neighborhoods,
{zp}, keepingx fixed at the value estimated in the E-step. This requires us to solve a
nearest neighbor search problem: for eachxp, we need to find its nearest neighborzp from
the input. To accelerate this search, we use hierarchical clustering to organize the input
neighborhoods into a tree structure [31, 19, 15]. Starting at the root node, we perform
k-meansclustering (withk = 4) over all input neighborhoods contained in that node. We
then createk children nodes corresponding to thek clusters and recursively build the tree

1Typically, in order to perform exact EM, the E-step should also compute the covariance ofx in addition
to its mean. Our formulation, on the other hand, only computes the mean as it is based on an energy function
and not a probability distribution. Even then, we end up performing exact EM, because the covariance does
not affect the outcome of the M-step in our case.

51

for each of these children nodes. The recursion stops when the number of neighborhoods
in a node falls below a threshold (1% of total in our implementation). In order to handle
large neighborhood sizes, we employ a memory-efficient adaptation that does not explicitly
store neighborhood sub-vectors at leaf nodes. Instead, it records just the neighborhood’s
location in the input image and the corresponding sub-vectors are constructed on the fly, as
necessary.

In order to visualize the optimization process, one can think of each term in (18) as the
potential resulting from a force that pulls the pixels inxp towards pixels inzp. Minimization
of this potential corresponds to bringing each sub-vectorxp as close tozp as possible. If
neighborhoods centered around different pixelsp andq overlap with each other, then the
corresponding sub-vectorsxp andxq will contain pixels that are common with each other.
Each such common pixel is pulled towards possibly different intensity values byzp andzq.
The outcome of the minimization procedure is to assign an intensity value to the common
pixel that is equal to the average of the corresponding values inzp andzq.

Intuitively, our algorithm tries to findgood relative arrangements of input neighbor-
hoods in order to synthesize a new texture. During each iteration, the M-step chooses an
arrangement of input neighborhoods that best explains the current estimate of the texture.
The averaging in the E-step allows overlapping neighborhoods to communicate consistency
information among each other: neighborhoods that don’t match well with each other cause
blurring in the synthesized texture. This blurred region represents a transition between two
inconsistent regions and may be significantly different in appearance from the input neigh-
borhoods that determine it. This allows the next iteration of the M-step to replace the input
neighborhoods corresponding to this region with ones that are more consistent with each
other,i.e.,neighborhoods that carry out the transition but get rid of the blurring.

5.2 Robust Formulation
The texture energy as defined in (18) performs least squares estimation ofx w.r.t. zp. This
causes outliers –zp that are not very close toxp – to have an undue influence onx. Also,
it is desirable to not changexp by much if it is already very close tozp. This can be ac-
complished by using a robust energy function: we replace the squared term‖xp−zp‖2 in
(18) with ‖xp− zp‖r , wherer < 2. This energy function belongs to a class of robust re-
gressors, called M-estimators, that are typically solved using iteratively re-weighted least
squares (IRLS) [12]. IRLS is an iterative technique in which a weighted least squares prob-
lem is solved during every iteration. The weights are adjusted at the end of the iteration,
and this procedure is repeated until convergence. Our synthesis algorithm naturally lends
itself to IRLS: before applying the E-step, we choose, for each neighborhoodNp, a weight
ωp = ‖xp−zp‖r−2 – in our implementation, we have usedr = 0.8. We then minimize the
modified energy function:

Ut(x;{zp}) = ∑
p∈X†

ωp‖xp−zp‖2.

Additionally, we apply a per pixel weight within the energy term for each neighborhood, so
that pixels closer to the center of the neighborhood have a greater bearing on the texture than

52

those far away. Specifically, we use a Gaussian fall-off function that smoothly decreases
the pixel weight as it moves away from the neighborhood center (Efros et al. [17] use a
similar weighting scheme for nearest-neighbor search). This yields the following energy
function:

Ut(x;{zp}) = ∑
p∈X†

ωp(xp−zp)TG(xp−zp),

whereG is a diagonal weight matrix corresponding to the Gaussian fall-off function. Min-
imizing this energy requires solving an equation that is only slightly different from (19): it
now contains aweightedsum over pixels on both RHS and LHS.

5.3 Gradient-based Energy
We can generalize the energy function defined in (18) to incorporate other characteristics
of the texture besides color. For example, in order to use image gradients as an additional
similarity metric, we define the energy as

Ut(x;{zp}) = ∑
p∈X†

‖xp−zp‖2 +µ ∑
p∈X†

‖Dxp−Dzp‖2, (21)

whereD is the differentiation operator andµ is a relative weighting coefficient. Minimizing
this function w.r.t.x yields a linear system that is not diagonal – as was the case in (19) –
but is still sparse and hence can be solved efficiently. To obtain this system, we will again
make use of the selection matrixWp. We rewrite (21) as

Ut(x;{zp}) = ∑
p∈X†

‖Wpx−zp‖2 +µ ∑
p∈X†

‖DWpx−Dzp‖2.

Differentiating thisUt w.r.t. x and setting it to zero then yields the following equation:

∑
p∈X†

WT
pWpx+µ ∑

p∈X†

WT
pDTDWpx = ∑

p∈X†

WT
pzp +µ ∑

p∈X†

WT
pDTDzp. (22)

This equation is still linear and has a form similar to (20):

M∗x = b∗,

where

M∗ = ∑
p∈X†

WT
pWp +µ ∑

p∈X†

WT
pDTDWp

b∗ = ∑
p∈X†

WT
pzp +µ ∑

p∈X†

WT
pDTDzp.

In (22), the first term on the LHS as well as RHS is the same as in (19) – these areM
andb respectively. The remaining terms take the gradient information into account. It
turns out that the matrix operator in the second term on the LHS (the second part of the
sum formingM∗) simplifies to a form of weighted Laplacian operator applied to the entire

53

image vectorx. This is not surprising because the Laplacian operator is defined asDTD
when the differentiation operatorD applies to the whole image. However, in this case,D
is defined only over a single neighborhood. Nevertheless, the weighted summations over
these neighborhood operators eventually lead to a matrix that has the same form as the
Laplacian operator applied to the whole image. Thus, the system matrix is a sparse banded
positive-definite matrix and therefore can be solved for efficiently. In our implementation,
we have solved this equation using pre-conditioned conjugate gradients [54].

Note that even though we have experimented with color and gradient, one could use
other energy functions of the form‖ψ(xp)−ψ(zp)‖2 whereψ(xp) measures some property
of the texture neighborhoodxp. The only requirement is that we should be able to optimize
ψ w.r.t. x.

5.4 Multi-level Synthesis
We use our algorithm in a multi-resolution and multi-scale fashion. We first synthesize our
texture at a coarse resolution, and then up-sample it to a higher resolution via interpolation.
This serves as the initialization of the texture at the higher resolution. Also, within each
resolution level, we run our synthesis algorithm using multiple neighborhood sizes in order
from largest to smallest. We start with the largest neighborhood size in order to align
the large scale structures of the texture first. Subsequently, we synthesize with smaller
neighborhood sizes (in decreasing order) to eliminate fine scale errors from the synthesized
texture. We term the synthesis with different neighborhood sizes as synthesis at multiple
scale levels. This is reasonable since each neighborhood size respects texture structures at
a different scale. The synthesized result at each scale level serves as an initialization for the
synthesis at the next level.

Such a multi-level approach is helpful because it allows the finer scale synthesis to be-
gin with a good initialization of the texture, thereby avoiding undesirable local minima.
Intuitively, at a lower resolution, texture neighborhoods are spatially close to each other
and it is easier to propagate consistency information across the entire texture. In our ex-
periments, we generally use three resolution levels and successive neighborhood sizes of
32×32, 16×16, and 8×8 pixels – at each resolution, only those neighborhood sizes are
used that fit in the the corresponding (potentially sub-sampled) input image.

In Figure23, we plot the energy of the synthesized texture as a function of number
of iterations. The iterations for various resolution and scale levels are concatenated in the
order of synthesis – we normalize the energy at each level by the number of pixels and
neighborhood size. We also show the synthesized texture at the end of each synthesis level.
The texture energy generally decreases as the number of iterations increase, thereby im-
proving texture quality. Note that intermediate iterations produce textures that appear to be
coarse-scale approximations of the final texture. One can potentially exploit this progres-
sive refinement property to synthesize textures in a level-of-detail fashion. The jumps seen
in the energy plot are due to change of synthesis level – resolution or neighborhood size.
They are in fact desirable because they help the algorithm to get out of poor local minima.

54

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

Number of Iterations

T
ex

tu
re

 E
ne

rg
y

Figure 23: Texture energy plotted as a function of number of iterations. Also shown is the
synthesized texture after each resolution and scale (neighborhood size) level. Level 1 shows
the random initialization. Level 2 shows synthesis at (1/4 resolution, 8×8 neighborhood),
Level 3: (1/2, 16×16), Level 4: (1/2, 8×8), Level 5: (1, 32×32), Level 6: (1, 16×16),
Level 7: (1, 8×8).

5.5 Results
We have applied our algorithm for synthesizing both image and video textures. In the case
of image textures, we perform multi-resolution synthesis with three resolution levels (each
coarse level has half the resolution of the finer level). Also, within each resolution level, we
perform synthesis using multiple neighborhood sizes. We have generally used neighbor-
hood sizes of 32×32, 16×16, and 8×8 pixels in our results. Figure24shows some of the
results for image texture synthesis. It works well for a wide range of textures varying from
stochastic to structured. In Figure25, we show comparisons with other techniques. The
results of our technique are generally at par with the the state-of-the-art in texture synthesis.
In fact, synthesis using texture optimization tends to be less repetitive than synthesis using
graph cuts, as shown in the text example (bottom row) in Figure25.

In order to synthesize video textures, the only change we need to make is to increase the
dimensionality of the domain by one,i.e.,we consider 3D neighborhoods in space-time in-
stead of 2D neighborhoods. The entire spatio-temporal volume of the video is synthesized
at once. We perform multi-resolution synthesis in the case of video as well. However, we
do not sub-sample along the temporal dimension. This is because the temporal dimension
is sparse in terms of available data to begin with – there are usually not enough frames

55

Figure 24: Results for image texture synthesis. For each texture, the input is on the left
and the output on the right.

56

CANE (INPUT) TEXT (INPUT)

WEI-LEVOY IMAGE GRAPH CUTS TEXTURE

QUILTING OPTIMIZATION

Figure 25: Comparison with various other texture synthesis techniques. The input textures
are shown in the top row. The bottom two rows show the comparison.

57

RIVER FIRE POND

SMOKE OCEAN GRASS

Figure 26: Examples of videos textures that were synthesized using texture optimization.

to sub-sample. Also, the dynamics of the video sequence along time are different from
its variations along space, and perceptually, it is desirable to give greater attention to even
fine-scale changes along time. In the case of video, we have used three resolution levels but
only one neighborhood size at each level: 16×16×4. Figure26shows stills from example
videos that we have used for video texture synthesis. Our results for video textures using
texture optimization are comparable to those obtained using graph cuts. However, inter-
mittent blurring is observable at times, since the optimization approach involves blending
across neighborhoods.

The computational complexity of our technique is dominated by nearest neighbor
search (M-step). It is linear in the number of nearest neighbor calls, which areO(no

w2) per
iteration –no is the number of pixels in the output texture whilew is the width of the
neighborhood. Theoretically, the time taken per call isO(w2). In practice, however, we
found it to be less than that – the exact dependence is not known to us as it is governed by
MATLAB’s vectorized matrix multiplication algorithm. The implication is that execution
is faster for largerw. Actual execution time per iteration at different resolution levels (av-
eraged over the various neighborhood sizes used within that resolution) was: 2.5 seconds
at 64×64, 10 seconds at 128×128, and 25 seconds at 256×256. Usually 3-5 iterations
per resolution/scale level were found to be enough. Average total execution time for
multi-level synthesis of 256×256 textures was 7-10 minutes, while for 128×128 textures,
it was 1-3 minutes. For video textures, it took 15-90 minutes for synthesizing 100×100
videos of varying temporal length. All timing results are reported for our unoptimized
MATLAB code, running on a dual-processor 2.4GHz PC with 2GB RAM.

58

5.5.1 Discussion

Our results for both image and video textures are comparable to the state-of-the-art. Our
synthesis algorithm iteratively improves texture quality and is therefore suitable for pro-
gressive refinement of the synthesized texture – this may allow it to be used in conjunction
with level-of-detail applications,e.g.,video games. However, since it tries to decrease the
energy at each iteration, it can get stuck in local minima. This usually happens because
neighborhoods that are located far from each other can communicate only through inter-
mediate overlapping neighborhoods. Multi-resolution synthesis is important in this context
because it brings the neighborhoods closer location-wise.

Another property of our synthesis technique is that it can be thought of as a projection
technique, as discussed in Section5.1. Starting with an initial estimate of the texture, it
brings it as close as possible to the input texture in terms of local similarity. Figure27
shows the results of an experiment that we conducted to test this property. We took a
checkerboard pattern and applied a deformation to it using thetwirl operator in Adobe
Photoshop. The original texture pattern is shown at the top. The second row shows the
deformed texture, obtained after applying different degrees of twirl to it. We applied our
texture optimization technique to correct these deformed textures – using them as the initial
texture – to synthesize the results shown in the last two rows. Of these, the third row shows
results obtained after applying the synthesis algorithm at a single (finest) resolution only.
Our technique is able to correct the deformed texture and bring it close to the original for the
first two deformations. However, in the most extreme case (third column), it gets trapped in
a local minima leading to a less than satisfactory result. The fourth row shows the result of
applying multi-resolution synthesis to the deformed textures. Here, we used sub-sampled
versions of the deformed textures to initialize the synthesis process. As demonstrated by
the results, multi-resolution synthesis has less tendency of settling for local minima.

The texture energy as defined in this chapter only looks at the color and gradient of
the texture. For future work, we would like to experiment with the use of other texture
properties such as filter outputs or edge information in designing the energy function.

5.6 Summary
In this chapter, a novel technique for texture synthesis using optimization has been pre-
sented. It results from specializing the probabilistic formulation presented in the last chap-
ter, so that only appearance similarity between the synthesized and input textures is consid-
ered. We then transform the probability maximization problem to an energy minimization
problem and optimize for it using an iterative EM-like algorithm. The energy-based for-
mulation provides a quality of the synthesized texture at each iteration of the optimization
process and continually improves it. Previous approaches for texture synthesis generally
lack any such quantitative estimates of the quality of the synthesized texture. The results
obtained using this technique are comparable to the state-of-the-art, including the graph
cuts approach presented in Chapter3. As will be shown in the next chapter, the energy-
based formulation presented here can also be extended to incorporate additional terms that
specify desirable properties or characteristics of the synthesized texture. These terms allow
us to add controllability to the synthesis process. In that sense, the texture optimization

59

ORIGINAL

Different degrees ofTWIRL

Texture Optimization (SINGLE RESOLUTION)

Texture Optimization (MULTI -RESOLUTION)

Figure 27: Correcting a deformed texture using Texture Optimization. The original texture
(top) is deformed by applying different degrees of twirl to it (shown in second row). The
third row shows texture optimization applied to these deformed textures at only the finest
resolution. The fourth row shows results for multi-resolution synthesis.

60

approach is superior to the graph-cuts approach, even if the quality of its results is not
necessarily better than that of graph-cuts. The graph-cuts technique can synthesize a wide
variety of image and video textures with extremely realistic results. However, controlling
it is difficult because of the fact that it copies large patches to the output – a single patch
placement step can affect large portions of the texture. Texture optimization, on the other
hand, operates at multiple resolution and scale levels which allows a finer level of control
over the synthesis process.

61

CHAPTER VI

CONTROLLABLE SYNTHESIS: FLOWING IMAGE
TEXTURES

Until now, we have discussed two techniques for texture synthesis – one based on graph-
cuts and the other based on optimization – and also presented a framework within which
algorithms for example-based rendering can be designed. The last chapter described an
optimization technique for texture synthesis that was obtained by specializing the example-
based rendering framework to only consider appearance similarity. In this chapter, we
consider both the appearance similarity and the characteristic consistency aspects of our
framework. We again transform the probabilistic formulation of Chapter4 into an energy
minimization problem as was done in the last chapter. In fact, the new formulation is a
simple extension of the formulation presented in the previous chapter. It accommodates
characteristic consistency by adding an additional energy term that act as a control term for
the specific characteristic of interest.

Besides discussing the extension of texture optimization for controllable synthesis in
general, we also describe a specific instance of example-based rendering in this chapter. We
consider the case in which the source imagery is an image texture while the characteristic
being controlled is image motion, represented as a flow-field. We have implemented a
system that generatestexture sequencesthat follow a given flow-field while maintaining
appearance similarity to a given source texture. This means that the shape, size, orientation,
etc. of the texture elements is maintained even as they follow the given flow-field. The flow-
field must be a two-dimensional vector field but it is allowed to dynamically change over
time. In the next chapter, we will discuss the case in which the source imagery is a video
texture instead of an image texture, while the characteristic is still flow.

The motivation for using flow-fields as the control mechanism is three-fold.Firstly,
flow is directly related to themotion in the scene. Motion provides a very important cue
in scene understanding. This also makes it a desirable quantity to control in a synthetic
scene. Even in the context of video editing, where the goal may be to modify a real scene,
motion can be used to characterize the editing operation. For example, if an editor wants to
add an obstacle in the path of a stream, then one can describe this operation by the change
in the stream’s flow that would occur after adding the obstacle.Secondly, many textures
like water, fire, smoke, etc are visual manifestations of phenomena that can be physically
described as fluid flow. This opens up the opportunity of using example-based rendering
in conjunction with fluid simulation techniques as they usually generate a flow-field as
output. Finally, the technique developed in this chapter can be used as a method for flow
visualization, since the output sequence animates a texture as guided by the given flow-
field. The significance of our technique is that it allows for a rich variety of textures to be
used for visualizing the flow-field.

62

6.1 Controllable Synthesis
To perform controllable synthesis within our framework, we need to consider characteristic
consistency in addition to appearance similarity. Recall that our probabilistic formulation
treats these terms as likelihood and prior respectively. We want to maximize the posterior
which is decomposed as the product of likelihood and prior. This was expressed mathe-
matically in (10):

ÊT = argmax
ET

P(CT |ET ,ES ,CS).P(ET |ES).

The first term in the product is the likelihood while the second term is the prior. We trans-
form this probability maximization problem into an energy minimization problem as was
done in the last chapter:

ÊT = argmin
ET

[− logP(CT |ET ,ES ,CS)− logP(ET |ES)].

Here,− logP(ET |ES) is the appearance or texture similarity term that measures texture en-
ergy. On the other hand,− logP(CT |ET ,ES ,CS) represents the characteristic consistency
term. This term measures how well the synthesized texture (sequence) matches with the
characteristics. In the following discussion, we will also refer to the characteristic as the
control criteria, and to its energy term as the control energy. We will make a switch in
the notation to be consistent with the discussion in the previous chapter. The texture being
synthesized,ET , will be denoted byx or X as appropriate. The source textureES will be
denoted byz or Z as appropriate. To simplify notation, we will useu to denote all the con-
trol parameters which may include a subset ofCT , CT , andES , and any other associated
variables. The various energy terms that will be used are defined as follows:

Ut(x;Z) = − logP(ET |ES)
Uc(x;u) = − logP(CT |ET ,ES ,CS)

U(x) = Ut(x;Z)+λUc(x;u).

Here,Ut(x;Z) denotes the texture energy,Uc(x;u) denotes control energy, andU(x) de-
notes the total energy that we wish to minimize. The coefficientλ is used to weight the
two terms relative to each other. The control term,Uc(x;u), attempts to satisfy the control
criteria in the synthesized texture, while the texture term,Ut(x;Z), tries to ensure that it is
a representative sample of the input texture.

6.1.1 Adapting Texture Optimization for Controllability

The total energy that we need to minimize for controllable synthesis is the sum of texture
and control energy terms. This means that the texture energy can be defined independently
of the control energy. Hence, we can use the formulation from the previous chapter to
define texture energy:

Ut(x;Z) = Ut(x;{zp}),

whereUt(x;{zp}) is as defined in (18). Recall that, in the last chapter, we defined the
texture energy of the synthesized texture with respect to the source by adding up the squared

63

color differences between each synthesized texture neighborhood and its closest source
texture neighborhood –{zp} is the set of these closest source neighborhoods. To extend
the optimization technique presented in the previous chapter to handle the control energy
term, we simply minimize the total energyU(x) at each iteration instead of just minimizing
the texture energyUt(x;{zp}).

In order to understand the addition of control criteria to the optimization process more
clearly, lets consider a simple example. Lets say we want to performsoft-constrained syn-
thesis where the desirable color values at certain pixel locations of the synthesized texture
are specified. We can express the energy representing this criterion as the sum of squared
distances between the synthesized and specified pixel values:

Uc(x;xc) = ∑
k∈C

(x(k)−xc(k))2, (23)

whereC is the set of constrained pixels andxc is a vector containing the specified color
values. While we want the pixels to be close to the desirable values at specified locations,
we also want the overall texture appearance to be similar to the source texture. The two
criteria are together expressed as the total energy that needs to be minimized:

U(x) = Ut(x;{zp})+λUc(x;xc). (24)

Using (23) for the control term,Uc(x;xc), and the definition ofUt(x;{zp}) from (18), we
can rewrite the above equation as

U(x) = ∑
p∈X†

‖xp−zp‖2 +λ ∑
k∈C

(x(k)−xc(k))2. (25)

The minimization ofU(x) is done in a similar fashion as that ofUt(x). We modify the E
and M steps to account forUc(x) as follows.

In the E-step, we solve a new system of linear equations that results from the differ-
entiation ofU(x) w.r.t. x. For the constrained synthesis example described above, this
corresponds to taking a weighted average of the specified pixel values and those corre-
sponding to the output of texture synthesis at constrained locations. Mathematically, we
need to solve the following equation – obtained through differentiation of (25) w.r.t. x:

Mx +λCx = b+λxc.

Here,M andb are the same as in (20). C is the matrix corresponding to the control term. It
is a diagonal matrix with ‘1’ as its diagonal entries wherever a constraint is provided, and
‘0’ elsewhere,i.e.,

C(k, l) =
{

1 k = l and k∈ C
0 otherwise

Further,xc is also taken to be non-zero only at the constraints,i.e., xc(k) = 0 ∀k /∈ C .
Note that the solution just described is specific to the soft-constraints control criterion. One
can use more general energy functions as long as they can be optimized w.r.t.x. Energy
functions that lead to a linear system of equations in the E-step have the following general
form:

Uc(x;u) = (x−c)TF(x−c),

64

whereF is a symmetric positive semi-definite matrix andc is an arbitrary vector. The
control vectoru is specific to the criteria being considered and determinesF andc. Such
quadratic energy functions are desirable because they can be minimized using linear opti-
mization within each iteration of our texture synthesis algorithm.

We also modify the M-step, in which we search for the set of input neighborhoods{zp}.
Even thoughUc(x) does not directly depend on{zp}, they are indirectly related with each
other throughx. We exploit the fact that each synthesized neighborhoodxp will be similar
to zp after the E-step. Hence, when searching forzp, we look for input neighborhoods that
are already consistent with the control criteria. The intuition is that ifzp has low control
energy,Uc, then so willxp. Foreachxp, we find thezp that minimizes the total energy, or
equivalently the part of it that is affected byzp:

Up(x;zp) = ‖xp−zp‖2 +λUc(y;u), (26)

where,y is constructed fromx by replacing its pixels in the neighborhoodNp with zp, i.e.,

y(q) =
{

zp(q− p+w/2) q∈Np

x(q) otherwise

Here,w = (wx,wy) encodes the neighborhood width in both spatial dimensions. It is im-
portant to note that (26) contains only that part of the total energy that is affected byzp –
the closest input sub-vector corresponding toNp. Consequently, the summation sign in the
texture energy term is missing andy is computed by modifyingx only within the neighbor-
hoodNp. As an example, in the case of soft-constrained synthesis, the new M-step searches
for zp that minimizes‖xp− zp‖2 + λ‖zp− xc

p‖2, i.e., an input neighborhood whose pixel
values at the constrained locations are already close to the specified ones. In our imple-
mentation, this modified search is approximate because it is still done using a hierarchical
search tree as described in the previous chapter. Algorithm2 describes controllable texture
synthesis in pseudocode for general control criteria.

Algorithm 2 Controllable Texture Synthesis

z0
p← random neighborhood inZ ∀p∈ X†

for iterationn = 0 : N do
xn+1← argminx [Ut(x;{zn

p})+λUc(x;u)]
zn+1

p ← argminv [‖xp−v‖2 +λUc(y;u)], v is a neighborhood inZ andy is the same
asx except for neighborhoodxp which is replaced withv
if zn+1

p = zn
p ∀p∈ X† then

x← xn+1

break
end if

end for

65

6.2 Flow-guided Synthesis using Image Textures
In this section, we consider a specific instantiation of control of characteristics of the syn-
thesized texture. This is a special case of the example-based rendering framework pre-
sented in Chapter4 in which an image texture is used as the source imagery while flow is
the characteristic that is controlled. The goal is to synthesize a texture sequence (or video)
that satisfies the following properties:

1. Appearance Similarity:The synthesized sequence should be visually similar to the
input texture. This is same as the appearance similarity component of our frame-
work which was explicitly optimized in the previous chapter. This property, as also
described earlier, aspires to maintain the structure of the input texture – shape, size,
orientation, etc of its elements – in the synthesized texture sequence. In other words,
we want the texture elements to flow as a unit as opposed to having individual pixels
deform uninhibited by the flow. We use our texture energy metric that was described
in the previous chapter and also in the section above to determine appearance simi-
larity.

2. Flow Consistency:The texture sequence should be consistent with the input flow-
field, i.e., it should convey the motion represented by the flow-field. Conceptually,
flow consistency will be maintained if the optic flow-field of the texture sequence
matches the input flow-field. However, in practice we don’t need to compute optical
flow in the texture sequence. Instead, we measure flow consistency across two suc-
cessive frames by warping the first frame using its flow-field and comparing it with
the next.

These two properties define sub-goals for the synthesis process that may potentially be
contradictory in nature. For example, if the input is an image texture and the first frame
of the texture sequence has a high texture similarity score, then a sequence that exhibits
no motion will easily satisfy the texture similarity property but it won’t be consistent with
the flow. On the other hand, a sequence generated by successively warping each frame of
the texture sequence according to the flow-field will always be consistent with the flow,
but it will cause the texture elements to distort unrecognizably or even disappear. Our for-
mulation for controllable synthesis addresses this issue of competing objectives by having
a probability/energy term for each of this properties. The synthesized sequence is then a
compromise between the two properties where the relative importance of one property over
another can be controlled externally.

Before describing our technique for synthesizing flowing image textures, it is instructive
to place it in the context of our example-based rendering framework. The specialization
occurs in the characteristic consistency component of our framework, which is replaced by
flow consistency. One major simplification that we achieve with the use of image textures
as source imagery, is that flow consistency only needs to take into account the target flow
and target appearance,i.e.,we can eliminate the source texture and source flow as inputs to
flow consistency measurement. This is because the source texture does not have a flow of
its own as it is static. This simplification is shown schematically in Figure28.

66

Target FlowMapped Target

Source Image

Appearance
Similarity

Flow
Consistency

Animation
Mechanism

Figure 28: Specializing example-based rendering for synthesizing flowing image textures.
Characteristic consistency is replaced by flow consistency. Source texture does not have
its own flow, which simplifies the framework: no need to compute source flow, and flow
consistency only depends on target flow and target appearance (mapped target).

67

6.2.1 Approach

To synthesize a sequence in which the texture moves according to a given input flow-field,
we use a control term in our energy function that measures the consistency of the sequence
with the flow – we call this term the flow energy. We synthesize the sequence frame-by-
frame, so we need to define this term only for a single frame at a time. LetX now represent
the frame being currently synthesized, and letX− be the previous frame. A good way
to measure flow consistency across the pair of framesX− andX is to compute the optic
flow between them and compare it with the input flow-field. However, it is difficult to
incorporate optic flow computation within our framework because of its unreliability and
non-linearity. We therefore use a simpler but equivalent measure based on the difference
betweenX and the frame obtained by warpingX− using the input flow-field.

Let f denote the input flow-field using which we want to animate the texture. We allow
for time-varying 2D flow-fields; hence,f is a sequence of 2D flow-fields(f1, f2, . . . fL−1),
whereL is the length of the texture sequence being synthesized, andfi is the desirable
flow-field between framei andi +1. For a given pixel locationp in framei, fi(p) gives its
location in framei + 1 after it has been transported through the flow-field. We usef− to
denote the desirable flow-field between the previous and current frames,X− andX. LetX+

be the frame obtained by warpingX− using f−. Then each pixel value inX+ is determined
by travelling backwards alongf− from that pixel and copying the resultant pixel value
from X−:

X+(p) = X−(q) q : f−(q) = p

Once we have computedX+, we can establish the flow energy as follows. Letx+ be the
vectorized version ofX+, andx+

p be its sub-vector corresponding to neighborhoodNp.
Then, the flow energy is defined as

Uc(x;x+) = (x−x+)TK(x−x+). (27)

Here,K is a diagonal weighting matrix that allows us to assign a different weight to each
pixel in the flow term. We have used it to assign weights to pixels based on intensity
gradients. It is well known that motion perception and optic flow computation are more
robust in the presence of high intensity gradients. Our weighting scheme exploits this
fact by coercing the texture sequence to follow the input flow-field more faithfully in such
high gradient regions.K can also be used to incorporate other heuristics into the energy
function such as identifyinginterestingregions in the flow-field and weighting them more
importantly relative to other regions.

The texture sequence is synthesized one frame at a time. To synthesize the current
framex, we minimize its total energy:

U(x) = Ut(x;{zp})+λUc(x;x+).

The flow term,Uc(x), attempts to keep the current frame close to the one obtained by
warping the pervious frame, while the texture term,Ut(x), tries to maintain its structural
integrity by keeping it locally similar to the input texture. The two terms compete against
each other by pulling each neighborhood sub-vectorxp towards potentially different sub-
vectorsx+

p and zp. Note thatx+
p remains constant through successive iterations of the

minimization procedure even aszp may change.

68

An observation about performing the optimization for this energy function is that the
Uc(x;x+) in (27) has a very similar form to the one defined in (23). Hence we can treat
the synthesis of each frame as a soft-constrained synthesis problem. We synthesize the
first frame of the sequence using regular texture synthesis. For each subsequent frame,
the desirable pixel values at each location are obtained by warping the previous frame
using its flow-field. The warped previous frame also acts as an initialization for the current
frame. We then synthesize the frame using our controllable optimization approach for soft-
constraints as discussed in the previous section. Algorithm3 describes the flow-guided
synthesis algorithm using Algorithm1 and Algorithm2 as sub-routines.

Algorithm 3 Flowing-guided Synthesis
x1← texture synthesized using Algorithm1
for framei = 2 : L do

x+← warp(xi−1, fi−1)
xi ← output of Algorithm2 usingx+ as initialization andUc(x;x+) as control energy

end for

6.3 Handling Obstacles
We can easily adapt our technique to also handle obstacles that may be placed in the path of
flow. Our main contribution here is to extend the texture optimization approach to perform
synthesis in the presence of a mask. The mask specifies regions in the synthesized image
which shouldnot contain any texture. For example, an obstacle can be modeled as a mask
in image space. We can also gradually fill the synthesized frame with texture over the
course of the sequence by using a mask that changes over time. In this case, the mask
represents not only the obstacle but also the empty region of the texture in each frame. Our
contribution does not include the creation of flow-fields that would result in the presence
of obstacles. We have used an interactive technique [69] to design flows that go around
obstacles.

There are two modifications that we need to make to our technique in order to handle
masks. These apply to the M-step and E-step respectively. We modify the M-step to allow
searching for closest source neighborhoods by only matching a partial set of pixels. For
eachxp, the search now considers only those pixels that are not part of the mask. Recall
that we originally performed this search using a hierarchical tree structure. Starting at
the root of the tree, we traversed a path to a leaf node such that the nodes along the path
matched best withxp. In the presence of a mask, we matchxp with tree nodes by only
comparing unmasked pixels. Ideally, we would want to construct a tree for each possible
set of partial pixels that would be used. However, that is impractical as there might be many
such sets corresponding to different pixel neighborhoodsNp. Empirically, we have found
our approximation to yield satisfactory results.

We also modify the E-step wherex is estimated by minimizingU(x). We now consider
only those pixels ofx that are not part of the mask. The new energy function that we

69

minimize is of the form

U(x) = [∑
p∈X†

(xp−zp)TK∗p(xp−zp)]+(x−x+)TK∗(x−x+). (28)

The first term in this equation is the texture energy and the second term is flow energy.
The mask is incorporated throughK∗ andK∗p. K∗ is a binary (‘0’ or ‘1’) diagonal matrix
whose diagonal elements contain the complement (logical not) of the mask corresponding
to each pixel location. Similarly,K∗p is a (smaller) diagonal matrix that contains the mask-
complement for only pixels inNp. These weighting matrices effectivelyselectpixels from
x that are not in the mask. The solution forx then modifies just the unmasked pixels. This
procedure is repeated for every frame of the texture sequence, with potentially different
masks.

Note that we can also use a gradient-based function for texture energy (as described in
Section5.3). In this case, the first term in (28) becomes∑p∈X† (xp−zp)TDTK∗pD(xp−zp).
The differentiation operatorD outputs a vector containing the gradient at each edge inNp.
Hence, the matrixK∗p now encodes (binary) weights for eachedgein Np as opposed to
each pixel. Note thatK∗p contains a ‘0’ entry for each edge whose either bounding pixel
belongs to the mask. This ensures that the texture energy is not affected by any of the
masked pixels.

6.4 Results
We have synthesized flowing image textures for a variety of flow-fields and texture exam-
ples. We have used our technique to synthesize texture animations for both time-varying
and stationary flow-fields. Figure29 shows some of the flow-fields that we have used to
generate our results. It also shows the variability in the distortion that an image texture
undergoes under the effect of different flows. Each frame was synthesized only at a single
resolution and execution time per frame was between 20-60 seconds.

Figure30and Figure31show key-frames from texture sequences that were synthesized
using a sink and a stream flow-field respectively. The structural elements of the texture are
generally preserved even as it follows the flow-field. Notice that the shape of the marbles
in the middle row of Figure31 is maintained across the sequence. Some degeneracies do
occur, as for example, in the center of the sink in Figure30. The keys of the keyboard
get smaller and smaller towards the sink. However, such a compromise may be necessary
when the flow-field has inherent degeneracies as in the case of a sink. Also, the frames of
the texture sequence are, at times, blurrier than the original texture,e.g.,in the middle row
of Figure31(marbles texture). This is because our optimization approach leads to a blend-
ing of pixel values in order to simultaneously satisfy the texture and flow criteria. Also,
note that for the nuts texture (Figure31 bottom row), the three odd nuts in the first frame
– that appear different from the rest of the texture – gradually disappear in the synthesized
sequence. This happens because there was only one odd nut in the original texture. There-
fore the algorithm has a hard time finding neighborhoods that look like that odd nut, and at
the same time, align well with the motion induced by the flow-field.

In Figure32, we compare the result of our approach to that obtained by applying a
simple warp. Warping leaves holes in the texture and does not maintain similarity to the

70

SOURCE SINK VORTEX COMPLEX

Figure 29: Flow-guided synthesis using different flow-fields. Shown is the 25th frame
of each sequence (for both textures). All sequences for a given texture start with the same
frame (not shown).

input sample. On the other hand, our technique generates texture sequences that convey the
motion of the flow-field, while maintaining structural integrity of the texture at the same
time. In the case of the keyboard example, the shape as well as orientation of the keys is
maintained even as the entire texture rotates.

Figure33 shows an example result for synthesizing texture sequences in the presence
of obstacles. In this sequence, texture flows from left to right moving around an obsta-
cle (shown in red). The blue region represents the empty portion of the texture in each
frame. The texture used in the top row is a green scales texture, while the one used in
the middle row is a snapshot of a flowing river. The frames of the texture sequence have
been synthesized successfully in the presence of a mask. However, we observed that, in
some regions below the obstacle, texture elements appear to go under the obstacle instead
of going around it. We believe it to be more a consequence of an inaccurate flow-field –
it was designed manually using an interactive program – than a limitation of the synthesis
algorithm itself.

71

SINK FLOW

FRAME 1 FRAME 9 FRAME 17 FRAME 25

Figure 30: Animating texture using a flow-field. Shown are keyframes from texture se-
quences that follow a sink flow-field.

72

STREAM FLOW FRAME1 FRAME 21 FRAME 41 FRAME 61

Figure 31: Animating texture using a flow-field. Shown are keyframes from texture se-
quences that follow a stream flow-field.

73

FLOW FRAME 1 FRAME 40: FRAME 40:
TOP: ROTATION OPTIMIZATION SIMPLE WARPING

BOTTOM: SINK

Figure 32: Comparison of our flow-guided synthesis results with simple warping. The
keys on the keyboard maintain their orientation while rotating.

6.4.1 Discussion

Our flow-guided texture synthesis technique works on a variety of textures. However, the
exact nature of the underlying mechanism is not obvious from the results. To better un-
derstand the process, we recall the texture optimization technique introduced in the last
chapter, as it lies at the heart of our flow synthesis method. There are two aspects of the
optimization that affect the outcome of flow-guided synthesis.Firstly, different texture ele-
ments (in the form of neighborhoods) are blended together to construct the output. Hence,
when the texture follows a flow-field, the transition of texture elements from one frame
to another occurs via blending of warped neighborhoods with each other.Secondly, the
different neighborhood sizes used during synthesis affect the outcome of the algorithm.
Therefore, the scale of the texture plays an important role in determining the quality of the
output.

We conducted the following experiments to analyze our technique: using a checker-
board pattern as texture, we performed flow-guided synthesis with sink (convergent) and
source (divergent) flows. Four variants of the original checkerboard pattern were used as
texture: the original, a filtered (blurred) version of the original, the original at half-scale,
and the original at double-scale. Figure34 shows these variants and also the outcome of
synthesis (intermediate frames) for the sink and source flow-fields.

A significant aspect of our technique is that texture elements are blended with each
other to make a smooth transition from one frame to another. In the case of a checkerboard
pattern, where the variation of color within an element – black to white and vice-versa –
is stark, this blending can lead to noticeable blurring in the transition zone (Figure34(a)).

74

FRAME 1 FRAME 35 FRAME 70 FRAME 105

Figure 33: Handling obstacles. Shown (in the top two rows) are intermediate frames of
sequences in which texture flows around an obstacle. The bottom row shows the mask
(with its components) for each frame. The obstacle is shown in red with a white border
around it (for clarity). The mask component representing empty space is shown in blue.

75

(a) ORIGINAL (b) FILTERED (c) HALF SCALE (d) DOUBLE SCALE

Figure 34: Flow-guided synthesis using a checkerboard pattern. The top row consists of
the first frames for sequences corresponding to each input texture type – original, filtered,
half-scale, or double-scale. The middle row shows an intermediate frame from the sequence
synthesized with a sink flow-field, for each input texture type. The bottom row shows
intermediate frames obtained with a source flow-field.

76

For the filtered version, the intermediate frames look more uniform (Figure34(b)). This is
because filtering leads to creation of smooth boundaries between white and black squares.
The synthesis algorithm is then able to make use of these boundaries as transition zones
when going from one frame to the next. Consequently, our technique is better suited for
textures that allow (temporal) transition zones to be hidden between regions of constant or
smoothly varying color.

The scale of the texture also plays an important role in determining quality of the syn-
thesized sequence. The scale of the texture (size of texture elements) should be comparable
to the largest neighborhood size used during synthesis. Also, it should be consistent with
the scale of the flow-field,i.e., the flow-field should not be too smooth or too rough with
respect to the texture element size. The half and double scale texture results demonstrate
this property. In the case of half-scale (Figure34(c)), the texture elements are small, which
means that large portions of these elements may appear to be part of a transition zone. This
explains the large amount of gray in these results. Also, the neighborhood size used by
the synthesis algorithm is large relative to the smaller sized texture elements. This forces
groups of texture elements (multiple squares in the checkerboard case) to maintain their
shape across frames. Consequently, the distortion shown by the texture elements in order
to accommodate flow is smaller, and is instead reflected in the form of more apparent tran-
sition zones. For the double scale case (Figure34(d)), the largest synthesis neighborhood
size is smaller than the texture element size. Hence, one can see that squares and rectangles,
with sizes and shapes non-existent in the input, have been created in the output.

6.5 Summary
In this chapter, we presented a technique for controllable texture synthesis by extending
the texture optimization approach presented in the previous chapter to incorporate addi-
tional control energy terms. We also derived this energy minimization formulation from the
probabilistic principles that drive our example-based rendering framework. In particular,
we developed a technique for synthesizing flowing image textures,i.e., texture sequences
that convey the motion represented by a flow-field but maintain the appearance of the input
texture by preserving the structural integrity – shape, size, orientation, etc – of its con-
stituent elements. This technique is a specific instantiation of our example-based rendering
framework, in which the source imagery is an image texture and the characteristic being
controlled is motion represented as flow. Using image textures as sources allows us to
simplify the formulation by obviating the need for computing flow for the source texture,
and also by allowing us to consider only target appearance and target flow in the design of
similarity/energy metric for flow consistency. In the next chapter, we consider the case of
video textures as source imagery with the target still controlled using flow. This requires
using the complete formulation of example-based rendering to address the problem.

77

CHAPTER VII

FLOWING VIDEO TEXTURES

This chapter is devoted to extending the flow-guided texture animation technique presented
in the last chapter to handle video textures – as opposed to just image textures – as source
imagery. Using video as source texture also modifies the objectives that we need to satisfy
during synthesis of flowing texture sequences. Recall that for flowing image textures, we
stated two objectives: appearance similarity and flow consistency. Of these, the appearance
similarity objective required the structural properties of the synthesized texture elements to
stay close to that of the input texture. In the case of a video texture, the structural elements
have a dynamic nature. They evolve over time, changing their appearance in terms of color,
shape, size, orientation, etc. We want the texture elements in the synthesized sequence to
also exhibit a dynamic evolution that is similar to the evolution in the source video. A
related issue is that the source video has a flow of its own,i.e., its elements may be moving
spatially in addition to evolving over time. The synthesis technique needs to take this
source flow into account.

Positioning this problem into the example-based rendering framework presented in
Chapter4, what we are trying to solve here is an instance of video-based rendering: us-
ing information from a source video, we want to render the appearance of a dynamic target
scene – with motion (or flow) representing the dynamics of the scene. This is a more
general instantiation of our framework than that with image textures, because weneedto
consider flow at the source – we could ignore it in the case of image textures. This is shown
schematically in Figure35. It shows a step that does flow extraction from source video.
This source flow as well as the source video then need to be incorporated into the flow
consistency measure.

Ideally, the purpose of source flow extraction would be to decouple texture motion and
texture evolution in the source video before performing synthesis. However, this turns out
to be a difficult problem in the case of chaotically evolving video textures and requires
extensive research of its own. Hence, we do not address the decoupling problem in this
thesis. Instead, we postulate that the spatio-temporal appearance of texture elements in a
video is governed by the motion of those elements. For synthesis, this assumption trans-
lates into the following observation: if we can find a spatio-temporal region in the source
video that has flow similar to another spatio-temporal region in the target video, then the
appearance of that source region can be copied over to the target region. This allows for
two simplifications:

Firstly, we do not need to explicitly extract flow. As we will demonstrate, consistency
of a source region with a given target flow region can be measured without explicitly com-
puting source flow. However, it must be realized that this simplification is also a limitation
of the approach. It means that we can only deal with target flows that are, at least locally,
not much different from the flow in the source video. If the flows in the two videos are
widely disparate, it will be difficult to convey the target flow in the synthesized sequence.

78

Mapped Target

Source Video Source Flow

Appearance
Similarity

Flow
Consistency

Extract Flow

Animation
Mechanism

Target Flow

Figure 35: Specializing example-based rendering for synthesizing flowing video textures.
Flow information from the source video needs to be extracted. Also, flow consistency now
depends on the source appearance (video) and source flow in addition to target flow and
target appearance (mapped target).

79

Secondly, the evolution of texture elements in the source can be replicated at the target
simply by matching spatio-temporal regions of the source and the target. This is because
we already enforce the flow in the two regions to be similar, and additionally, we have
assumed that evolution of texture is governed by flow. Therefore, to achieve similar texture
evolution as the source region, we simply need to copy the entire spatio-temporal region
from the source to the target. The difficulty here lies in the fact that different overlapping
spatio-temporal regions in the target may not agree with each other in the area of overlap.
This would happen if we try to synthesize them by simply copying two different source
regions that may be inconsistent with each other. Therefore, the meat of the problem lies in
searching for source regions that have consistent appearance in the regions of overlap that
result from copying them onto different target regions. At the same time, the flow in these
source regions should also match the flow in the target region where they are being copied.

7.1 Approach
We have extended the optimization-based synthesis approach that was presented in the last
two chapters to also handle flow-guided synthesis using video textures. The basic differ-
ence in this modified approach and the previous one is that we now consider the entire 3D
video volume as a single spatio-temporal texture,i.e., synthesis isnot performed frame-
by-frame. Instead we define a flow (control) energy term that measures the consistency of
the entire target video with the given target flow-field. Also, for the texture energy term,
we consider spatio-temporal neighborhoods as was also done for unconstrained synthesis
of video textures in Chapter5. These spatio-temporal neighborhoods are same as the re-
gions mentioned above. For each target neighborhood under consideration, we search for
source neighborhoods that match the flow in that target neighborhood. Since we use over-
lapping neighborhoods in our texture energy formulation, the picked source neighborhood
is the result of a compromise between matching the flow and matching the appearance of
overlapping neighborhoods. Also, the appearance assigned to the target pixels is an in-
terpolation between pixels values of overlapping neighborhoods – recall that this was also
the case when we performed texture synthesis using optimization or synthesized flowing
image textures. This interpolation is such that it minimizes the total energy of the video for
a given set of source neighborhoods. The total energy takes into account both the evolution
of texture elements (through texture energy) as well as its consistency with the given target
flow (through flow energy).

Using the notation from the previous chapter, letf denote the given target flow field,
defined as a sequence of 2D flow fields(f1, f2, . . . fL−1). Recall that for a given pixel
location p in frame i, fi(p) gives its location in framei + 1 after it has been transported
through the flow field. Since we want to synthesize the entire spatio-temporal video volume
at once, we useX to denote the complete texture sequence – as opposed to denoting a
single frame in the sequence. We useXi andXi+1 to denote two consecutive frames of the
sequence. Note thatX is now a 3D volume andXi represents a 2D slice within this volume.
We denote pixels inX as(p, i) wherep is the pixel location in 2D andi is the frame number.
To define the flow energy, we observe that we want the pixels inXi andXi+1 that are related
via fi , to be similar in appearance. Pixels(p, i) and(q, i +1) are said to be related viafi if

80

q = fi(p). Intuitively, this means that we want pixels to retain their appearance as much as
possible while moving along the flow field. Hence, we define the flow energy function as

Uc(x; f) = ∑
i∈1:L−1

∑
(p,i)∈Xi

(x(p, i)−x(q, i +1))2, q = fi(p). (29)

In principle, this equation is the same as that used for flowing image textures (see (27)).
However, it is defined over the entire 3D volumex. Therefore, all pixels are treated as
variables which need to be determined at the same time. On the contrary, in (27), x refers to
a single frame of the sequence and its energy is defined with respect to the warped previous
framex+ which remains fixed throughout the optimization procedure. One can visualize
the flow energy function by thinking of pixels as masses that are connected through springs.
The springs are attached only between those masses (pixels) that are connected via the flow-
field. We need to compute the stable position (color value) of these masses (pixels). In (27),
the position of some of the masses (pixels from previous frame) is kept fixed, while the rest
(pixels in current frame) are free to move. Note that there are no springs between masses
that are mobile. However, in (29), all the masses are free to move. They will be pulled in
different directions as determined by the texture energy, subsequently resulting in a spring
force that will try to keep the connected masses as close as possible. We want to find a
stable state in which the total spring-mass energy is minimized. This total energy that we
wish to minimize is

U(x) = Ut(x;{zp})+λUc(x; f), (30)

whereUt(x;{zp}) is the same as in (18). We have used the same iterative algorithm for
optimizing this energy function that was used in the last chapter for flowing image textures.
However, the E and M steps of the algorithm now have different interpretations.

Recall that in the M-step, we find the closest source neighborhood sub-vectorzp corre-
sponding to each target neighborhoodxp ∈ X†. In the video case, these are 3D neighbor-
hoods. We discussed a modification of the M-step in the previous chapter that allows us
to search for source neighborhoods that may already be consistent with the control criteria.
In this case, this corresponds to searching for source neighborhoodszp that have the same
perceived flow as the target neighborhoodxp. For eachxp, we findzp that minimizes the
following:

Up(x;zp) = ‖xp−zp‖2 +λUc(y; f), (31)

wherey is obtained by replacing the pixels ofx in neighborhoodNp with zp. Note that we
aresearchingfor the sub-vectorzp that minimizes (31), i.e.,zp is the variable whilex stays
fixed. This means thaty changes across the different candidates forzp only at the pixels in
the neighborhoodNp. Expanding the termUc(y; f) in (31) using (29), we get

Uc(y; f) = ∑
i∈1:L−1

∑
(r,i)∈Xi

(y(r, i)−y(q, i +1))2, q = fi(r).

Here,r is used as a pixel index in place ofp to avoid confusion with the index of the target
neighborhoodNp under consideration. The energy represented by this equation measures
the consistency ofy with respect to the flow-fieldf. Also, as mentioned above, the pixels of
y that correspond to neighborhoodNp are same as the pixels of the candidate source neigh-
borhoodzp. This implies that this energy term implicitly measures the consistency ofzp

81

with respect tof at the neighborhoodNp. Thus, in the M-step, we are searching for source
neighborhoods that are consistent with the flow at the corresponding target neighborhood
in addition to being similar to the target neighborhood in appearance.

In the E-step, we minimize (30) w.r.t. the entire video volumex. This again leads to a
sparse linear system of equations. The sparsity structure of the system matrix is governed
by the flow-field f. Each row and each column of the system matrix corresponds to a
pixel in the video volume. Each row of the matrix contains a coefficient in the column
corresponding to the pixel to which the row’s pixel is connected via the flow-field. We solve
this linear system using pre-conditioned conjugate gradients. Intuitively, this minimization
procedure interpolates the source neighborhoodszp such that the pixels connected viaf are
as similar to each other as possible; this is done while also maintaining the spatio-temporal
appearance of the source neighborhoods in the synthesized target.

Another algorithmic detail of relevance here is that we modify the initialization step
in which an estimate of the synthesized video is first created. In the case of unconstrained
video synthesis, we had used random source neighborhoods to form the set{zp}. However,
in the case of flowing video textures, we already know the desirable flow for each target
neighborhood, but not its appearance. Assigning random source neighborhoods to the tar-
get is not desirable since the flow in that neighborhood may not match the flow in the target.
Hence, we search for source neighborhoods that match the flow in the corresponding target
neighborhood without regard to appearance,i.e.,we only use the second term,Uc(y; f), of
(31) in the search for closest source neighborhoodszp during initialization.

7.2 Results and Discussion
We have experimented with various flow-fields and source video textures for synthesizing
flowing video textures. Some examples are shown in Figure36. As expected, videos for
which the desirable flow is available in the source generally give better results than those
for which the source and target flow do not match. If the flows are very different, the
synthesized texture sequence is not able to convey the motion of the given flow-field. One
solution that we have tried to handle this is to give a higher weightλ to the flow energy
term. However, this leads to excessive blurring in the synthesized video due to interpolation
between spatio-temporal neighborhoods that may not match well with each other.

The best results that we have obtained are for the pond video, since the source flow in
this case consists of standing waves that cause image motion in all directions. However,
even our best result for flowing video textures – rotating pond – is not as convincing as
many of our results for flowing image textures. The primary reason for this is that it is very
hard to find regions in the source that match the target flow as well as have spatio-temporal
appearance that is consistent with neighboring regions in the target. This is related to the
assumption that we made in the beginning of this chapter, that the appearance of a spatio-
temporal neighborhood is governed by the flow in that region. For many complex videos,
this assumption is not true; texture in different regions may be evolving differently even if
the flow in those regions is similar.

82

RIVER GRASS POND

(a)

SOURCE/SINK TRANSLATION ROTATION

(b)

Figure 36: (a) Examples of video textures that were experimented with for synthesizing
flowing video textures. (b) Flow fields that were used for synthesis are shown in the top
row. The bottom row shows frames from synthesized pond sequences corresponding to
each flow field.

83

7.2.1 Analysis

To better understand these limitations, we need to analyze the synthesis process more care-
fully. The optimization proceeds by picking 3D spatio-temporal neighborhoods from the
source that match well with the corresponding target neighborhoods in terms of flow and
appearance. While the target flow remains fixed throughout the optimization, the target
appearance (which is the same as the synthesized video) as well as the picked source
neighborhoods change at each iteration. The optimization converges to a solution when
the source neighborhoods and target appearance stop changing. What we want to achieve
through this optimization is to converge onto a set of source neighborhoods that match well
with each other in terms of appearance but still have the same flow as the target. The con-
verged solution might present a number of scenarios with respect to the configuration of
these source neighborhoods. Consider two source neighborhoods that overlap with each
other when placed in the target video. Remember that these are 3D spatio-temporal neigh-
borhoods. Lets look at some of the possible scenarios:

The first scenario we consider is where the flow in the neighborhoods matches the target
flow, and the neighborhoods are also consistent with each other in terms of appearance,
i.e., they have similar color values in the region of overlap. This is the ideal scenario
and we would like it to hold everywhere in the synthesized video. However, if there is
significant difference between the target and source flow, then it is difficult to achieve this
property everywhere. What ends up happening is that some regions in the synthesized video
exhibit this scenario while others do not. In the best case, suchgoodregions encompass a
large portion of the synthesized video. In the case of the translating pond result shown in
Figure36, the translation is most evident only in the top half of the frame.

The second scenario is where the source neighborhoods are consistent with each other
in terms of appearance but the flow in those neighborhoods does not match the desired flow
at the target. This is a point of failure: the composite appearance in the region where these
neighborhoods lie will now exhibit a flow which will not be consistent with underlying
target flow. In other words, while the texture evolution in these neighborhoods will be
similar to the source, the objective of controlling the motion in the synthesized video with
the given target flow will not be satisfied. This is what happens in the bottom half of the
translating pond result. There is visible apparent motion, but it is not the translational
motion that is desired.

The third scenario is where the flow in the source neighborhoods is consistent with the
target flow, but the neighborhoods themselves are not consistent with each other in terms
of appearance,i.e., the two neighborhoods do not agree with each other in their region of
overlap. The outcome of this mismatch between neighborhoods is that resulting video gets
blurred in the region of overlap. Thus the texture appearance and evolution is not as similar
to the source as desired. An indirect consequence of this blurring is that the flow in the
overlap region may become less discernible even if it matches the target. The rotating pond
result in Figure36demonstrates this scenario. The synthesized video generally follows the
rotational field, however blurring in certain regions makes the motion subtle and hard to
perceive.

The last scenario is the worst case where neither the flow in source neighborhoods
matches target flow nor is the appearance of these neighborhoods consistent with each

84

other. The regions in which this occurs are usually very blurry and/or may exhibit arbitrary
motion that has nothing to do with the target flow.

7.3 Potential Improvements
From our discussion, it is evident that the approach we have used for synthesizing flowing
video textures is heavily dependent on the agreement between input data (source flow and
appearance) and output control variables (target flow). In this section, we discuss the po-
tential improvements and related issues that need to be explored to address this limitation.

One solution to the problem of mismatch between source and target flow is to artificially
increase the input data by considering transformations of the source video like rotation and
scaling. If we make use of a sufficiently large number of rotations and scales of the source
video, then the variety of flow available at the source suddenly increases multiple times.
Of course, we may lose the ability to maintain the orientation and size of texture elements
but that may be acceptable. The main issue with such an approach is its computational
cost. We will have to search for source neighborhoods from an enormous amount of video
data. Moreover, even if we are able to handle it computationally, this would work only for
videos that do not violate our assumption that texture evolution is governed by the flow in
the video.

In order to handle videos that may have little correlation between flow and texture
evolution, we need to address the decoupling of these two processes. Flow is responsible
for the change in texture appearance due to transport of texture elements along the flow.
On the other hand, texture evolution is the change that these elements undergo over time
irrespective of the flow. Decoupling these process is a challenging problem because without
any constraints on either, any one process may be sufficient to explain the entire appearance
change. A simple way of trying to solve decoupling is to first compute flow using an optic
flow technique and then determine evolution as the residual appearance change remaining
after taking flow into account. However, the issue here is that most optic flow techniques
assume brightness constancy,i.e., they assume that any change in pixel appearance is due
to flow. This is obviously not the case for textural video. In fact, this assumption tries to
nullify the residual appearance change that we are trying to estimate in the first place. To
tackle this, a reasonable strategy is to make prior assumptions about the flow and residual
appearance/texture evolution. For example, we can favor smooth flow fields and compact
descriptions of residual appearance.

Once such a decomposition is available, it can be used to design a likelihood (flow
energy) function for measuring consistency with the target flow. An observation is that
under this decomposition, one can think of appearance change from one frame to the next
as a two step process. In the first step, the texture in the current frame gets warped according
to the flow field. In the next step, the appearance of the texture evolves based on a process
that governs residual appearance. The likelihood term can be designed such that it favors
those target videos that can be best explained as a concatenation of these two operations
applied to each frame of the video.

85

7.4 Summary
In this chapter, we discussed the problem of synthesizing motion controlled video textures.
This involves synthesizing texture sequences that use appearance from a source video but
whose motion is controlled by a flow field. We presented a technique for solving this prob-
lem that extends the optimization-based approach for synthesizing flowing image textures
presented in the previous chapter. We assume that evolution of texture elements in the video
is governed by its flow. This allows us to perform synthesis by copying spatio-temporal re-
gions in the source video that match well with the desired target flow. However, we do
this matching without explicitly computing the source flow. Instead, we search for match-
ing source neighborhoods by computing their consistency with target flow on the fly. We
also discussed the limitations of this approach that arise due to our assumptions and also
because we ignore the decoupling between texture flow and texture evolution in the source
video. We also proposed potential extensions that would alleviate most of the problems
associated with our current approach.

86

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This thesis explores synthesis by example as a paradigm for rendering real-world phenom-
ena. In particular, we consider phenomena that can be visually described as texture. We
exploit, for synthesis, the self-repeating nature of the visual elements constituting these
texture exemplars. We present techniques for unconstrained as well as constrained/control-
lable synthesis of textures.

For unconstrained synthesis, we present two robust techniques that can perform spatio-
temporal extension, editing, and merging of image as well as video textures. In one of these
techniques, large patches of input texture are automatically aligned and seamless stitched
with each other to generate realistic looking images and videos. The second technique
is based on iterative optimization of an energy function that measures the quality of the
synthesized texture with respect to the input exemplar.

We also present a technique for controllable texture synthesis. In particular, it allows
for generation of motion-controlled texture animations that follow a specified flow field.
Animations synthesized in this fashion maintain the structural properties like local shape,
size, and orientation of the input texture even as they move according to the specified
flow. We cast this problem into an optimization framework that tries to simultaneously
satisfy the two (potentially competing) objectives of similarity to the input texture and
consistency with the flow field. This optimization is a simple extension of the approach
used for unconstrained texture synthesis.

A general framework for example-based synthesis and rendering is also presented. This
framework provides adesign spacefor constructing example-based rendering algorithms.
The goal of such algorithms would be to use texture exemplars to render animations for
which certain behavioral characteristics need to be controlled. Our motion-controlled tex-
ture synthesis is an instantiation of this framework where the characteristic being controlled
is motion represented as a flow field.

8.1 Future Directions
There are multiple directions for future research that can be explored from where this thesis
ends. Some of these are immediate extensions of the techniques that we have presented,
while others build on our general framework for example-based synthesis.

8.1.1 Decoupling Flow and Evolution in Video

In Chapter7, we had discussed the limitations of our current approach for synthesizing
flowing video textures and also suggested potential improvements. These included decou-
pling the appearance change in the source video into texture flow and texture evolution. We
believe that solving this decoupling problem will go a long way in improving the quality

87

Figure 37: Breaking Wave.

of results for motion-controlled video synthesis. A related research direction is the design
of likelihood (or energy) functions for measuring flow consistency that make use of this
decoupling.

8.1.2 Other Characteristics besides Motion

We have primarily used flow for controlling the behavior of the synthesized texture anima-
tions. However, the probabilistic example-based rendering formulation in Chapter4 was
presented from the point-of-view of general characteristics. A future research direction is
to make use of this formulation to devise algorithms for characteristics other than flow. We
will need to make use of domain knowledge specific to the characteristic of interest in the
design of likelihood (or control energy) functions, but the basic principles of the formula-
tion would still apply. Examples of these other characteristics include the following:

Shape: For motion-controlled synthesis, we ignored 3D scene information and consid-
ered motion only in the image plane. However, in many situations, it is also desirable to
control the shape (in 3D) of the entity being rendered. If this entity is a fixed object, then
the problem is not very interesting, as it can be solved trivially through texture mapping,

88

Figure 38: Changing time of the day (courtesy: Mike Terry).

i.e.,by defining a mapping between surface points and texture pixels. However, if the shape
is changing dynamically over time, then we need to define this mapping for each interme-
diate shape. In the process, we also want to preserve the structural integrity of the texture
as well as keep it temporally coherent. Consider the example of a breaking wave as shown
in Figure37. If we want to synthesize a new wave using example video of another wave,
we need to establish a correspondence between the shape and appearance of waves. We can
use surface normals to represent shape in the same way we used flow to represent motion.
The missing components then include a method for extracting these surface normals from
video as well as a likelihood function that measures consistency of the synthesized video
with the dynamic shape that we want it to depict.

Illumination, Temperature, Density: Another characteristic of interest is illumination.
Lets say we have imagery of a scene taken at different times of the day as shown in Fig-
ure38. The texture of entities like buildings, roads, cars, etc undergoes a systematic change
over time as governed by the illumination in the scene. One might be interested in using
such imagery to synthesize novel scenes that depict different times of the day, or better yet,
scenes in which we have spatial control over illumination. We can also use other charac-
teristics like temperature and density to control synthesis. These properties determine the
local appearance of textures like fire and smoke (Figure39). As an example, one might
want to control the density of smoke or the incandescence of fire in a region. It would
be interesting to explore an example-based rendering technique that works in conjunction
with fire or smoke simulation methods that generate these characteristics at each point in
the scene.

89

Figure 39: Fire and Smoke.

8.1.3 Interactive Video Editing

We envision that example-based synthesis would provide a platform to develop tools for
interactive video editing. Many natural scenes captured on video contain textural elements
like water, fire, crowds, traffic, etc. We intend to develop methods to edit these videos in-
teractively by extracting and manipulating their behavioral characteristics and then feeding
them to an example-based rendering system. For example, we can extract trajectories of
moving people from crowd videos, edit these trajectories and synthesize a new video in
which people move along these modified trajectories. A more complex operation may be
needed if we want to edit a water video; lets say, by putting an obstacle in the path of a
river stream. An interesting direction to explore here is to combine fluid simulation and
example-based rendering, where fluid simulation generates realistic behavior for the mo-
tion of the water as it goes around the obstacle while example-based rendering imparts it a
natural looking appearance.

90

REFERENCES

[1] ASHIKHMIN , M., “Synthesizing natural textures,”2001 ACM Symposium on Interac-
tive 3D Graphics, pp. 217–226, March 2001. ISBN 1-58113-292-1.2.2, 2.4

[2] BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., and WERMAN, M., “Texture
mixing and texture movie synthesis using statistical learning,”IEEE Transactions on
Visualization and Computer Graphics, vol. 7, no. 2, pp. 120–135, 2001.2.2, 3.5, 3.5

[3] BHAT, K. S., SEITZ, S. M., HODGINS, J. K., and KHOSLA, P. K., “Flow-based
video synthesis and editing,”ACM Transactions on Graphics (SIGGRAPH 2004),
vol. 23, August 2004.2.4

[4] BOYKOV, Y., VEKSLER, O., and ZABIH , R., “Fast approximate energy minimization
via graph cuts,” inInternational Conference on Computer Vision, pp. 377–384, 1999.
2.3, 3.1.1

[5] BRAND, M., “Subspace mappings for image sequences,” inStatistical Methods in
Video Processing, JUNE 2002. 2.2

[6] BREGLER, C., COVELL , M., and SLANEY, M., “Video rewrite: Driving visual
speech with audio,”Proceedings of SIGGRAPH 97, pp. 353–360, August 1997. ISBN
0-89791-896-7. Held in Los Angeles, California.2.4

[7] BROOKS, S. and DODGSON, N. A., “Self-similarity based texture editing,”ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2002), vol. 21, pp. 653–
656, July 2002.2.4, 3.4

[8] BURT, P. J. and ADELSON, E. H., “A multiresolution spline with application to image
mosaics,”ACM Transactions on Graphics, vol. 2, no. 4, pp. 217–236, 1983.2.3, 3.3

[9] BURT, P. J. and ADELSON, E. H., “The laplacian pyramid as a compact image code,”
IEEE Transactions on Communications, vol. COM-31,4, pp. 532–540, 1983.2.3

[10] CHEN, S. E., “Quicktime vr - an image-based approach to virtual environment navi-
gation,”Proceedings of SIGGRAPH 95, pp. 29–38, August 1995. ISBN 0-201-84776-
0. Held in Los Angeles, California.2.1

[11] COHEN, M. F., SHADE, J., HILLER , S., and DEUSSEN, O., “Wang tiles for image
and texture generation,”ACM Transactions on Graphics, SIGGRAPH 2003, vol. 22,
no. 3, pp. 287–294, 2003.2.2

[12] COLEMAN , D., HOLLAND , P., KADEN, N., KLEMA , V., and PETERS, S. C., “A
system of subroutines for iteratively reweighted least squares computations,”ACM
Trans. Math. Softw., vol. 6, no. 3, pp. 327–336, 1980.5.2

91

[13] CROW, F. C., “Summed-area tables for texture mapping,” inProceedings of the 11th
annual conference on Computer graphics and interactive techniques, pp. 207–212,
1984. ISBN 0-89791-138-5.3.3

[14] DEBONET, J. S., “Multiresolution sampling procedure for analysis and synthesis of
texture images,”Proceedings of SIGGRAPH 97, pp. 361–368, August 1997. ISBN
0-89791-896-7. Held in Los Angeles, California.2.2, 2.3, 1

[15] DELLAERT, F., KWATRA , V., and OH, S. M., “Mixture trees for modeling and fast
conditional sampling with applications in vision and graphics,” inIEEE Computer
Vision and Pattern Recognition, 2005. 2

[16] DORETTO, G. and SOATTO, S., “Editable dynamic textures,” inIEEE Computer
Vision and Pattern Recognition, pp. II: 137–142, 2003.2.4

[17] EFROS, A. and LEUNG, T., “Texture synthesis by non-parametric sampling,” inIn-
ternational Conference on Computer Vision, pp. 1033–1038, 1999.2.2, 2.3, 1, 5.2

[18] EFROS, A. A. and FREEMAN, W. T., “Image quilting for texture synthesis and trans-
fer,” Proceedings of SIGGRAPH 2001, pp. 341–346, August 2001. ISBN 1-58113-
292-1. (document), 2.2, 2.3, 2.4, 1, 3.1, 3.4, 10

[19] ELKAN , C., “Using the triangle inequality to accelerate k-means,” inInternational
Conference on Machine Learning, 2003. 2

[20] EZZAT, T., GEIGER, G., and POGGIO, T., “Trainable videorealistic speech anima-
tion,” in Proceedings of the 29th annual conference on Computer graphics and inter-
active techniques, pp. 388–398, ACM Press, 2002.2.4

[21] FITZGIBBON, A., WEXLER, Y., and ZISSERMAN, A., “Image-based rendering using
image-based priors,” inInternational Conference on Computer Vision, 2003. 2.3

[22] FORD, L. and FULKERSON, D., Flows in Networks. Princeton University Press,
1962. 3.1

[23] FREEMAN, W. T., JONES, T. R., and PASZTOR, E. C., “Example-based super-
resolution,”IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65, 2002.2.3

[24] GORTLER, S. J., GRZESZCZUK, R., SZELISKI , R., and COHEN, M. F., “The lumi-
graph,”Proceedings of SIGGRAPH 96, pp. 43–54, August 1996. ISBN 0-201-94800-
1. Held in New Orleans, Louisiana.2.1

[25] GREIG, D., PORTEOUS, B., and SEHEULT, A., “Exact maximum a posteriori esti-
mation for binary images,”Journal of the Royal Statistical Society, vol. Series B, 51,
pp. 271–279, 1989.2.3

[26] GUO, B., SHUM , H., and XU, Y.-Q., “Chaos mosaic: Fast and memory efficient
texture synthesis,” Tech. Rep. MSR-TR-2000-32, Microsoft Research, 2000.2.2

92

[27] HAMMERSLEY, J. M. and CLIFFORD, P., “Markov field on finite graphs and lattices.”
1971. 5.1

[28] HEEGER, D. J. and BERGEN, J. R., “Pyramid-based texture analysis/synthesis,”Pro-
ceedings of SIGGRAPH 95, pp. 229–238, August 1995. ISBN 0-201-84776-0. Held
in Los Angeles, California.2.2

[29] HERTZMANN, A., JACOBS, C. E., OLIVER , N., CURLESS, B., and SALESIN, D. H.,
“Image analogies,”Proceedings of SIGGRAPH 2001, pp. 327–340, August 2001.
ISBN 1-58113-292-1.2.4

[30] HOWE, D., Free Online Dictionary of Computing. http://www.foldoc.org/. 1

[31] JOHNSON, S. C., “Hierarchical clustering schemes,”Psychometrika, vol. 2, pp. 241–
254, 1967. 2

[32] JOJIC, N., FREY, B., and KANNAN , A., “Epitomic analysis of appearance and
shape,” inInternational Conference on Computer Vision, 2003. 2.3

[33] K ILTHAU , S.L., DREW, M., and MOLLER, T., “Full search content independent
block matching based on the fast fourier transform,” inICIP02, pp. I: 669–672, 2002.
3.3

[34] KWATRA , V., ESSA, I., BOBICK, A., and KWATRA , N., “Texture optimization for
example-based synthesis,”ACM Transactions on Graphics, SIGGRAPH 2005, Au-
gust 2005.5

[35] KWATRA , V., SCHÖDL, A., ESSA, I., TURK, G., and BOBICK, A., “Graphcut tex-
tures: Image and video synthesis using graph cuts,”ACM Transactions on Graphics,
SIGGRAPH 2003, vol. 22, pp. 277–286, July 2003.1

[36] LEVOY, M. and HANRAHAN , P., “Light field rendering,”Proceedings of SIGGRAPH
96, pp. 31–42, August 1996. ISBN 0-201-94800-1. Held in New Orleans, Louisiana.
2.1

[37] L I , S. Z., Markov Random Field Modeling in Computer Vision. Springer-Verlag,
1995. 2.3, 5.1

[38] L IANG , L., L IU , C., XU, Y.-Q., GUO, B., and SHUM , H.-Y., “Real-time texture
synthesis by patch-based sampling,”ACM Transactions on Graphics, vol. Vol. 20,
No. 3, pp. 127–150, July 2001.2.2

[39] MALIK , J., BELONGIE, S., SHI , J., and LEUNG, T., “Textons, contours and regions:
Cue integration in image segmentation,” inInternational Conference on Computer
Vision, p. II: 918, IEEE Computer Society, 1999.2.3

[40] MCLACHLAN , G. and KRISHNAN, T., The EM algorithm and extensions. Wiley
series in probability and statistics, John Wiley & Sons, 1997.2.3, 5, 5.1

93

[41] MCM ILLAN , L. and BISHOP, G., “Plenoptic modeling: An image-based rendering
system,” Proceedings of SIGGRAPH 95, pp. 39–46, August 1995. ISBN 0-201-
84776-0. Held in Los Angeles, California.2.1

[42] MORTENSEN, E. N. and BARRETT, W. A., “Intelligent scissors for image composi-
tion,” Proceedings of SIGGRAPH 1995, pp. 191–198, Aug. 1995.3.4, 3.4

[43] PAGET, R. and LONGSTAFF, I. D., “Texture synthesis via a noncausal nonparametric
multiscale markov random field,”IEEE Transactions on Image Processing, vol. 7,
pp. 925–931, June 1998.2.3

[44] PÉREZ, P., GANGNET, M., and BLAKE , A., “Poisson image editing,”ACM Transac-
tions on Graphics, SIGGRAPH, vol. 22, no. 3, pp. 313–318, 2003.3.4

[45] POPAT, K. and PICARD, R. W., “A novel cluster-based probability model for texture
synthesis, classification, and compression,” inProc. SPIE Visual Communications,
pp. 756–768, 1993.2.3

[46] PORTILLA , J. and SIMONCELLI , E. P., “A parametric texture model based on joint
statistics of complex wavelet coefficients,”International Journal of Computer Vision,
vol. 40, pp. 49–70, October 2000.2.2

[47] SAISAN , P., DORETTO, G., WU, Y., and SOATTO, S., “Dynamic texture recogni-
tion,” in Proceeding of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. II:58–63, 2001.2.2

[48] SCHÖDL, A., “Multi-dimensional exemplar-based texture synthesis,”Ph.D. Thesis,
Georgia Institute of Technology, March 2002. 1

[49] SCHÖDL, A. and ESSA, I., “Machine learning for video-based rendering,” inAd-
vances in Neural Information Processing Systems(LEEN, T. K., DIETTERICH, T. G.,
and TRESP, V., eds.), vol. 13 ofProceedings of NIPS Conference, pp. 1002–1008,
MIT Press, 2001.2.4

[50] SCHÖDL, A. and ESSA, I. A., “Controlled animation of video sprites,” inProceed-
ings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pp. 121–127, ACM Press, 2002.2.4

[51] SCHÖDL, A., SZELISKI , R., SALESIN, D. H., and ESSA, I., “Video textures,”Pro-
ceedings of SIGGRAPH 2000, pp. 489–498, July 2000. ISBN 1-58113-208-5.2.2,
2.4, 3.5, 3.5

[52] SEDGEWICK, R., Algorithms in C, Part 5: Graph Algorithms. Reading, Mas-
sachusetts: Addison-Wesley, 2001.3.1, 3.1.2

[53] SEITZ, S. M. and DYER, C. R., “View morphing: Synthesizing 3d metamorphoses
using image transforms,”Proceedings of SIGGRAPH 96, pp. 21–30, August 1996.
ISBN 0-201-94800-1. Held in New Orleans, Louisiana.2.1

94

[54] SHEWCHUK, J. R., “An introduction to the conjugate gradient method without the
agonizing pain,” August 1994.5.3

[55] SHUM , H.-Y. and HE, L.-W., “Rendering with concentric mosaics,” inProceed-
ings of 26th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 299–306, 1999.2.1

[56] SHUM , H. and SZELISKI , R., “Construction and refinement of panoramic mosaics
with global and local alignment,” inICCV98, pp. 953–958, 1998.2.1

[57] SOATTO, S., DORETTO, G., and WU, Y., “Dynamic textures,” inProceeding of IEEE
International Conference on Computer Vision 2001, pp. II: 439–446, 2001.2.2, 3.5,
3.5

[58] SOLER, C., CANI , M.-P., and ANGELIDIS, A., “Hierarchical pattern mapping,”
ACM Transactions on Graphics, vol. 21, pp. 673–680, July 2002.3.3

[59] SUN, M., JEPSON, A., and FIUME , E., “Video input driven animation (vida),” in
International Conference on Computer Vision, pp. 96–103, 2003.2.4

[60] SZELISKI , R. and SHUM , H.-Y., “Creating full view panoramic mosaics and envi-
ronment maps,”Proceedings of SIGGRAPH 97, pp. 251–258, August 1997. ISBN
0-89791-896-7. Held in Los Angeles, California.2.1

[61] SZUMMER, M. and PICARD, R., “Temporal texture modeling,” inProceeding of
IEEE International Conference on Image Processing 1996, vol. 3, pp. 823–826, 1996.
2.2

[62] TONIETTO, L. and WALTER, M., “Towards local control for image-based texture
synthesis,”XV Brazilian Symposium on Computer Graphics and Image Processing
(SIBGRAPI), pp. 252–260, October 2002.2.4

[63] WANG, Y. and ZHU, S., “A generative method for textured motion: Analysis and
synthesis,” inEuropean Conference on Computer Vision, June 2002.2.2

[64] WEI, L.-Y. and LEVOY, M., “Fast texture synthesis using tree-structured vector quan-
tization,” Proceedings of SIGGRAPH 2000, pp. 479–488, July 2000. ISBN 1-58113-
208-5. 2.2, 2.3, 1, 3.5, 3.5

[65] WEI, L.-Y. and LEVOY, M., “Order-independent texture synthesis,” Tech. Rep. TR-
2002-01, Stanford University CS Department, 2002.2.3

[66] WEXLER, Y., SHECHTMAN, E., and IRANI , M., “Space-time video completion,” in
CVPR 2004, pp. 120–127, 2004.2.3

[67] WU, Q. and YU, Y., “Feature matching and deformation for texture synthesis,”ACM
Transactions on Graphics (SIGGRAPH 2004), August 2004.2.2

95

[68] YUAN , L., WEN, F., LIU , C., and SHUM , H.-Y., “Synthesizing dynamic texture with
closed-loop linear dynamic system,”European Conference on Computer Vision, May
2004. 2.4

[69] ZHANG, E., MISCHAIKOW, K., and TURK, G., “Vector field design on surfaces,”
Tech. Rep. 04-16, Georgia Institute of Technology, 2004.6.3

[70] ZHANG, J., ZHOU, K., VELHO, L., GUO, B., and SHUM , H.-Y., “Synthesis of
progressively-variant textures on arbitrary surfaces,”ACM Transactions on Graphics,
vol. 22, no. 3, pp. 295–302, 2003.2.4

[71] ZHU, S.-C.,EN GUO, C., WU, Y., and WANG, Y., “What are textons,” inEuropean
Conference on Computer Vision, 2002. 2.3

96

	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Figures
	Summary
	Chapter 1 — Introduction
	1.1 Example-based Synthesis
	1.2 Controllable Texture Synthesis
	1.3 Contributions
	1.3.1 Image and Video Synthesis using Graph Cuts
	1.3.2 Framework for Rendering Animations using Texture Exemplars
	1.3.3 Texture Optimization for Unconstrained Synthesis
	1.3.4 Controllable Synthesis - Flowing Image Textures
	1.3.5 Flowing Video Textures

	Chapter 2 — Background
	2.1 Image-based Rendering
	2.2 Texture Synthesis
	2.3 Markov Random Fields
	2.4 Controllable Texture Synthesis

	Chapter 3 — Image and Video Texture Synthesis Using Graph Cuts
	3.1 Patch Fitting using Graph Cuts
	3.1.1 Accounting for Old Seams
	3.1.2 Surrounded Regions

	3.2 Patch Placement & Matching
	3.3 Extensions & Refinements
	3.4 Image Synthesis
	3.5 Video Synthesis
	3.6 Summary

	Chapter 4 — Rendering Animations using Texture Exemplars
	4.1 Definitions
	4.2 Animation Synthesis using Example Imagery
	4.3 Probabilistic Formulation
	4.3.1 Assumptions
	4.3.2 Appearance Estimation

	4.4 Summary

	Chapter 5 — Texture Optimization for Unconstrained Synthesis
	5.1 Texture Optimization
	5.2 Robust Formulation
	5.3 Gradient-based Energy
	5.4 Multi-level Synthesis
	5.5 Results
	5.5.1 Discussion

	5.6 Summary

	Chapter 6 — Controllable Synthesis: Flowing Image Textures
	6.1 Controllable Synthesis
	6.1.1 Adapting Texture Optimization for Controllability

	6.2 Flow-guided Synthesis using Image Textures
	6.2.1 Approach

	6.3 Handling Obstacles
	6.4 Results
	6.4.1 Discussion

	6.5 Summary

	Chapter 7 — Flowing Video Textures
	7.1 Approach
	7.2 Results and Discussion
	7.2.1 Analysis

	7.3 Potential Improvements
	7.4 Summary

	Chapter 8 — Conclusions and Future work
	8.1 Future Directions
	8.1.1 Decoupling Flow and Evolution in Video
	8.1.2 Other Characteristics besides Motion
	8.1.3 Interactive Video Editing

	References

