
An algorithm for scheduling certifiable mixed-criticality sporadic task systems

Haohan Li Sanjoy Baruah
The University of North Carolina at Chapel Hill

Abstract

Many safety-critical embedded systems are subject to certifi-
cation requirements. However, only a subset of the functionality
of the system may be safety-critical and hence subject to certifica-
tion; the rest of the functionality is non safety-critical and does not
need to be certified. Certification requirements in such “mixed-
criticality” systems give rise to some interesting scheduling prob-
lems, that cannot be satisfactorily addressed using techniques from
conventional scheduling theory. In prior work, we have studied
the scheduling and analysis of mixed criticality systems that are
specified as finite collections of jobs executing on a single shared
preemptive processor. In this paper, we consider mixed criticality
systems that are comprised of finite collections of recurrent tasks,
specified using a mixed-criticality generalization of the widely-
used sporadic tasks model. We design a priority-based algorithm
for scheduling such systems, derive an algorithm for computing
priorities, and obtain a sufficient schedulability condition for effi-
ciently determining whether a given mixed-criticality system can
be successfully scheduled by this algorithm.

Keywords. Preemptive uniprocessors; certification; sporadic
task systems; on-line scheduling.

1 Introduction
Many safety-critical systems are subject to certification

requirements: their safety-critical functionalities must be
certified correct by statutory certification authorities (CAs).
However, the current trend towards integrating multiple
functionalities on a common platform, driven primarily by
cost and related concerns, means that it is typically the
case that only a relatively small fraction of the overall sys-
tem is of critical functionality and hence needs to be cer-
tified. The remainder of the system is comprised of non-
critical code that performs non-critical functions and is
therefore not subject to certification. Such mixed critical-
ity systems are becoming increasingly common in embed-
ded systems, and coming up with procedures that will al-
low for the cost-effective certification of mixed-criticality
systems has been identified as a unique, particularly chal-
lenging, collection of problems [3]. Recognizing these
challenges, several US government R&D organizations in-
cluding AFRL, NSF, NSA, NASA, etc., have led initia-

tives such as the Mixed Criticality Architecture Require-
ments (MCAR) program aimed at streamlining the certifi-
cation process for safety-critical embedded systems; these
initiatives have brought together participants from industry,
academia, and standards bodies to seek out more advanced,
efficient, and cost-effective certification processes. The re-
search reported in this paper is part of this attempt: we seek
scheduling policies for such mixed-criticality systems that
are able to both facilitate the certification process and make
good use of the computing resources of the embedded plat-
form.

In order to certify a system as being correct, the certi-
fication authority (CA) makes some assumptions about the
worst-case behavior of the system. In this paper, we focus
on one particular aspect of run-time behavior: the worst-
case execution time (WCET) of pieces of code. CA’s tend to
be very conservative, and hence the WCET estimates used
by the CA is often far more pessimistic than those the sys-
tem designer would typically use during the system design
process. On the other hand, while the CA is only concerned
with the correctness of the safety-critical part of the sys-
tem the system designer wishes to ensure that the entire sys-
tem is correct, including the non-critical parts. We illustrate
with a simple (contrived) example.

Example 1 Consider a system to be implemented on a pre-
emptive uniprocessor, that is comprised of three jobs J1,
J2, and J3, all of which are released at time zero. Job J1

has a deadline at time-instant 2, while the other two jobs
have their deadlines at time-instant 3.5. Jobs J2 and J3 are
high-criticality and subject to certification, whereas J1 is
low-criticality and hence not.

• The system designer is confident that each job has a WCET
not exceeding 1. Hence executing the jobs in earliest dead-
line first (EDF) [11, 8] order will ensure that all three meet
their deadlines.

• However, the CA uses more pessimistic WCET estimates
during the certification process, and claims that jobs J2 and
J3 may each need 1.5 time units of execution1.

1The CA may also determine that the low-criticality job J1 needs more
than 1 time unit to complete execution; however, let us assume for now
that the system is implemented to abort the execution of J1 if it fails to
complete execution within 1 time-unit.

If the system were indeed scheduled using EDF, the CA
would determine that in the worst case, J1 executes over
[0, 1) and the job from among J2 and J3 that is next chosen
for execution will execute for 1.5 time units, thereby caus-
ing the other high-criticality job to miss its deadline at time
3.5. The system scheduled using EDF would therefore fail
certification.

On the other hand if we were to assign greater priority
to the high-criticality jobs, then they would both meet their
deadlines even under the worst-case scenarios envisioned
by the CA. However the low-criticality job J1 will miss its
deadline even when each job executes for at most 1 time unit
(as predicted by the system designer).

It turns out that the following scheduling strategy for this
system both passes certification and meets all deadlines if
the jobs behave as expected by the system designer:

• Execute J2 over [0, 1).

• If J2 completes execution at time-instant 1, then execute J1

over [1, 2) and J3 over [2, 3.5), thereby ensuring that all
deadlines are met.

• If J2 does not complete execution by time-instant 1, then dis-
card J1 and continue the execution of J2, following that with
the execution of J3 over [1.5, 3). Both the high-criticality
jobs will complete by their deadlines in the worst-case sce-
nario envisioned by the CA.

This research. The central thesis of our research is that
the efficient utilization of computing resources in mixed-
criticality systems that are subject to certification require-
ments requires the development of new scheduling theory.
In prior work [4, 10], we have studied mixed-criticality
(MC) systems implemented on a preemptive uniprocessor
platform that can be modeled, as in the example above, as
finite collections of jobs. However, most real-time systems
are better modeled as collections of recurrent processes that
are specified using, e.g., the sporadic tasks model [13, 5].
Schedulability analysis of such systems is typically far more
difficult than the analysis of systems modeled as collec-
tions of independent jobs, since (i) a sporadic task system
can generate infinitely many jobs during any one run; and
(ii) the collection of jobs generated during different runs of
the system may be different: in general, a single system may
legally give rise to infinitely many different collections of
jobs. In this paper, we study this more difficult problem of
scheduling mixed-criticality systems modeled as collections
of sporadic tasks, upon a single shared preemptive proces-
sor. As in [4, 10] the insight we seek to exploit is this. Cer-
tification is performed under conservative assumptions: the
CA makes very pessimistic assumptions about the run-time
behavior of the system, and requires that it be demonstrated
correct under these pessimistic assumptions. In order to per-
form system certification under such pessimism one must,

informally speaking, severely over-provision computing re-
sources to the part of the system needing certification. Some
of this over-provisioned capacity could then be reclaimed,
during system design and analysis time itself, to make per-
formance guarantees to the remainder of the system, since
these guarantees are made under a correspondingly lower
degree of pessimism.

Organization of this paper. In Section 2, we present the
formal model for representing mixed-criticality real-time
systems that is used in this research. This formal model
extends the conventional models of real-time jobs and of
sporadic tasks [13, 5] by allowing for the specification of
a criticality level and two different WCET’s, one at each
criticality level, for each job. In Section 3 we derive, and
prove the correctness of, a new algorithm for scheduling
mixed-criticality sporadic task systems upon a preemptive
uniprocessor platform. We also derive a sufficient condition
for determining whether any given task system can be cor-
rectly scheduled by our scheduling algorithm. In Section 4
we briefly survey some other work on mixed-criticality real-
time systems, highlighting in particular on research that has
focused on certification-cognizant scheduling in such sys-
tems.

2 Model and definitions
In this section we formally define the mixed-criticality

workload model that is used in this paper, and explain terms
and concepts used throughout the remainder of this docu-
ment. As with traditional (i.e., non MC) real-time systems,
we will model a MC real-time system τ as being comprised
of a finite specified collection of MC sporadic tasks, each of
which will generate a potentially infinite sequence of MC
jobs.

§. MC jobs. Each job is characterized by a 5-tuple of
parameters: Ji = (ai, di, χi, ci(LO), ci(HI)), where

• ai ∈ R+ is the release time.

• di ∈ R+ is the deadline. We assume that di ≥ ai.

• χi ∈ {LO, HI} denotes the criticality of the job. A HI-
criticality job (a Ji with χi = HI) is one that is subject to cer-
tification, whereas a LO-criticality job (a Ji with χi = LO)
is one that does not need to be certified.

• ci(LO) specifies the worst case execution time (WCET) es-
timate of Ji that is used by the system designer (i.e., the
WCET estimate at the LO criticality level).

• ci(HI) specifies the worst case execution time (WCET) esti-
mate of Ji that is used by the certification authorities (i.e., the
WCET estimate at the HI criticality level).We assume that

– ci(HI) ≥ ci(LO) (i.e., the WCET estimate used by the
system designer is never more pessimistic than the one
used by the CA), and

– ci(HI) = ci(LO) if χi = LO (i.e., a LO-criticality job
is aborted if it executes for more than its LO-criticality
WCET estimate2).

The MC job model has the following semantics. Job Ji

is released at time ai, has a deadline at di, and needs to ex-
ecute for some amount of time γi. However, the value of
γi is not known beforehand, but only becomes revealed by
actually executing the job until it signals that it has com-
pleted execution. If Ji signals completion without exceed-
ing ci(LO) units of execution, we say that it has exhibited
LO-criticality behavior; if it signals completion after execut-
ing for more than ci(LO) but no more than ci(HI) units of
execution, we say that it has exhibited HI-criticality behav-
ior. If it does not signal completion upon having executed
for ci(HI) units, we say that its behavior is erroneous.

In prior work [4, 10], we have studied the scheduling
of MC instances that are specified as collections of such
MC jobs: some of the results in [4, 10] are discussed in
Section 2.1.

§. MC sporadic tasks. Each sporadic task in the MC
model is also characterized by a 5-tuple of parameters: τk

= (χk, Ck(LO), Ck(HI), Dk, Tk), with the following inter-
pretation. Task τk generates a potentially infinite sequence
of jobs, with successive jobs being released at least Tk time
units apart. Each such job has a deadline that is Dk time
units after its release. The criticality of each such job is
χk, and it has LO-criticality and HI-criticality WCET’s of
Ck(LO) and Ck(HI) respectively.

A MC sporadic task system is specified by specifying a
finite number of such sporadic tasks. As with traditional
(non-MC) systems, such a MC sporadic task system can
potentially generate infinitely many different MC instances
(collections of jobs), each instance being obtained by tak-
ing the union of one sequence of jobs generated by each
sporadic task.

A note on terminology. In this paper, we use the term
instance to denote a collection of jobs, and the term sys-
tem to denote a collection of tasks. Thus, each system τ
can legally generate many (except in trivial cases, infinitely
many) distinct instances.

§. Loads `LO and `HI. In classical real-time scheduling
theory (see, e.g.,[12, page 81]), the load of an instance de-
notes the maximum over all time intervals, of the cumula-
tive execution requirement by jobs of the instance over the
interval, normalized by the interval length. Informally, the
load of an instance represents a lower bound on the speed
of any processor upon which it can meet all deadlines.

2We assume that the run-time system provides support for ensuring that
jobs do not execute for more than a specified amount.

Analogous to this concept, we define two loads, `LO(I)
and `HI(I), of a MC instance I:

Definition 1 The LO-criticality load `LO(I) and the HI-
criticality load `HI(I) of a mixed-criticality instance I are
defined according to the following two formulas:

`LO(I) = max
0≤t1<t2

∑

Ji : t1≤ai∧di≤t2

ci(LO)

t2 − t1

`HI(I) = max
0≤t1<t2

∑

Ji : χi=HI∧t1≤ai∧di≤t2

ci(HI)

t2 − t1

These definitions extend in the obvious manner to sys-
tems of sporadic tasks: The LO-criticality load `LO(τ) of
sporadic task system τ is defined to be the largest value
that `LO(I) can have, for any instance I generated by τ .
The HI-criticality load `HI(τ) is defined analogously: it is
the largest value that `HI(I) can have, for any instance I
generated by τ . For any τ , `LO(τ) and `HI(τ) can be com-
puted using well-known techniques (see, e.g., [6]) for de-
termining the loads of “regular” (i.e., non MC) sporadic
task systems. Specifically, `LO(τ) is the load of the reg-
ular sporadic task3 system {(Ck(LO), Dk, Tk

) | τk ∈ τ}
while `HI(τ) is the load of the regular sporadic task system
{(Ck(HI), Dk, Tk

) | τk ∈ τ ∧ χk = HI}.

§. Scheduling MC sporadic task systems. As stated
above, the same sporadic task system may generate differ-
ent instances of jobs during different runs. Furthermore,
during any given run each job comprising the instance may
exhibit LO-criticality, HI-criticality, or erroneous behavior.
We define an algorithm for scheduling sporadic task system
τ to be correct if it is able to schedule every instance gener-
ated by τ such that

• If all jobs exhibit LO-criticality behavior, then all jobs receive
enough execution between their release time and deadline to
be able to signal completion; and

• If any job exhibits HI-criticality behavior, then all HI-
criticality jobs receive enough execution between their re-
lease time and deadline to be able to signal completion.

Note that if any job exhibits HI-criticality behavior, we
do not require any LO-criticality jobs (including those that
may have arrived before this happened) to complete by their
deadlines. This is an implication of the requirements of cer-
tification: informally speaking, the system designer fully
expects that all jobs will exhibit LO-criticality behavior, and
hence is only concerned that they behave as desired under
these circumstances. The CA, on the other hand, allows for
the possibility that some jobs may exhibit HI-criticality be-
havior, and requires that all HI-criticality jobs nevertheless
meet their deadlines.

3Here, a regular sporadic task is represented by a 3-tuple of its WCET,
relative deadline, and period parameters.

2.1 The OCBP scheduling algorithm

In prior work [4, 10], we considered the scheduling of
MC instances: workloads that are specified as collections of
independent jobs rather than as systems of recurrent tasks.
We defined a priority-based algorithm called OCBP (Own
Criticality-Based Priorities) for scheduling such instances,
which we now describe.

The high-level description of the OCBP algorithm is as
follows. Given such an instance I , we determine off-line
(i.e., prior to run-time) a total priority ordering of the jobs
of I such that scheduling the jobs according to this priority
ordering guarantees a correct schedule, where scheduling
according to a priority ordering means that at each moment
in time the highest-priority available job is executed.

The priority ordering is constructed recursively using the
approach commonly referred to in the real-time scheduling
literature as the “Audsley approach” [2]. We first determine
the lowest priority job: a Job Ji may be assigned the lowest
priority if

• it is a LO-criticality job (χi = LO), and there is at least
ci(LO) time between its release time and its deadline avail-
able if every other job Jj has higher priority and is executed
for cj(LO) time units; or

• it is a HI-criticality job (χi = HI), and there is at least ci(HI)
time between its release time and its deadline available if
every other job Jj has higher priority and is executed for
cj(HI) time units.

In general, several jobs may be eligible to be assigned the
lowest priority; we can arbitrarily choose one of these. The
above procedure is then repeated on the collection of jobs
excluding this lowest priority job, until all jobs are ordered,
or at some iteration no job is eligible to be assigned lowest
priority. (If this happens, the priority-assignment algorithm
reports failure and we say that the instance is not OCBP-
schedulable.) We illustrate the operation of the OCBP pri-
ority assignment algorithm by an example:

Example 2 Consider the instance comprised of the follow-
ing three jobs. J1 is not subject to certification, whereas J2

and J3 must be certified correct.

Ji ai di χi ci(LO) ci(HI)

J1 0 4 LO 2 2
J2 0 5 HI 2 4
J3 0 10 HI 2 4

Let us determine which, if any, of these jobs could be
assigned lowest priority according to the OCBP priority as-
signment algorithm:

• If J1 were assigned lowest priority, J2 and J3 could con-
sume c2(LO) + c3(LO) = 2 + 2 = 4 units of processor
capacity over [0, 4), thus leaving no execution for J1 prior to
its deadline.

-

6

(0,0) 1`HI(I)

1

`LO(I)

@
@

@
@

@
@

@
@

@
@

@

.
.................................

.....
.....................

................
..
................
.....

................
.......

Figure 1. Bound on the LO-criticality load (`LO)
as a function of HI-criticality load (`HI).

• If J2 were assigned lowest priority, J1 and J3 could consume
c1(HI)+c3(HI) = 2+4 = 6 units of processor capacity over
[0, 6), thus leaving no execution for J2 prior to its deadline
at time-instant 5.

• If J3 were assigned lowest priority, J1 and J2 could consume
c1(HI) + c2(HI) = 2 + 4 = 6 units of processor capacity
over [0, 6). This leaves 4 units of execution for J3 prior to
its deadline at time-instant 10, which is sufficient for J3 to
execute for c3(HI) = 4 time units. Job J3 may therefore be
assigned the lowest priority.

Next, the OCBP priority assignment algorithm would
consider the instance {J1, J2}, and seek to assign one of
these jobs the lower priority:

• If J1 were assigned lower priority, J2 could consume
c2(LO) = 2 units of processor capacity over [0, 2). This
leaves 2 units of execution for J1 prior to its deadline at time-
instant 4, which is sufficient for J1 to execute for c1(LO) = 2
time units. Job J1 may therefore be assigned the lowest pri-
ority from among {J1, J2}.

The final OCBP priority ordering is therefore as follows.
Job J2 has the greatest priority, job J1 has the next-highest
priority, and J3 has the lowest priority. It may be verified
that scheduling according to these priorities is a correct MC
scheduling strategy for the instance {J1, J2, J3}.

The following properties of OCBP were proved in [4, 10]:

1. If the OCBP priority assignment algorithm succeeds in as-
signing priorities to the jobs of an instance I , then priority-
based scheduling of I according to these priorities is a cor-
rect MC scheduling strategy.

2. The OCBP priority assignment algorithm succeeds in assign-
ing priorities to the jobs of any instance I that satisfies

`LO(I)2 + `HI(I) ≤ 1 . (1)

We plot in Figure 1 the bound of Equation 1 on the
LO-criticality load of an instance I as a function of its
HI-criticality load `HI(I), in order for I to be successfully
scheduled. The curve that connects the points (1, 0) and

(0, 1) has equation `LO(I)2 + `HI(I) = 1, and represents the
OCBP schedulability condition of Equation 1. Any instance
that maps on to a point beneath this curve is guaranteed, as
a consequence of Equation 1, to be schedulable by OCBP.

The following technical lemma, which we will use later,
follows from the properties of OCBP priority assignment.

Lemma 1 Let {Ji}n
i=1 denote a collection of jobs, all of

which are released at time-instant t. Let pr : {Ji}n
i=1 −→

{1, 2, . . . , n} be any bijective function from {Ji}n
i=1 to the

integers {1, . . . , n}. Under the interpretation that pr(Jk)
denotes the priority assigned to job Jk (in keeping with
convention, we assume that smaller numbers denote greater
priority), pr is an OCBP priority assignment for {Ji}n

i=1 if
and only if

∀ k ::
∑

Ji : pr(Ji)≤pr(Jk)

ci(χk) ≤ (dk − t) . (2)

Proof: Job Jk may be assigned the priority pr(Jk) if and
only if it receives at least ck(χk) units of execution by its
deadline when each job Ji that is (eventually) assigned a
priority pr(Ji) < pr(Jk) executes for as much as ci(χk)
units. Under our assumption that all the jobs are released at
time-instant t (and the processor is therefore not idled while
there is work remaining to be executed), this is equivalent
to asserting that

ck(χk) +
∑

Ji : pr(Ji)<pr(Jk)

ci(χk) ≤ (dk − t)

≡
∑

Ji : pr(Ji)≤pr(Jk)

ci(χk) ≤ (dk − t)

which is as claimed by this lemma.

3 Scheduling MC sporadic task systems

Prior research (described in Section 2.1 above) has
shown that any MC instance I satisfying Condition 1 is
schedulable using OCBP. Our objective here is to apply this
result to obtain an algorithm for scheduling MC sporadic
task systems.

Suppose that we had a sporadic task system τ satisfying
the condition

`LO(τ)2 + `HI(τ) ≤ 1 . (3)

It follows from the definition of `LO and `HI for sporadic task
systems, that any instance I that is generated by τ satis-
fies Condition 1 as well, and is therefore schedulable using
OCBP. It therefore appears trivial at first glance to extend
the results of Section 2.1 to obtain an algorithm for schedul-
ing an MC sporadic task system τ : during any given run of
τ , simply apply OCBP to the instance I generated during
that run.

Unfortunately, this argument does not quite work: There
are (at least) two problems with directly applying the results
in Section 2.1 to systems of sporadic tasks:

1. The OCBP algorithm has two phases: an off-line phase dur-
ing which priorities are computed for all the jobs, followed
by the run-time phase which deploys priority-based dispatch-
ing using the priorities assigned during the off-line phase.
But since any instance generated by a sporadic task system
may contain infinitely many jobs, the procedure (described
in Section 2.1) for computing all the priorities prior to run-
time is not guaranteed to terminate.

2. The algorithm for determining OCBP priorities requires the
complete specification of all the jobs in the instance. How-
ever, under the (reasonable) assumption that our run-time
scheduling algorithm is not clairvoyant, we do not know this
information beforehand for sporadic task systems: although
we may know a lower bound on the release times of jobs,
a job’s exact release time only becomes known when it is
actually released.

We will deal with the first of these problems –potentially
infinitely many jobs– by only assigning priorities, at each
instant in time, to those jobs that arrive during the cur-
rent busy interval, where the busy interval refers to a max-
imal continuous interval of time during which the proces-
sor is not idled. (This is reasonable: since OCBP schedul-
ing never idles the processor while there are jobs awaiting
execution, scheduling decisions made within a particular
busy interval are not impacted by the priorities assigned
to jobs arriving outside that busy interval.) For any spo-
radic task system τ with both `LO(τ) and `HI(τ) strictly less
than one, prior techniques from real-time scheduling the-
ory can be applied to bound the maximum length of the
longest busy interval, and thereby determine the largest col-
lection of jobs that can possibly execute before the proces-
sor is idled. This is done by a straightforward application of
previously-proposed techniques, that we briefly describe in
Section 3.2.

To deal with the second problem –job release times (and
hence deadlines) not known in advance, we will assign pri-
orities under the assumption that all jobs in the current busy
interval are released as soon as legally permitted to do so un-
der the constraints of the sporadic task model4. During run-
time, we will monitor the actual job-release times; as long
as they conform to the ones we had used in assigning pri-
orities, we need do nothing. When they do not so conform,
we will, under some circumstances, need to re-compute the
priorities assigned to some of the jobs: the exact details are
provided in Section 3.1 below.

3.1 Computing OCBP priorities

Suppose that a busy interval begins at some instant, des-
ignated to, during run-time. That is, the processor is idle

4We note that such an instance of jobs generated by any τ satisfying
Condition 3 can indeed be assigned OCBP priorities by the results in Sec-
tion 2.1, since this instance is one of the instances of jobs that can ge gen-
erated by τ and consequently satisfies Condition 1.

immediately prior to to, and some job arrives at to. At this
instant we will assign priorities to all the jobs that could
possibly be scheduled during the busy interval beginning at
to (Section 3.2 explains how this collection of jobs is deter-
mined) if each such job is released as soon as it is legally
permitted to do so. For the purposes of assigning the priori-
ties, we will assume that all these jobs are “early-released”.
We illustrate this step by an example.

Example 3 Suppose that we had determined that a particular task
τi could have 3 jobs in the longest busy interval, and that τi is
eligible to release a job at to (i.e., no job of τi has been released
over (to − Ti, to]). At the earliest, therefore, these 3 jobs could
be released at times to, to + Ti, and to + 2Ti respectively, and
would have deadlines at to + Di, to + Ti + Di, and to + 2Ti +
Di respectively. We will, for the purposes of priority assignment,
consider that these jobs all arrive at to, and have deadlines at to +
Di, to + Ti + Di, and to + 2Ti + Di respectively.

Let {Ji}n
i=1 denote all these jobs at to; Ji

def=
(to, χi, ci(LO), ci(HI), di).

3.1.1 Priority assignment

We assign priorities to the jobs {Ji}n
i=1 according to the

OCBP priority assignment scheme. Let us denote this pri-
ority assignment as the bijective function π : {Ji}n

i=1−→ {1, 2, . . . , n}. Condition 4 immediately follows, from
Lemma 1

∀ k ::
∑

Ji : π(Ji)≤π(Jk)

ci(χk) ≤ (dk − to) (4)

3.1.2 Run-time scheduling

We now dispatch jobs according to these priorities: at each
instant, the job Ji with the smallest value of π(Ji) that has
been released but not yet signalled completion is selected
for execution. This continues until one of the following
events has occurred:

E-1. Some job Ji executes for more than ci(LO) without sig-
nalling that it has completed execution. This implies that
the system is now in HI-criticality mode, and LO-criticality
jobs are no longer required to complete by their deadlines.
We may therefore discard all LO-criticality jobs. It follows
from the correctness of the OCBP priority assignment at to

that all HI-criticality jobs that will arrive during the current
busy interval are guaranteed to complete by their deadlines.

E-2. Under our priority-based scheduling model, the processor is
idled at some time-instant t only if all jobs that had arrived
prior to t have completed execution by time-instant t. If this
happens, the current busy interval has ended, and priorities
that were assigned at to to jobs that ended up not arriving
during this busy interval are “canceled.” We await the release
of some job, which will signal the start of a new busy interval
— at that time, we will recompute the priorities of all jobs
that could possibly be scheduled during that busy interval.

E-3. The execution of some lesser-priority job Jx is preempted
due to the release of some greater-priority job Jy (i.e.,
π(Jy) < π(Jx)), say at time-instant t1. We must recom-
pute the priority function π at this point in time. This is
dealt with below, in the remainder of this section. We will
formally prove that no job that had been assigned a priority
below Jx’s need have its priority changed (i.e., all jobs Jz

with π(Jz) ≥ π(Jx) retain their priorities), but the remain-
ing jobs may need to have new priorities computed.
Once these new priorities are computed, we set to ← t1 and
resume run-time dispatching using these newly-computed
priorities, as described in this section – Section 3.1.2.

§E-3: Recomputing priorities. For each i, let ∆i de-
note the amount of execution that job Ji has received over
[to, t1). Let c′i(LO) def= ci(LO)−∆i, and c′i(HI) def= ci(HI)−
∆i; these denote the remaining WCET estimates for Ji.
Equivalently, we can think of the workload remaining to be
executed during the current busy interval as the instance

{
J ′i

def
= (t1, χi, c

′
i(LO), c′i(HI), di)

}n

i=1
. (5)

Since we have been dispatching according to the prior-
ities π(Ji), we can derive some important facts about the
∆i values for jobs according to the priorities that they have
been assigned. This is done in Lemmas 2 and 3 below.

Lemma 2 No job Jk with lesser priority than Jx (i.e., with
π(Jk) > π(Jx)) has executed over [to, t1). That is, ∆k = 0
for all such jobs.

Proof: Suppose that jobs with lesser priority had executed
during [to, t1), and consider the job of least priority (the Jk

with largest π(Jk)) to have done so. This job must have ex-
ecuted to completion without having being preempted; else,
its preemption would have triggered the re-computation of
priorities (according to E-3 above) prior to time-instant t1.
But the instant at which it completed execution without be-
ing preempted is an idle instant5 in the schedule, which,
according to E-2 above, signals the end of the busy interval
that began at to. This contradicts the assumption that to and
t1 are in the same busy interval.

Lemma 3 Each job Jk of greater priority than Jx (i.e.,
with π(Jk) < π(Jx) has either completed execution over
[to, t1), or has not yet been released prior to time-instant
t1.

5There is a technical subtlety here: it is possible that there is a job J`

of lower priority than Jk awaiting execution, but a job Jp with priority
greater than Jk arrives at the instant that Jk completes execution. Under
these circumstances, the instant at which Jk completes execution would
not constitute the end of the busy interval. We bypass this problem by
mandating that in such circumstances, J` executes momentarily before Jp

is released, but is then preempted by Jp’s release. Such a preemption
would have triggered the re-computation of priorities (according to E-3
above) prior to time-instant t1.

Proof: This follows from the properties of priority-based
dispatch: once a job begins execution, no lower-priority job
may execute until that job has completed execution. Since
Jx is executing at t1, it must be the case that any job Jk

with π(Jk) < π(Jx) has either not arrived, or has arrived
and completed execution.

Our objective now is to construct a new priority assign-
ment π′ : {J ′i}n

i=1 −→ {1, 2, . . . , n} which will satisfy
Lemma 1 at time-instant t1 (and will therefore constitute a
valid OCBP priority assignment for {J ′i}n

i=1 at time-instant
t1). Lemma 4 helps us do so, by asserting, in essence, that
jobs Jk that were assigned less priority than Jx by π (i.e.,
π(Jk) > π(Jx)) can have their priorities remain unchanged
in π′:

Lemma 4 For each Jk with π(Jk) ≥ π(Jx),

∑

Ji : π(Ji)≤π(Jk)

c′i(χk) ≤ (dk − t1). (6)

Proof: For any such Jk, Equation 2 asserts that
∑

Ji : π(Ji)≤π(Jk)

ci(χk) ≤ (dk − to)

≡
∑

Ji : π(Ji)≤π(Jk)

(
c′i(χk) + ∆i

)
≤ (dk − to)

≡
(∑

Ji : π(Ji)≤π(Jk)

c′i(χk) +
∑

Ji : π(Ji)≤π(Jk)

∆i

)
≤ (dk − to)

≡ By Lemma 2, all the execution over [to, t1) is of such jobs∑

Ji : π(Ji)≤π(Jk)

c′i(χk) + (t1 − to) ≤ (dk − to)

≡
∑

Ji : π(Ji)≤π(Jk)

c′i(χk) ≤ (dk − t1)

and the lemma is proved.
Recall that our goal is to construct priority assignment

π′ : {J ′i}n
i=1 −→ {1, 2, . . . , n} to satisfy Lemma 1 at time-

instant t1. By Lemma 4, any priority assignment π′ with
π′(Jk) ≡ π(Jk) for all Jk that have π(Jk) ≥ π(Jx) will
satisfy Condition 2 for all Jk that have π(Jk) ≥ π(Jx);
in other words, all jobs that were assigned lesser priority
than Jx by priority assignment π can retain their original
priorities in priority assignment π′.

What about jobs that were prioritized over Jx in π (i.e.,
jobs Jk with π(Jk) < π(Jx))? By Lemma 3, each such job
has either completed execution by time-instant t1, or has not
yet been released. I.e., all such (non-completed) jobs have
release time in the future, and hence taken together consti-
tute a legal instance that could be generated by task system
τ . Due to the assumption that τ satisfies Condition 3, all
jobs in this instance can therefore be assigned OCBP prior-
ities. We will recompute priorities for just these jobs using
the OCBP priority assignment algorithm; with all these jobs

prioritized over the jobs Jk that satisfied π(Jk) ≥ π(Jx).
This is formally stated in the following lemma:

Lemma 5 Suppose that (n − n′) jobs have signaled com-
pletion over [to, t1): by Lemma 3, these are all jobs Jk with
π(Jk) < π(Jx). Let {J ′i}n′

i=1 denote the remaining jobs.
The priority assignment

π′ : {J ′i}n′
i=1 −→ {1, 2, . . . , n′},

which is obtained from π as follows:

1. All jobs Jk satisfying π(Jk) < π(Jx) that have not yet com-
pleted execution have OCBP priorities π′(Jk) recomputed,
once again under the “early release” assumption that they
are all released at time-instant t1;

2. For each job Jk satisfying π(Jk) ≥ π(Jx), π′(Jk) ←
π(Jk)− (n− n′)

is an OCBP priority assignment for {J ′i}n′
i=1 at time-

instant t1.

Proof: The jobs that are assigned OCBP priorities in step 1
above have the greatest priorities; clearly, the priority as-
signment to these jobs trivially constitute an OCBP priority
assignment. By Lemma 1, each such Jk satisfies Condi-
tion 2 under priority assignment π′.

For the remaining jobs — the Jk’s that had π(Jk) ≥
π(Jx) and retained their relative priorities under priority as-
signment π′ (i.e., π′(Jk) ← π(Jk)−(n−n′)), Lemma 4 as-
serts that each such job also satisfies Condition 2 under pri-
ority assignment π′. It therefore follows from Lemma 1 that
π′ constitutes a valid OCBP priority assignment at time-
instant t1.

Once the OCBP priority assignment π′ is computed,
we can repeat the entire argument in this section — Sec-
tion 3.1.2, with to set to t1; n ← n′, each Ji set to the
corresponding J ′i , and the priority assignment π taking on
the value of the priority assignment π′. That is, we continue
priority-based scheduling using their newly-computed pri-
orities, awaiting the occurrence of one of the three events
E-1, E-2, or E-3.

3.2 Busy interval size bound

Given the specifications of a MC sporadic task system τ
we can bound the longest busy interval of τ in the following
manner.

According to our run-time dispatching algorithm (Sec-
tion 3.1.2, E-1) no LO-criticality job is executed once any
job executes for more than its LO-criticality WCET. Let us
therefore consider the longest busy interval as being com-
prised of two parts: (i) from the beginning of the busy inter-
val up to the instant (if any) at which some job executes for
more than its LO-criticality WCET, and (ii) from that instant
to the end of the busy interval. Without loss of generality,

we assume that the busy interval starts at time-instant zero,
some job executes for more than its LO-criticality WCET at
time-instant x1, and the busy interval ends at time-instant
x1 + x2.

Let Dmax denote the largest deadline of any task in τ :
Dmax = maxτi∈τ{Di}. All jobs executed over [0, x1) have
their release times and deadlines within the interval [0, x1 +
Dmax); hence

x1 ≤ `LO(τ)(Dmax + x1)

⇔ x1(1− `LO(τ)) ≤ `LO(τ)×Dmax

⇔ x1 ≤ `LO(τ)

1− `LO(τ)
×Dmax

Since all jobs executing during [x1, x1 + x2) have their
release times and deadlines within the interval [0, x1 +x2 +
Dmax), it must be the case that

x2 ≤ `HI(τ)(Dmax + x1 + x2)

⇔ x2(1− `HI(τ)) ≤ `HI(τ)× (Dmax + x1)

⇔ x2 ≤ `HI(τ)

1− `HI(τ)
× (Dmax + x1)

⇔ x2 ≤ `HI(τ)

1− `HI(τ)
× (

Dmax +
`LO(τ)

1− `LO(τ)
Dmax

)

⇔ x2 ≤ `HI(τ)

(1− `LO(τ))(1− `HI(τ))
×Dmax

The length of the longest busy interval is then bounded
from above6 by x1 + x2. Under the assumption that `LO(τ)
and `HI(τ) are both bounded from above by a constant
strictly less than one, this is easily seen to be pseudo-
polynomial in the representation of τ . Once the length
of the longest busy period has been bounded as above,
it is straightforward to bound which jobs could have ar-
rived within this interval — there will be at most pseudo-
polynomially many such jobs. These are the jobs that have
OCBP priorities assigned to them at any given time during
the execution of our scheduling algorithm on MC sporadic
task system τ .

3.3 Computational complexity

We consider the algorithm we have presented in Sec-
tions 3.1 and 3.2 very significant from a theoretical perspec-
tive, since it establishes that previously-known schedulabil-
ity bounds for MC scheduling of instances comprised of in-
dependent jobs extend to MC systems of sporadic tasks as

6We note that this is a pessimistic bound, in the sense that we are ac-
counting for the possible execution, over the interval [x1, x1 + x2), of the
entire HI-criticality WCET’s of all HI-criticality jobs that may have release
times and deadlines in the interval [0, x1 + x2 + Dmax). This is despite
the fact that some of these jobs may have already completed execution
prior to time-instant x1. Our goal here is to show that such bounds exist,
rather than to compute the tightest bound. Techniques such as the ones in,
e.g., [15, 9] can be adapted to obtain bounds superior to the one we have
derived here.

well. But how practical is this algorithm? – is it likely to be
useful in practice, in implementing actual MC systems that
are subject to certification? In order to address this question,
we must determine whether the steps of the algorithm can
be performed reasonably efficiently (particularly the steps
that are performed during run-time).

For an instance comprised of jobs that all arrive at the
same instant (as in Lemma 1) OCBP priorities satisfying
Lemma 1 can be determined in time polynomial in the
number of jobs, as follows. First, separately sort the HI-
criticality jobs and the LO-criticality jobs according to dead-
lines. Then during the recursive priority-assignment step
of OCBP, we need only consider the latest-deadline job of
each criticality that has not yet been assigned a priority as
the potential lowest-priority job; this follows from the ob-
servation that jobs of the same criticality level may be as-
signed relative priorities in order of deadline.

As shown in Section 3.2 above, each busy interval for
sporadic task system τ with both `LO(τ) and `HI(τ) bounded
from above by a constant strictly less than one has at most
pseudo-polynomially many jobs. Therefore, the priority-
assignment at the beginning of each busy interval can be
done in time pseudo-polynomial in the representation of the
sporadic task system τ . Indeed, the initial assignment of
priorities – assuming that each task generates a job at the
same instant and subsequent jobs as soon as legal – can be
pre-computed during system design time, and stored for use
during run-time.

What about the re-computation of priorities that may be
necessitated by the occurrence of event E-3 (Section 3.1.2):
the currently-executing job is preempted by the release of
a job that was assigned greater priority? In the worst case,
our algorithm, as described in Section 3.1, does not rule out
the possibility that the currently-executing job is one of the
lowest-priority ones, in which case we would need to re-
compute the priorities for almost all the jobs. In this case
the time-complexity of doing such re-computation would
be pseudo-polynomial in the representation of the task sys-
tem (linear in the number of jobs that need to have their
priorities recomputed). However, our preliminary experi-
ence with simple examples indicates that it is rare a job of
very low priority is executing and subsequently preempted;
it is a far more common case that the preempted job had
relatively high priority, and we therefore actually need to
recompute the priorities of just a few jobs. Intuitively, this
makes sense: it is typically the case that jobs with release
times and deadline very late in the busy interval are assigned
the lowest priorities, and will therefore not have an oppor-
tunity to execute (and thereby be preempted) near the be-
ginning of the busy interval. Hence although the number of
jobs that need to have their priorities re-computed may be
large following some preemptions, we expect that the aver-
age number of such recomputations per preemption is very

small. We are currently working on obtain a bound on this
average number, and are exploring strategies for doing some
of this computation off-line. We are also working on ap-
proximation algorithms that would significantly reduce the
frequency of such re-computations, and the number of jobs
that are subject to priority re-computation during each such
re-computation step, by enforcing somewhat stricter con-
straints on the task system than Condition 3. That is, we
are studying the tradeoff is making Condition 3 stricter, and
thereby reducing the number of priority re-computations.

4 Related work

To our knowledge, the scheduling problem that arises
from multiple certification requirements, at different criti-
cality levels, was first identified and formalized by Vestal
in [16], in the context of the fixed-priority preemptive
uniprocessor scheduling of recurrent task systems.

Current practice in safety-critical embedded systems de-
sign for certifiability is centered around the technique of
“space-time partitioning,” as codified in, e.g., the ARINC-
653 standard [1, 17]. This is one of several reservation-
based approaches, in which a certain amount of the capac-
ity of the shared platform is reserved for each application,
that have been considered for designing certifiable mixed-
criticality systems. It is known that reservation-based ap-
proaches tend to be pessimistic (in the sense of under-
utilizing platform resource). Consider again the graph in
Figure 1, plotting the bound on the LO-criticality load of
an instance I as a function of its HI-criticality load `HI(I),
in order for I to be successfully scheduled. As stated in
Section 2.1, the curved line represents the OCBP schedula-
bility bound: any instance that maps on to a point beneath
this curve is guaranteed to be schedulable by OCBP. The
straight line (equation `LO(I) + `HI(I) = 1) connecting the
points (1, 0) and (0, 1) represents the schedulability condi-
tion for the space-time partitioning and other reservations-
based approaches: since we must reserve a fraction `HI(I)
of the processor for HI-criticality tasks in such an approach,
that leaves a fraction 1−`HI(I) of the processor capacity for
accommodating additional LO-criticality jobs. It is evident
from this plot that the schedulability region of space-time
partitioning is strictly contained within the schedulability
region of OCBP scheduling. Such pessimism is a conse-
quence of the very principle of isolation between critical-
ity levels upon which reservations-based design techniques
are based: isolation rules out the possibility of reusing the
resource capacity that must be assigned to high-criticality
applications in order that they pass certification, but which
they are unlikely to need in practice, to make performance
guarantees to low-criticality applications.

Priority-based scheduling is the other technique com-
monly used by systems engineers in dealing with mixed

criticalities. (OCBP scheduling is an example of a priority-
based scheduling scheme.) Unless carefully designed,
though, priority-based scheduling schemes can be even
more pessimistic than reservations-based approaches. In
a typical priority-based scheduling approach, for exam-
ple, jobs belonging to higher-criticality applications are ac-
corded greater priority in deciding which job to execute at
each instant in time. It is not too difficult to construct sim-
ple examples in which such criticality-monotonic schedul-
ing will perform arbitrarily poorly.

Some other research on mixed-criticality scheduling.
Altough many other real-time scheduling papers deal with
mixed-criticality systems, they do not really deal with
scheduling for certification. De Niz et al. [7] deal with a
different aspect of mixed-criticality systems from the one
we focus on here, in that they do not directly address the
certification issue. Nevertheless, [7] contains very inter-
esting and novel ideas that merit mention. This work ob-
serves that the complete inter-criticality isolation offered by
the reservations approach may cause criticality inversion:
preventing a higher-criticality job from meeting its dead-
line while allowing lower-criticality jobs to complete. On
the other hand, assigning priorities according to criticality
may result in very poor processor utilization. An innovative
slack-aware approach is proposed that builds atop priority-
based scheduling (with priorities not necessarily assigned
according to criticality), to allow for asymmetric protection
of reservations thereby helping to lessen criticality inversion
while retaining reasonable resource utilization.

Pellizzoni et al. [14], use a reservations-based approach
to ensure strong isolation among sub-systems of different
criticalities; this paper proposes innovative design and ar-
chitectural techniques for preserving such isolation despite
some necessary interaction (e.g., in the sharing of additional
non-preemptable resources) between jobs of different criti-
calities. The focus is not on optimizing resource utilization,
but on ensuring isolation; hence, this research does not at-
tempt to avoid the criticality-inversion that is inherent to the
reservations-based approach.

5 Conclusions
Due to the rapid increase in the complexity and diversity

of functionalities that are performed by safety-critical em-
bedded systems, the cost and complexity of obtaining cer-
tification for such systems is fast becoming a serious con-
cern [3]. We believe that in mixed-criticality systems, these
certification considerations give rise to fundamental new re-
source allocation and scheduling challenges which are not
adequately addressed by conventional real-time scheduling
theory. In prior work [4, 10], we have therefore proposed
a job model that is particularly appropriate for representing

mixed-criticality workloads that can be modeled as collec-
tions of independent jobs, and have studied schedulability
properties of this model. We had also derived an algorithm,
called OCBP, for scheduling such mixed-criticality work-
loads. In this paper, extend our investigation to more gen-
eral mixed-criticality workloads: those generated by recur-
rent processes. We have extended the sporadic tasks model,
which is widely used for representing such processes in
non-MC real-time systems, to be able to model recurrent
MC workloads. We have extended the OCBP scheduling
algorithm to schedule such MC real-time systems: such ex-
tension is quite non-trivial due to the property of sporadic
task systems that release times of jobs are not known be-
forehand, but only become known at the instant that the job
is actually released. Despite this added complexity, we have
shown that the schedulability condition for MC workloads
comprised of independent jobs generalizes to MC work-
loads comprised of sporadic tasks.

References

[1] ARINC. ARINC 653-1 Avionics application software stan-
dard interface, October 2003.

[2] N. C. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times. Technical
report, The University of York, England, 1991.

[3] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka,
P. Sarathy, J. S. P. Stanfill, D. Stuart, and R. Urzi. White
paper: A research agenda for mixed-criticality systems,
April 2009. Available at http://www.cse.wustl.edu/˜ cdg-
ill/CPSWEEK09 MCAR.

[4] S. Baruah, H. Li, and L. Stougie. Towards the design of certi-
fiable mixed-criticality systems. In Proceedings of the IEEE
Real-Time Technology and Applications Symposium (RTAS).
IEEE, April 2010.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proceed-
ings of the 11th Real-Time Systems Symposium, pages 182–
190, Orlando, Florida, 1990. IEEE Computer Society Press.

[6] G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Second
edition, 2005.

[7] D. de Niz, K. Lakshmanan, and R. R. Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In Pro-
ceedings of the Real-Time Systems Symposium, pages 291–
300, Washington, DC, 2009. IEEE Computer Society Press.

[8] M. Dertouzos. Control robotics : the procedural control of
physical processors. In Proceedings of the IFIP Congress,
pages 807–813, 1974.

[9] L. George, N. Rivierre, and M. Spuri. Preemptive and non-
preemptive real-time uniprocessor scheduling. Technical Re-
port RR-2966, INRIA: Institut National de Recherche en In-
formatique et en Automatique, 1996.

[10] H. Li and S. Baruah. Load-based schedulability analy-
sis of certifiable mixed-criticality systems. Available at
http://www.cs.unc.edu/˜baruah/Pubs.shtml, 2010.

[11] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[12] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc., Upper
Saddle River, New Jersey 07458, 2000.

[13] A. K. Mok. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time Environment. PhD the-
sis, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

[14] R. Pellizzoni, P. Meredith, M. Y. Nam, M. Sun, M. Caccamo,
and L. Sha. Handling mixed criticality in SoC-based real-
time embedded systems. In Proceedings of the International
Conference on Embedded Software (EMSOFT), Grenoble,
France, 2009. IEEE Computer Society Press.

[15] I. Ripoll, A. Crespo, and A. K. Mok. Improvement in feasi-
bility testing for real-time tasks. Real-Time Systems: The In-
ternational Journal of Time-Critical Computing, 11:19–39,
1996.

[16] S. Vestal. Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance. In Pro-
ceedings of the Real-Time Systems Symposium, pages 239–
243, Tucson, AZ, December 2007. IEEE Computer Society
Press.

[17] J. Windsor and K. Hjortnaes. Time and space partitioning in
spacecraft avionics. Space Mission Challenges for Informa-
tion Technology, IEEE International Conference on, pages
13–20, 2009.

