

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

> Friday, April 26<sup>th</sup>, 2013 Haohan Li

## Scheduling Mixed-Criticality Real-Time Systems

**Doctoral Dissertation Defense** Under the Direction of Prof. Sanjoy K. Baruah

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Cyber-Physical: The Next Revolution?**

- Classic computer systems
  - Process information
- Cyber-physical systems
  - Interact with physical world
    - Collect data
    - Make decisions intelligently
    - Perform actions







THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **Real-Time: Essential to Cyber-Physical**

#### Not only the right move



#### The right move at a good time









THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **Real-Time Systems**

- Systems that provide both logical and temporal correctness
  - Predictability is more important than performance
    - Provably guarantee responses within strict time constraints (deadlines)











THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **Real-Time == Real-Fast?**

#### Not true for multitasking systems





 A good scheduling policy is the key to prompt responses





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Northrop Grumman X-47B

#### Unmanned aerial vehicle



- Motion plan, route plan, recon and combat
- Integrated, intelligent and computational-intensive
- The flight control tasks are safety-critical
- The mission-related tasks are non-safety-critical



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Conflicting requirements

- Safety-critical tasks may never fail
  - Reserving large amount of resources
- Non-critical tasks should be intelligent
  - Using as many resources as possible

#### Traditional real-time systems face challenges

Computational resource waste due to pessimism



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Pessimism in traditional methods
  - Scheduling based on execution-time estimations
  - Safety-critical tasks require very pessimistic execution-time estimations
  - Non-critical tasks suffer from pessimistic estimations



- Pessimism in traditional methods
  - Non-critical tasks don't have to assume such pessimistic estimations
    - Can assume smaller estimations and make guarantees
    - These guarantees are invalid only in the very worst case



Provide correctness guarantees in two levels

Large estimations and high-criticality constraints





Safety-critical task

Non-critical task

- What scheduling algorithms shall we use?
- Can we reduce resource waste?



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Scheduling Mixed-Criticality Real-Time Systems Haohan Li, Doctoral Dissertation Defense April 26<sup>th</sup>, 2013, Chapel Hill

8

Time

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **Thesis Statement**

- New methods can be discovered to schedule realtime systems with multiple criticalities
- The methods can supply multiple temporal predictability assertions with respect to multiple WCET specifications
- The assertions can be defined and measured through a formalized description
- The methods can be efficiently implemented with acceptable computational complexities



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Solutions
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- The abstract model for real-time systems
  - A one-shot Job is released at its release time, takes at most its worst-case execution time to finish, and is required to be finished by its deadline



- The abstract model for real-time systems
  - Sporadic tasks recurrently release jobs
    - Period: the minimal gap between job releases



- The abstract model for real-time systems
  - Sporadic tasks recurrently release jobs
    - Relative deadline: the gap between a job's release time and its deadline
      - Implicit deadline: relative deadline is equal to period
        - Known as Liu & Layland tasks



#### The abstract model for real-time systems

- Sporadic tasks recurrently release jobs
  - Relative deadline: the gap between a job's release time and its deadline
    - Implicit deadline: relative deadline is equal to period
    - Arbitrary deadline: relative deadline isn't equal to period



#### The abstract model for real-time systems

#### One-shot jobs

- Release-time, deadline, worst-case execution time
- Sporadic tasks
  - Period, relative deadline, worst-case execution time
- Utilization and load to measure CPU capacity
  - Utilization: the overall fraction of processor time demand of a system
  - Load: the maximum fraction of processor time demand of a system over any time interval



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### The abstract model for real-time systems

CPU capacity measurement: load and utilization



### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **Dissertation Research**

- New model for real-time systems
  - Mixed-criticality systems
    - Additional parameters and constraints
- Scheduling algorithms in the new model
  - OCBP algorithm
  - EDF-VD algorithm
- Capacity loss and optimality analysis



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Contributions

First solutions to many fundamental questions

- One-shot jobs
- Sporadic arbitrary-deadline tasks
- Multiprocessor scheduling
- Effectively reduce resource waste
  - Both algorithms are proved to utilize resources more efficiently than traditional methods
  - Both algorithms have the best <u>speedup factor</u> for two criticality levels



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Parameters for mixed-criticality tasks

- Inherited from traditional real-time systems
- Exclusive for mixed-criticality systems





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Parameters for mixed-criticality tasks

- Inherited from traditional real-time systems
- Exclusive for mixed-criticality systems





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Valid scheduling algorithms

 Basic idea: if high-criticality tasks overruns, low-criticality tasks can be ignored





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Valid scheduling algorithms

• If no task exceeds level-X WCET, all tasks with level-X and above should meet their deadlines



#### Valid scheduling algorithms

• If no task exceeds level-X WCET, all tasks with level-X and above should meet their deadlines





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Valid scheduling algorithms

• If no task exceeds level-X WCET, all tasks with level-X and above should meet their deadlines





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- The challenge is that we do not know if a high-level task will use the high-level WCET
  - We denote this as *non-clairvoyant*
  - The scheduling policy must detect the behavior of the system, and drop tasks when necessary





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



at CHAPEL HILL

April 26<sup>th</sup>, 2013, Chapel Hill

- The challenge is that we do not know if a high-level task will use the high-level WCET
  - The scheduling policy must detect the behavior of the system, and drop tasks when necessary
  - When a low-criticality and urgent job and a high-criticality and non-urgent job are both pending, we have to make a proper decision



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Example: Mixed-Criticality Jobs**

- Here is a detailed example to explain our solutions to the questions within our model
  - One-shot jobs
  - Two criticality levels





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Example: Mixed-Criticality Jobs**

- Traditional scheduling policies don't work efficiently on mixed-criticality systems
  - Traditional method: Earliest-deadline-first (EDF)

• Job scheduling priorities: J<sub>1</sub><J<sub>2</sub><J<sub>3</sub><J<sub>4</sub>





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Example: Mixed-Criticality Jobs**

- Traditional scheduling policies don't work efficiently on mixed-criticality systems
  - Traditional method: Criticality-monotonic

• Job scheduling priorities: J<sub>3</sub><J<sub>4</sub><J<sub>1</sub><J<sub>2</sub>





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Traditional scheduling policies don't work efficiently on mixed-criticality systems
  - Urgency and importance may differ





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Evaluation of Scheduling Algorithms**

- Mixed-criticality scheduling problem is NP-hard in the strong sense
  - The performance of scheduling algorithms is quantified in the form of speedup factors
    - An algorithm has a speedup factor *s* if it can schedule a task set that is schedulable by a clairvoyant scheduling algorithm on a speed-*s* processor
      - Exact algorithm has a speedup factor of 1, but no polynomial or pseudo-polynomial algorithm can reach it
      - Smaller factor represents better performance



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### The first solution: OCBP algorithm [RTAS 10]

- Own-criticality-based-priority algorithm
  - An approximation algorithm for one-shot jobs in preemptive uniprocessor systems
  - Priorities are assigned to jobs before run-time
  - OCBP seeks a balance between urgency and importance

[RTAS 10] Baruah, Li, and Stougie. Towards the design of certifiable mixedcriticality systems. In *Proceedings of the IEEE Real-Time Technology and Applications Symposium (RTAS)*. 2010. IEEE.



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### The first solution: OCBP algorithm [RTAS 10]

- Own-criticality-based-priority algorithm
  - An approximation algorithm for one-shot jobs in preemptive uniprocessor systems





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### OCBP algorithm constructs a priority list

- In this example, priority list is  $J_1 < J_3 < J_4 < J_2$
- Basic idea: a job should ignore jobs with lower priorities, and tolerate jobs with higher priorities





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

OCBP algorithm constructs a priority list

- In this example, priority list is J<sub>1</sub><J<sub>3</sub><J<sub>4</sub><J<sub>2</sub>
- Basic idea: a job should ignore jobs with lower priorities, and tolerate jobs with higher priorities





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

OCBP algorithm constructs a priority list

- In this example, priority list is J<sub>1</sub><J<sub>3</sub><J<sub>4</sub><J<sub>2</sub>
- Basic idea: a job should ignore jobs with lower priorities, and tolerate jobs with higher priorities





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

OCBP algorithm constructs a priority list

- In this example, priority list is J<sub>1</sub><J<sub>3</sub><J<sub>4</sub><J<sub>2</sub>
- Basic idea: a job should ignore jobs with lower priorities, and tolerate jobs with higher priorities





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### OCBP algorithm constructs a priority list

• The algorithm will recursively seek the lowestpriority job, and build the list from backward





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Evaluation of OCBP Algorithm**

#### Speedup factor [RTAS 10]

- Speedup factor of EDF for two criticality levels is 2
  - Intuitively, EDF requires a full processor for each criticality level, which sums up to 2
- Speedup factor of OCBP algorithm for two criticality levels is 1.618
  - The factor 1.618 is the golden ratio



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Evaluation of OCBP Algorithm**

#### Speedup factor [TC 12]

- OCBP can handle more that two criticality levels
- Speedup factor of EDF for N criticality levels is N
  - Still, EDF requires a full processor for each criticality level, which sums up to N
- Speedup factor of OCBP for N criticality levels is the root of the equation (x+1)<sup>N-1</sup> = x<sup>N</sup>
  - The asymptotic form is Θ(N/log N)

[TC 12] Baruah, Bonifaci, D'Angelo, Li, Marchetti-Spaccamela, Megow and Stougie. Scheduling real-time mixed-criticality jobs. In *IEEE Transactions on Computers*. 2012. IEEE.



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Evaluation of OCBP Algorithm**

#### Speedup factor [TC 12]

- No scheduling algorithms can have a speedup factor better than 1.618 for two criticality levels
  - OCBP algorithm is optimal with respect to speedup factors for two criticality levels
- No fixed-job-priority scheduling algorithms can have a speedup factor better than the root of the equation (x+1)<sup>N-1</sup> = x<sup>N</sup>



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### OCBP algorithm works on one-shot jobs

- Extending to sporadic tasks is complicated
  - Priorities must be assigned to each job
- EDF-VD algorithm on sporadic tasks [ECRTS 12]
  - Run-time complexity is significantly improved

[ECRTS 12] Baruah, Bonifaci, D'Angelo, Li, Marchetti-Spaccamela, van der Ster and Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In *Proceedings of the EuroMicro Conference on Real-Time Systems (ECRTS)*. 2012. IEEE.



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

OCBP algorithm works on one-shot jobs

- Extending to sporadic tasks is complicated
  - Priorities must be assigned to each job
- EDF-VD algorithm on sporadic tasks [ECRTS 12]
  - Earliest-Deadline-First with Virtual Deadlines
  - Based on EDF the optimal scheduling algorithm on traditional real-time systems
  - The priority of each job is simply determined according to its virtual deadline



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Basic idea

- Give high-criticality tasks earlier (and virtual) deadlines
  - Not only urgent jobs are favored
  - High-criticality tasks will also get higher priorities

#### Base case

- Two criticality levels
- Firstly on implicit-deadline tasks, then on arbitrary-deadline tasks



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Virtual deadlines are assigned proportionally to original deadlines with factor x ( 0<x<1 )</li>
  - Use virtual deadlines in low-criticality behavior
  - Change to original deadlines when high-criticality behavior is detected
  - My research proposes a mechanism to choose x
  - My research proposes a schedulability test
- The analysis of EDF-VD is different from OCBP
  - Priorities are relative; deadlines are absolute



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- In the example, we try to set a scaling factor x=½ for high-criticality tasks
  - τ<sub>2</sub> and τ<sub>3</sub> use virtual deadlines if no criticality change is detected
    - Will any job miss its deadline?





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### Basic idea

- Check the worst case response time for any job
  - Try to find as many jobs as possible that have earlier deadlines and can preempt the candidate job





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- In the low-criticality behavior, which jobs can have earlier deadlines and preempt the job?
  - In the example, we check the  $2^{nd}$  job of  $\tau_1$



- In the high-criticality behavior, which jobs can have earlier deadlines and preempt the job?
  - In the example, we check the  $1^{st}$  job of  $\tau_2$



# We use the following inequality to check if a task set is schedulable

- $u_1(1)+u_2(2)-u_1(1)[u_2(2)-u_2(1)] <= 1$
- x is chosen in the following range

• x must be in  $[u_2(1)/[1-u_1(1)], [1-u_2(2)]/u_1(1)]$ 





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **EDF-VD for Arbitrary-Deadline Tasks**

- Extend to arbitrary-deadline sporadic tasks
  - The task system is schedulable if
    - $L_1 + L_2/2 \le 1$
    - $[L_1L_2-2L_1]^2 4L_1[L_1-L_2+L_2^2] \ge 0$
    - x must be 1–L<sub>2</sub>/2
  - It's not implicit-deadline any more. Thus load is used to check the schedulability



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **EDF-VD Algorithm Speedup Factors**

- The speedup factor of EDF-VD on implicitdeadline tasks with two levels is 1.33
  - This is also shown to be optimal with respect to speedup factors
- The speedup factor of EDF-VD on arbitrarydeadline tasks with two levels is 1.866
  - It's proved that no better bound can be found
    - Optimal speedup factor is 1.618
    - EDF-VD is not optimal for arbitrary-deadline tasks



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### **Summary of Dissertation Research**

- OCBP algorithm for one-shot jobs
  - Applicable to arbitrary number of criticality levels
  - Optimal with respect to speedup factors for two criticality levels
- EDF-VD algorithm for sporadic tasks in two criticality levels
  - Applicable to implicit and arbitrary deadlines
  - Optimal with respect to speedup factors for implicit-deadline tasks



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Outline

- Motivation
- Thesis statement
- Background
- Dissertation research
  - Models
  - Algorithms
- Other contributions and future work



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### OCBP algorithm on sporadic tasks [RTSS 10]

#### OCBP algorithm is extended to sporadic tasks

- The speedup factor results are maintained
- My solution has a pseudo-polynomial run-time complexity. It is then improved to O(n<sup>2</sup>) [Guan et al., RTSS 11]

[RTSS 10] Li and Baruah. An algorithm for scheduling certifiable mixedcriticality sporadic task systems. In *Proceedings of the IEEE Real-Time Systems Symposium (RTSS)*. 2010. IEEE.

[Guan et al., RTSS 11] Guan, Ekberg, Stigge, and Yi. Effective and efficient scheduling for certifiable mixed criticality sporadic task systems. In *Proceedings of the IEEE Real-Time Systems Symposium (RTSS)*. 2011. IEEE.



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### EDF-VD algorithm on multiprocessors

- EDF-VD algorithm is extended to multiprocessor platforms
  - Partitioned multiprocessor scheduling [RTS 12]
  - Global multiprocessor scheduling [ECRTS 12]

[RTS 12] Baruah, Chattopadhyay, Li and Shin. Mixed-criticality scheduling on multiprocessors. In *Real-Time Systems*. 2012. Springer.

[ECRTS 12] Li and Baruah. Global mixed-criticality scheduling on multiprocessors. In *Proceedings of the EuroMicro Conference on Real-Time Systems (ECRTS)*. 2012. IEEE.



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### EDF-VD algorithm on multiprocessors

- Partitioned multiprocessor scheduling [RTS 12]
  - Each task is allocated to a processor
  - Jobs (and tasks) can not migrate from a processor to another
- Global multiprocessor scheduling [ECRTS 12]
  - Jobs can migrate to and execute on different processors
- Both algorithms are for implicit-deadline tasks



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- EDF-VD algorithm on multiprocessors
  - Partitioned multiprocessor scheduling [RTS 12]
    - The speedup factor is shown to be no greater than
      2.67
  - Global multiprocessor scheduling [ECRTS 12]
    - The speedup factor is shown to be no greater than 3.24
  - The traditional partitioned and global EDF method has a speedup factor of 4



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

#### **Future Work**

More efficient uniprocessor algorithms

- Pragmatic improvement to OCBP algorithm
- More criticality levels for EDF-VD algorithm
- Exploration of multiprocessor algorithms
  - Arbitrary-deadline tasks
  - More criticality levels
  - Better analysis and better algorithms



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

> Friday, April 26<sup>th</sup>, 2013 Haohan Li

# Thank you!

