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Abstract

This paper describes an enhanced telepresence system that offers fully dynamic, real-time 3D scene capture and continuous-
viewpoint, head-tracked stereo 3D display without requiring the user to wear any tracking or viewing apparatus. We present a
complete software and hardware framework for implementing the system, which is based on an array of commodity Microsoft
KinectTMcolor-plus-depth cameras. Contributions include an algorithm for merging data between multiple depth cameras and tech-
niques for automatic color calibration and preserving stereo quality even with low rendering rates. Also presented is a solution
to the problem of interference that occurs between Kinect cameras with overlapping views. Emphasis is placed on a fully GPU-
accelerated data processing and rendering pipeline that can apply hole filling, smoothing, data merger, surface generation, and color
correction at rates of up to 200 million triangles/sec on a single PC and graphics board. Also presented is a Kinect-based markerless
tracking system that combines 2D eye recognition with depth information to allow head-tracked stereo views to be rendered for
a parallax barrier autostereoscopic display. Enhancements in calibration, filtering, and data merger were made to improve image
quality over a previous version of the system.
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1. Introduction1

A long-standing goal [1, 2] of telepresence has been to unite2

distant workspaces through a shared virtual window, allowing3

remote collaborators to see into each other’s environments as if4

these were extensions of their own.5

In 2002, UNC/UPenn researchers created an early realiza-6

tion of this goal by combining a static 3D model of an of-7

fice with near-real-time 3D acquisition of a remote user and8

displayed the result in head-tracked stereo at interactive rates.9

Since then, several improved 3D capture and display systems10

have been introduced. In 2004, the MERL 3DTV [3] system11

offered a glasses and tracker-free capture and display system12

using an array of 16 cameras and a lenticular autostereo dis-13

play. However, framerate was low (12 Hz) and the number of14

viewing zones was limited and repeating. In 2008, the Fraun-15

hofer Institute and the Heinrich-Hertz Institute introduced 3DP-16

resence [4], an improved lenticular-display based system. The17

system supported multiple views for several participants seated18

around a table, but like in the MERL system, the number of19

views was limited and only horizontal parallax was available. In20

2009, USC ICT researchers presented a telepresence system [5]21

that used structured light for 3D acquisition and a volumet-22

ric 3D display. The system provided real-time capture, nearly23

continuous points of view and required no tracking markers or24
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glasses, but capture and display were limited to a head-size vol-25

ume. In 2010, Holografika introduced a compelling system [6]26

consisting of a large array of projectors and cameras offering27

fully dynamic real-time 3D capture and tracker-less autostereo28

display. The system, however, featured only a moderate cap-29

ture rate (10-15 Hz) and did not offer fully continuous points30

of view – interpolation was performed between a linear array31

of densely placed 2D cameras and only horizontal parallax was32

provided. Featuring 27 cameras, 3 PCs, and scores of projec-33

tors, it was also a very expensive system to build. In 2011, the34

FreeCam system [7] demonstrated high quality 3D acquisition35

using a pair of depth cameras, but capture was limited to users36

segmented from the background. Also noteworthy are a group37

of systems [8, 9, 10, 11] with the alternate goal of placing users38

in a shared virtual space rather than capturing and presenting39

users within their own physical environments.40

In [12], the authors presented a telepresence system that41

aimed to overcome some of the limitations of previous sys-42

tems and is the basis for this updated work. The system offered43

fully dynamic scene capture – presenting a live view of remote44

users as well as their environments and allowing users to en-45

hance communication by utilizing surrounding objects. Contin-46

uous viewpoints were supported, allowing users to look around47

a remote scene from exactly the perspective corresponding to48

their head position, rather than from a single or set of fixed49

vantages. This granted users the ability to see around obstruc-50

tions and gain more information about the remote scene. Gaze51

was preserved, allowing participants to make eye contact; re-52
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Figure 1: Three views of a live capture session.

Figure 2: Two users in 3D scene.

search [13] has shown the absence of correct gaze can cause53

a loss of nonverbal communication. Stereo views were pro-54

vided, which have been shown to increase the sense of shared55

presence [13]. Finally, tracking and viewing apparatuses were56

eliminated – 3D glasses obstruct eye contact between partici-57

pants and shutter glasses have been found to be “disruptive” to58

over 90% of users [13]. We believe this system was the first59

to incorporate all of these characteristics – fully dynamic 3D60

scene capture, continuous look-around ability with full paral-61

lax, gaze preservation, and stereo display without the use of any62

encumbrances – but suffered from mediocre image quality. In63

this paper we present a revised system which includes several64

enhancements that result in improved 3D reconstruction.65

2. Background and Contributions66

Our system is based on the Microsoft KinectTMsensor, a67

widely available, inexpensive ($150) device that provides color68

image, infrared image, depth map, and audio capture. Depth69

data is acquired using imperceptible structured light techniques;70

a static dot pattern projected with an IR laser is captured with71

an IR camera and compared to a known pattern [14]. Depth im-72

ages are provided at 640×480 resolution at 30 Hz; color and73

IR images may be captured at this resolution and rate or at74

1280 × 1024 and approximately 10 Hz. The unit provides a75

58◦ × 45◦ field of view and a depth accuracy rated1 as 1 cm at 176

m, with a 0.8 m to 3.5 m range2.77

Utilizing several strategically placed and calibrated Kinect78

sensors, an entire room-sized scene can be captured in real-79

time. The scene can be rendered from exactly the remote user’s80

perspective, providing for correct gaze and continuous view-81

points. Eye position tracking is required to provide for contin-82

uous viewpoints; 2D eye detection combined with the Kinect’s83

depth data provides a markerless tracking solution.84

However, as a device not designed for general purpose 3D85

scene capture or tracking, the Kinect presents some challenges86

for our intended purposes. Since each sensor projects a fixed87

structured light pattern at roughly the same wavelength, inter-88

unit interference is a major problem. The device, as controlled89

with the drivers currently available, provides auto-white bal-90

ance and exposure that cannot be disabled, presenting diffi-91

cultly for seamlessly integrating color-matched data between92

cameras. The capture frame rate, 30 Hz, is suitable for scene93

acquisition but is inadequate for responsive tracking.94

In [12], we presented solutions to these challenges and in-95

troduced an eye position tracking system based on the Kinect96

that was used with an autostereo display. Specific contributions97

were as follows:98

1. A software solution to the Kinect interference problem99

that provides hole filling and smoothing100

2. A visibility-based algorithm to merge data between cam-101

eras102

3. A visibility-based method for dynamic color matching103

between color-plus-depth cameras104

4. A system for combining 2D eye recognition with depth105

data to provide 3D eye position tracking106

5. A technique for preserving high-quality head-tracked stereo107

viewing on fixed parallax barrier displays even at low108

rendering rates109

Also presented was a GPU-accelerated software framework110

that implemented hole filling, smoothing, data merging, sur-111

1http://www.primesense.com/
2We observed that our units return depth readings for surfaces as near as 0.5

m.
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Figure 3: System Layout. Top: Demonstrated proof-of-concept system configuration. Bottom: Proposed ideal configuration.

face generation, and color correction at interactive rates for five112

depth cameras on a single PC and graphics board.113

In this work, we have revised several aspects of the system:114

1. Calibration procedures were enhanced and a new pro-115

cedure was established to correct biases in the Kinect’s116

depth measurements117

2. A smoothing procedure was added to the rendering pipeline118

to suppress depth noise spatially and temporally119

3. The data merger algorithm was updated to be more toler-120

ant of geometric inaccuracies.121

These enhancements are designed to improve the 3D recon-122

struction quality of the system. In the remainder of this paper,123

we present a complete framework for the system (based on [12])124

with the improvements applied.125

3. System Overview126

3.1. Physical Layout127

Figure 3 shows the layout of our system. The two spaces are128

physically separated, but a view of the other space can be seen129

through the display as if the spaces were aligned with a shared130

hole in the wall. The bottom of the figure shows our “ideal”131

configuration – 3D capture and 3D display are supported on132

both sides (spaces C,D).133

The top of Figure 3 shows the actual configuration used for134

our proof-of-concept system. The system utilizes two office135

cubicles (approximately 1.9 m × 2.4 m). Space A offers 3D136

capture and 2D display of space B, while space B features 2D137

capture and head-tracked 3D display of space A. This config-138

uration allowed us to demonstrate 3D capture, 3D display, and139

eye gaze preservation (for one side) while requiring only the140

single autostereo display that we had available.141

3.2. Hardware Configuration142

Both spaces in our proof-of-concept system share a single143

PC with a 4-core Intel Core i7-960 CPU, 6GB of RAM and an144

Nvidia GeForce GTX 580 graphics board. Six Microsoft Kinect145

sensors are connected to the PC. The 2D display side features a146

30 in LCD monitor, while the 3D display side uses a 40 in X3D147

Technologies autostereo display.148

We avoided networking and audio in our proof-of-concept149

system since both spaces are run from a single PC and are in150

close proximity. We plan to address these omissions in a future151

system.152

3.3. Software Overview153

Operating System and APIs. Our test system runs on 64-bit154

Linux (Ubuntu 10.10) and uses the OpenNI3 API along with155

a Kinect driver4 to communicate with the sensors. OpenGL156

is used for rendering, the OpenGL shader language (GLSL) is157

used for programmable GPU operations, and GLUT is used for158

windowing and user input. The OpenCV5 computer vision li-159

brary was utilized for camera calibration and tracking.160

Data Processing and Rendering Pipeline. The following ren-161

dering pipeline is used in our system (Figure 4):162

1. When new data is available, read color and depth images163

from Kinect units and upload to GPU.164

2. Smooth and fill holes in depth image.165

3. For each Kinect’s data, form triangle mesh using depth166

data.167

3http://www.openni.org/
4https://github.com/avin2/SensorKinect
5http://opencv.willowgarage.com/

3



                                                                              GPU

Kinect
1

Kinect
N Kinect

(Tracking)

Color
Match

Hole
Fill, 

Smooth 

Hole
Fill,

Smooth

Color
DepthColor

Tracking

Color

Depth

Mesh
Generation

Mesh
Generation

Mesh
Template

Geom.

Render

Geom.

Render

Geom.

Data
Merger

Color, Quality, Depth

View 
Eye Pos.

Color 
Matching
Function

Parallax
Barrier
Gen.

Autostereo
Display

Stereo viewsBarrier
Display
Pattern

Depth

View 
Eye Pos.

Depth Depth

…........

…...........................

….................

…...............

…...........................

3D Scene Viewer

Figure 4: Data Processing and Rendering Pipeline

4. For each Kinect’s data, apply color texture to triangle168

mesh and estimate quality at each rendered pixel; ren-169

der from the tracked user’s current position, saving color,170

quality, and depth values.171

5. Merge data for all Kinect units using saved color, quality172

and depth information.173

6. Repeat steps 3-5 for other eye’s view.174

7. Assemble the two stereo viewpoints into pattern required175

by autostereo display, draw to screen.176

8. While next 3D scene is being generated, periodically re-177

draw pattern required by autostereo display using the last178

rendered frame and the new estimated eye position.179

GPU Acceleration Overview. To maximize performance, all180

real-time graphics-related data processing algorithms are per-181

formed on the GPU (using the OpenGL Shader Language) to182

reduce CPU/GPU memory transfer overhead and take advan-183

tage of GPU parallelism. CPU/GPU memory transfers are kept184

to a minimum: the five Kinects’ color and depth images are up-185

loaded to the GPU, but no other major data transfers take place.186

System Component Rates. Since our entire system does not run187

at the desirable rate of ≥60 Hz on our current hardware with188

all graphical enhancements applied, we allow three rates in our189

system to run asynchronously to allow for interactive rendering190

and high stereo quality. The first is the reconstruction rate, the191

rate at which new data is incorporated into the rendered scene,192

which involves uploading new color and depth data to the GPU,193

hole filling, smoothing, and surface generation. The second194

rate is the rendering rate, the pace at which the scene is ren-195

dered from a new viewing perspective. In our system, this also196

includes our data merger algorithm, which is visibility-based.197

The final rate is the parallax barrier pattern generation rate,198

the rate at which new patterns are generated for our autostereo199

display from new estimated eye positions.200

The independence of the reconstruction rate from the ren-201

dering rate helps to keep the system running at interactive rates202

as more cameras are added to the system; a study by Mee-203

han [15] found a positive correlation between framerate and204

sense of presence as the former was increased from 10 to 30205

fps. The independent parallax barrier pattern generation rate206

preserves stereo quality during head motion even if the render-207

ing rate decreases. (See Section 5.3.)208

Tracking. We combine 2D eye detection, depth data, and mo-209

tion tracking to create an unencumbered 3D eye position tracker.210

Initial eye detection is performed on a color image and eyes are211

then tracked using pattern matching. Once the 2D eye position212

is obtained, Kinect depth data is used to transform the position213

into 3D. A Kalman filter is used to improve accuracy and inter-214

polate the position of the eyes between sensor updates.215

4. Implementation216

4.1. Camera Placement, Calibration, and Error Measurement217

Camera Placement. When placing cameras as shown in the top218

left of Figure 3, the following factors were considered:219

1. Coverage: for our application, coverage is only necessary220

for surfaces that can be seen by the remote user.221

2. Redundancy: Redundant coverage allows preservation of222

surfaces that are occluded from the viewpoint of a single223

depth camera, but are still visible by the remote user (e.g.224

an occluded chest behind a raised hand).225

3. Resolution and Accuracy: the resolution available varies226

with angle and distance (discussion in Section 4.5).227

4. Kinect Depth Range: approximately 0.5 m-3.5 m.228

5. Kinect Depth Interference: discussion in Section 4.2.229

6. Kinect Depth Error: perceived depth error is reduced if230

camera is near line of sight of user231

Camera Calibration. To calibrate the Kinect sensors, we used232

the OpenCV camera calibration routines, which are based on233

Zhang’s method [16]. The routines compute camera intrinsic234

parameters (focal length, center of projection, radial and tan-235

gential distortion coefficients) from two or more images of a236

detected planar pattern, taken from different orientations. Ex-237

trinsic parameters (relative positions and orientations) between238

two cameras were computed using one or more pairs of images239

of a detected pattern seen from each camera, along with the in-240

trinsic parameters. Since the Kinect driver is able to register the241

depth image to the color image, only calibration of the color242

camera is necessary.243

For our test system, camera intrinsics and extrinsics were244

computed using detection of a checkerboard target. For extrin-245

sic computation, we calibrated each camera to a master ceiling-246

mounted camera, whose viewing frustum conveniently overlaps247

the frustum of each of the other cameras.248

In addition to the calibration procedures of our previous249

system [12], we incorporated some of the enhanced calibra-250

tion procedures of our larger scale 3D telepresence system [17].251

To reduce calibration error introduced by the unsynchronized252
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Kinect cameras and motion blur, we placed the calibration tar-253

get at rest before capturing each image. We also used the high254

resolution (1280x1024), low framerate capture mode of the Kinect’s255

color camera during calibration and transformed the parameters256

to that of the low resolution (640x480) high framerate mode257

used during system operation. To further reduce error, radial258

distortion in the depth image was also corrected using the dis-259

tortion coefficients measured during intrinsic calibration of the260

color camera, as the two images are registered by the driver.261

Depth Bias Correction. After revising our calibration proce-262

dures, we continued to observe small geometric misalignments263

between Kinects that occurred primary in the cameras’ lines of264

sight and hypothesized a bias in the Kinect’s depth readings. To265

test this hypothesis, we compared the Kinect’s measurements to266

a laser rangefinder (Leica DistoTMplus, accuracy ±1.5 mm) at267

several distances using the following procedure:268

1. A 2 m sliding rail was placed approximately 1.8 m from a269

wall so that its direction of movement was approximately270

perpendicular to the wall.271

2. The laser rangefinder was mounted on the rail facing the272

wall. The orientations of the rail and rangefinder were273

finely adjusted until the laser spot emitted by the range-274

finder onto the wall remained nearly motionless as the275

device was moved the length of the rail.276

3. A Kinect unit was mounted to the rail so that it was ap-277

proximately perpendicular to the wall, and a checker-278

board target was placed on the wall. The orientation of279

the Kinect was finely adjusted until the calculated extrin-280

sics between the Kinect and checkerboard indicated per-281

pendicularity.282

4. At the closest position on the rail, the z-axis translation283

component of the extrinsics between the Kinect and the284

checkerboard was compared to the corresponding range-285

finder distance to determine their distance offset.286

5. At approximate 0.25 m intervals along the rail, the range-287

finder and Kinect distances were recorded. Kinect dis-288

tances were computed as the mean distance over a 100 ×289

100 sampling window near the center of the depth map.290

The test setup described in steps 1-3 is pictured in Figure 5.291

292

Using the aforementioned procedure on several units, we ob-293

served that real-world distances returned by the utilized Kinect294

driver were biased and tended to overestimate depth linearly295

with distance. We used a least-squares fitting of our measure-296

ments to build a linear depth correction function for each Kinect.297

Table 1 shows the original and corrected measurements for one298

unit.299

Depth Error Measurement. Since our mesh generation and data300

merger techniques rely on knowledge of the relationship be-301

tween the distance of a surface to a Kinect depth camera and302

measurement error, it is beneficial to characterize this relation-303

ship. We expect the depth resolution to fall off quadratically304

with distance.305

Figure 5: Test setup used to measure depth biases.

Table 1: Typical Depth Bias Correction (all values in mm)

Kinect Rangefinder Orig. Error Corrected Value Error After Correction
1820 1823 -3 1825.2 2.2
2074 2073 1 2072.6 -0.4
2327 2322 5 2319.0 -3.0
2588 2573 15 2573.3 0.3
2845 2823 22 2823.6 0.6
3103 3077 26 3074.9 -2.1
3365 3329 36 3330.1 1.1
3623 3581 42 3581.5 0.5

Fitted correction function: f(d) = 0.9741d + 52.299
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Figure 6: Kinect depth sensor precision with distance. Measured values show
quadratic relationship between the distance to the depth camera and the range
and standard deviation of depth values.

To verify this, we positioned a planar target parallel to the306

IR camera’s image plane and recorded a 100×100 grid of depth307

measurements at the center of the depth image. We performed308

this experiment at distances of 0.5 m (device minimum range)309

to 3.0 m (beyond the maximum range used in our system) at310

intervals of 0.5 m.311

Figure 6 shows the min-max range and standard deviation312

at each test distance from 0.5 m to 3.0 m, fitting closely to a313

quadratic falloff.314

4.2. Multi-Kinect Interference Problem and Solution315

The Multi-Kinect Interference Problem. Since each Kinect unit316

projects the same dot pattern at the same wavelength, each Kinect317

unit is able to see the projected patterns of all other units and318

may have trouble distinguishing other units’ patterns from its319

own.320

This problem is illustrated in Figure 7. A box was placed321

near the minimum depth range (0.6 m) of two Kinect units;322

their projected patterns overlap prominently and cause inter-323

ference. Although significant interference is shown in the third324

column of the figure (there many small areas of missing data, or325

“holes”), we find two promising aspects of these results. First,326

the difference between the depth image with and without inter-327

ference corresponds mostly to the missing data, not large dif-328

ferences in depth values; one needs primarily to fill missing329

points rather than correct grossly erroneous depth values (al-330

though some additional noise is also present). Second, one can331

see in the third column of the figure that the missing data varies332

between depth cameras – to some extent, redundant coverage333

between units allows depth cameras to fill in each other’s holes.334

Hardware Solutions. We considered, but rejected several hard-335

ware solutions to the multi-Kinect interference problem. We336

contemplated installing a set of alternating synchronized shut-337

ters over each unit’s IR projector and camera so that each unit338

would see only its own dot pattern, as was explored in [18]. A339

serious disadvantage of this approach is that it would reduce340

Figure 7: Kinect interference problem. First column: IR images showing com-
bined projected dot pattern from camera 1 (red dots) and camera 2 (blue dots).
Second column: depth images with no interference. Third column: depth im-
ages with interference from other camera. Fourth column: difference of second
and third columns. Rows: data from each of two cameras.

frame rate or reduce the light available to the IR camera, de-341

pending on how the shutters are used. Another technique con-342

sidered, but also ruled out, was IR filtering. We measured a343

group of eight Kinect units with a spectrometer and found that344

the peak-to-peak range of wavelengths was 2.6 nm, which we345

found too close to filter practically.346

Software Solutions. As we did not find a suitable hardware so-347

lution to the Kinect interference problem, we looked to soft-348

ware solutions. As mentioned, it is fortunate that the Kinect349

generally returns no data rather than erroneous data when in-350

terference occurs. However, there are other situations in which351

the sensor returns no depth data. Due to the offset between the352

IR projector and camera, there are typically some surfaces “in353

shadow” that can be seen by the camera but receive no pro-354

jected pattern from the IR laser due to occlusion. Additionally,355

surfaces may not be seen by the depth camera if they reflect lit-356

tle infrared light or are highly specular. An effective software357

solution should be able to fill small holes (making the assump-358

tion that they are part of a continuous surface), while ignoring359

large missing surfaces. We hope that the missing large surfaces360

are captured by another camera that observes the surface from361

a different location. Also, Kinect interference causes a small362

amount of high frequency depth noise that should be smoothed.363

Hole Filling. We aimed for a solution that fills small holes and364

provides an initial depth smoothing, but leaves alone large miss-365

ing surfaces – we do not want to make large assumptions about366

missing data in the scene. The obvious starting point for such367

an approach is a simple smoothing filter (such as Gaussian, box,368

median, or bilateral), but our application induces additional re-369

quirements:370
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1. Edge preservation: we do not want to introduce new depth371

values across depth discontinuities – naive smoothing could372

result in depth values floating in space. Additionally,373

depth images are aligned to color textures, so color and374

depth edges should coincide. A small depth edge shift375

could cause a texture to be assigned to a physically dis-376

tant surface. Depth edges at missing data boundaries377

must be preserved or geometry may expand or contract.378

2. Scale independence: from observation, depth noise ap-379

pears at a higher spatial frequency than holes. Smoothing380

should take place on a smaller scale than hole filling.381

A standard median filter meets the first requirement (edge382

preservation – although not pixel-exact). We devised a fast383

modified median filter (Algorithm 1) that is effective at hole384

filling while supporting the requirements above.385

To allow for scale independence, a two-pass approach is386

used. In the first pass, an expanded filtering window is used387

to fill larger holes, but no smoothing is applied (i.e. only miss-388

ing values are modified). In the second pass, a smaller win-389

dow is used to fill any remaining small holes and provide initial390

smoothing of the depth image. This method is similar to that391

used in [19], but we use different criteria to determine when the392

filter is applied.393

To ensure that edges are preserved precisely and non-holes394

are ignored, we apply three constraints to the filtering window:395

a minimum amount of valid data must be present (tc), a mini-396

mum amount of data must be present at the window edges (te),397

and the range of values in the window must be within a thresh-398

old (tr). At each pixel, if the window constraints are not met, the399

pixel is left unmodified. These thresholds and heuristics were400

determined by applying a conventional median filter to sample401

depth data and inspecting cases that did not meet our require-402

ments listed above.403

To enhance our filtering implementation in the previous sys-404

tem [12], we incorporated the trimming operation of [17] into405

our hole filling and initial smoothing filter to reduce the appear-406

ance of ragged edges at depth discontinuities. This operation407

rejects geometry that does not meet the previously described408

data population and range tests, which was found empirically to409

occur at object edges. This operation is performed only during410

the second (small window) pass as to prevent over-trimming.411

GPU Implementation. Our enhanced median filter implemen-412

tation is based on a conventional median filter implementation413

by McGuire [20], which uses a branchless hardcoded selection414

algorithm to obtain the median for fixed radii. To provide high415

performance for larger radii, we find the approximate median416

by sampling over the filtering window. The median filter is417

written as a fragment shader in the OpenGL Shading Language,418

using textures to exchange data between passes.419

4.3. Smoothing and Temporal Filtering420

In our previous system [12], the smoothing described in421

Section 4.2 was the sole filtering operation applied to the depth422

maps. Although this filter made some improvement to the nois-423

iness of the depth maps, several disadvantages were observed:424

Algorithm 1 Modified Two-Pass Median Filter for Hole Filling
for pass = 1 to 2 do

for i = 1 to numPixels do
depth out[i]← depth in[i]
if depth in[i] = 0 or pass = 2 then
{Perform filtering tests}
count ← 0, enclosed ← 0
v← {}, n← neighbors(depth in[i], radiuspass)
min← min(n),max← max(n)
for j = 1 to n.length do

if n[ j] , 0 then
count ← count + 1
v[count]← n[ j]
if on edge( j) then

enclosed ← enclosed + 1
end if

end if
end for
if max − min ≤ tr and count ≥ tc and enclosed ≥ te
then
{If filtering tests passed, find median}
sort(v)
depth out[i]← v[v.length/2]

else if pass = 2 then
{If filtering tests failed on 2nd pass, trim}
depth out[i]← 0

end if
end if

end for
if pass = 1 then

depth in← depth out
end if

end for

1. The median filter does not introduce new depth values425

while smoothing, and at greater distances, the steps in426

depth returned by the Kinect become large. This can re-427

sult in significant depth discontinuities to appear among428

smoothed regions that are physically continuous.429

2. No temporal noise suppression is performed, causing sur-430

faces to have a jittering effect.431

To address item 1 above, we further smoothed our hole
filled depth maps with the following filter, based on the bilateral
filter of [21]:

1
Wx,y

r∑
u=−r

r∑
v=−r

[D(x + u, y + v)g(‖〈u, v〉‖2, σr)

g(|D(x + u, y + v) − D(x, y)|, σd)]

where (x, y) is the coordinates of the pixel to be filtered, r is432

the filter radius, D(u, v) is the depth at location (u, v), g(t, σ) is433

the Gaussian function e−t2/σ2
, σr and σd control the Gaussian434

falloff across the filtering window and depth respectively, and435

Wx,y is a normalizing constant equal to the sum of the weights.436

This filter introduces new depth values while smoothing, but437
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Figure 8: Fast Meshing for the Kinect. Left: Triangle mesh template stored
in GPU memory. Center-Left: Vertex shader extrudes template using camera
intrinsics and depth texture. Center-Right: Geometry shader rejects triangles
corresponding to missing or discontinuous surfaces (shown in red). Right: Re-
sultant textured mesh.

weighted values fall off sharply with increased depth distance438

from the central element to prevent smoothing over depth dis-439

continuities.440

As a first attempt to address item 2 above, we performed441

simple temporal noise suppression by updating values in our442

depth map only if they exceed a threshold from the last recorded443

value. The depth-dependent threshold was set conservatively444

based on the measured noise values plotted in Figure 6.445

GPU Implementation. The bilateral filter was implemented as446

an OpenGL fragment shader which takes the hole-filled and447

pre-smoothed depth maps of Section 4.2 as input and produces448

a final depth map texture to use for mesh generation. The tem-449

poral filter was incorporated as an initial threshold check to the450

bilateral filter. The final depth map is copied within GPU mem-451

ory for comparison with the next frame.452

4.4. Mesh Generation453

The Kinect provides per-pixel depth readings that are gen-454

erally too sparse to render directly as small fixed-size points.455

Therefore it is useful to create a surface representation using456

the depth data. Our requirements for surface generation are as457

follows:458

1. Must be continuous if physical surface is continuous459

2. Must work in situations with missing data, as is common460

with Kinect461

3. Must detect and preserve depth discontinuities at edges462

4. Must be fast (5 Kinects generate>45M depth readings/sec)463

Although approaches exist [22] for directly rendering points464

from multiple depth images, we chose a triangle mesh surface465

representation as it meets these requirements and is also sup-466

ported natively by graphics hardware. We use a simple mesh-467

ing technique which is described in Algorithm 2 and illustrated468

in Figure 8. The depth values from the Kinect sensor are used469

to extrude vertices from a template triangle mesh. Any trian-470

gle associated with a vertex that corresponds to a missing depth471

value is rejected, as are those with a pair of vertices that ex-472

ceeds a maximum depth threshold. Since the Kinect provides473

depth data that varies in accuracy with depth, our depth thresh-474

old varies with depth as well.475

Algorithm 2 Mesh generation algorithm
for each candidate triangle do

t ← threshdepth discontinuity + fdepth err(min(depthvi )) +

fdepth err(max(depthvi ))

{Transform vertices from normalized image coordinates to
camera coordinates in physical units}
if depthvi , 0 and abs(depthvi − depthv j ) ≤ t, for j > i
then

vix ←
(vix−center pro jx)depthvi

f ocalx

viy ←
(viy−center pro jy)depthvi

f ocaly
viz ← depthvi

else
reject triangle

end if
end for

GPU Implementation. Our implementation of the simple mesh476

algorithm takes advantage of the connectivity of a depth image,477

requiring no geometry to be transferred to the GPU after pro-478

gram initialization. At program start we generate a triangulated479

plane at the Kinect’s depth resolution and store it in GPU mem-480

ory. For each new frame, a vertex shader shapes the template481

plane using camera intrinsics and Kinect depth values, which482

are accessed through a texture map. A geometry shader is used483

to reject triangles corresponding to missing depth values or dis-484

continuous surfaces as described in Algorithm 2.485

This approach is very bandwidth-efficient – it requires only486

16 bits of depth information for each pair of triangles generated487

and uses the depth map already transferred to GPU memory for488

the hole filling process. The approach is also fast as all vertex489

positions are generated on the GPU in parallel.490

4.5. Data Merger491

Overview. A goal of our system is to provide coverage of all492

surfaces that can be seen from the perspective of a remote user.493

A single Kinect is not able to provide adequate coverage and494

therefore a means to merge data between multiple units is nec-495

essary. When generating meshes we did not discuss a means496

to merge overlapping surfaces geometrically. Approaches used497

in stereo vision, such as the visibility-based depth image fu-498

sion method of Merrell et al. [19], generally assume high levels499

of error and inconsistencies (outliers) between maps that must500

be resolved. The Kinect’s structured-light based depth read-501

ings, however, are generally free of such outliers and have a502

low error at near range. In our application, Kinect sensors are503

used at close proximity and we expect lower and predictable504

error based on the angle and distance to the camera and mea-505

sured calibration error. Therefore, we assume that the surfaces506

have enough fidelity that we can simply draw them on top of507

each other, avoiding the need for a geometric merger algorithm.508

This has several performance advantages: the computational509

expense of performing the merge is spared, runtime varies lin-510

early with the number of cameras, surfaces for all cameras can511
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be processed in parallel, and a fast mesh generation technique512

(Section 4.4) can be used.513

However, even though geometry is sufficiently accurate for514

our purposes, texture image quality may be poor. Z-fighting be-515

tween overlapping surfaces with textures that vary in resolution,516

color imbalances, and misalignment yields unpleasing results.517

Ideally, we want to utilize only the data from the camera with518

the highest resolution depth and color information available at519

a given surface, with a seamless transition to data from adjacent520

cameras.521

Our approach addresses the problem of data merger in im-522

age space using a visibility-based approach. The data from each523

camera is rendered independently for the desired viewpoint, and524

color information is saved along with a depth and a quality es-525

timate at each pixel. When renderings for all cameras are com-526

plete, the depth values are used to determine which cameras can527

see the front surface. At each pixel, the color values of cameras528

with a view of the front surface are weighted by the quality es-529

timates. This process is illustrated in Figure 9.530

Texture Quality and Depth Error Estimation. Since our approach531

relies on the notion of a “quality” measurement at each pixel,532

we provide an estimate based on resolution – the area on the im-533

age sensor available to determine the pixel’s color or position.534

The area is estimated using the cosine of the angle between the535

surface normal of the pixel and the squared distance from the536

pixel to the image sensor. The relationship between area and537

resolution is straightforward for a color image, and we demon-538

strated previously that the Kinect depth error increases quadrat-539

ically. We approximate quality by assuming that both color and540

depth error increase quadratically, yielding the quality value in541

Equation 1.542

quality =

(cosθnormal→camera

distance2

)2

(1)

Note that this formulation is similar to a diffuse lighting cal-543

culation with attenuation (for a light positioned at the sensor’s544

location) that can rapidly be performed on almost any graphics545

hardware.546

Our approach also requires determination of which pixels
represent the closest surface with respect to viewing position.
We store the depth values at each pixel, but due to calibration
and depth sensor error the values corresponding to the front sur-
face do not coincide exactly. Equation 2 is used to estimate the
range of each depth position, so that the range of depths corre-
sponding to the front surface can be determined.

[−errcalib − fdepth err(depth), errcalib + fdepth err(depth)] (2)

Calibration error (errcalib) can be estimated using the re-547

projection error that is returned by the camera calibration rou-548

tine. Depth error ( fdepth err) can be estimated using the data549

from Figure 6.550

Data Merger Algorithm. Algorithm 3 describes the process of551

merging the renderings for each camera. At each pixel, the front552

surface tolerance is determined by finding the closest depth553

value that represents the far end of any pixel’s estimated depth554

range. The color values for all pixels with this depth value or555

nearer are weighted by quality to obtain the final pixel color.556

Algorithm 3 Data merger algorithm
for each output pixel p do

depth f ar ← ∞

{Determine far bound of closest surface}
for each camera c do

d f ar ← depthcp + errcalib + fdepth err(depthcp )
if d f ar < depth f ar then

depth f ar ← d f ar

end if
end for
colorsum ← 0, qualitysum ← 0
for each camera c do
{Only consider cameras with view of closest surface}
if depthcp ≤ depth f ar then

matchbest ← ∞

{Perform photometric search for closest matching
pixel to camera with best quality estimate}
for each pixel s in search window do

match← ‖colorqp − colorcs‖2
if match < matchbest then

matchbest ← match
colorbest ← colorcs

qualitybest ← qualitycs

end if
end for
{If photometric threshold met, perform quality
weighted blending}
if matchbest ≤ threshmatch then

colorsum ← colorsum + qualitybest ∗ colorbest

qualitysum ← qualitysum + qualitybest

end if
end if

end for
coloroutput ← colorsum/qualitysum

end for

Photometric Constraint. A shortcoming of our original data557

merger algorithm [12] was the unconditional blending of data558

between all cameras regardless of color consistency. If intensity559

varied widely between cameras (due to geometric misalignment560

or specularity), the resultant combined textures would appear561

blurry or a double image would appear at conflicting pixels.562

Inspired by [7], we apply a photometric search and constraint563

before blending each quality weighted color sample. For each564

camera, we perform a search within a small window for the565

closest matching color to the color associated with the camera566

with the highest quality estimate (colorqp ) and blend only if the567

colors match within a threshold.568

GPU Implementation. Our fast GPU implementation supports569

calculation of depth, quality, and color values in one pass per570

camera and allows all cameras’ renderings to be merged at once571
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Figure 9: Data Merger Algorithm. Depth, color, and quality estimate values
are determined at each pixel for each camera. The front surface is determined
using the depth information, and the associated color values are weighted by
the quality estimates.

in a second pass. When generating the triangle mesh in an572

OpenGL geometry shader, we compute the distance to the cam-573

era and the angle between the camera and surface normal and574

save these values as vertex attributes. During rasterization, an575

OpenGL fragment shader computes a color value and a quality576

value (using Equation 1) at each pixel, storing the quality value577

in the alpha channel and the depth value from the Z-buffer in a578

separate texture. When the renderings for all cameras are com-579

plete, all data is merged in an OpenGL fragment shader accord-580

ing to Algorithm 3.581

4.6. Multiple Camera Color Matching582

Overview. The need for color matching is common for many583

camera systems, as even the same model device may exhibit584

different color gamuts [23]. This need is exacerbated in inex-585

pensive devices like the Kinect sensor, which allows only auto-586

matic color and exposure control (with present drivers), yield-587

ing color values that may vary dramatically between adjacent588

cameras. Here traditional color matching techniques, such as589

adjusting color to match a physical target seen by each cam-590

era, are ineffective because automatic control may alter color591

balances at any time. We present an automatic color matching592

technique that uses depth information to find color correspon-593

dences between cameras, which can be used to build a color594

matching function. We believe this technique may be useful595

when manual color adjustment is unavailable, or as a fast ap-596

proximate alternative to conventional matching techniques.597

Obtaining Color Correspondences. To build a set of color cor-598

respondences between cameras, we first find pairs of points599

from two cameras that correspond to approximately the same600

point in 3D space. We assume that each pair of points repre-601

sents the same point on a diffuse surface in physical space, and602

therefore should agree in color. To find these point correspon-603

dences, we refer to our previously described visibility-based604

data merger algorithm. The algorithm rendered the scene in-605

dividually for each Kinect camera and examined corresponding606

depth values to determine which represented the front surface.607

For color matching, if two cameras have depth values that repre-608

sent the front surface at a given pixel, we add their color values609

to a list of correspondences.610

Since this approach is visibility-based, the color correspon-611

dences obtained are sensitive to the position of the virtual cam-612

era. If the same virtual camera position is used for color match-613

ing and rendering, color matching is tailored to the colors actu-614

ally seen by the user. However, if a pair of cameras have few615

surfaces in common from the viewpoint used for rendering, or616

if these surfaces have a limited range of colors, there many be617

too few correspondences to build a robust color matching func-618

tion. In this case, point correspondences can be computed from619

a reference view (such as a bird’s eye view), rather than from620

the view used for rendering. To build more robust color corre-621

spondences, additional techniques could be used. For example,622

the color correspondences could be built from renderings from623

several viewpoints, or could be collected over time.624

Building a Color Matching Function. There are many advanced625

techniques for building color matching functions from a set of626

color correspondences, such as that of Ilie and Welsh [23]. To627

demonstrate our approach, we used a simple method – color628

correspondences were fit to a linear model. Since our color cor-629

respondences were noisy (small errors in surface position may630

result in a large difference in color), we used the RANSAC [24]631

method for fitting, which is robust to outliers. Figure 10 shows632

a plot of actual color correspondences (for one channel) and the633

fitted linear color matching function.634

Implementation. For our test setup, we matched the colors of635

each camera to our ceiling-mounted master camera. We elected636

not to run the color matching function on every frame, as small637

variations in color matching functions resulted in a color cy-638

cling effect. Instead a new color matching function was built639

whenever the user pressed a function key. As real-time perfor-640

mance was not needed, we implemented color matching func-641

tionality on the CPU. We believe our implementation could642

be improved by performing bundle adjustment across cameras643

and by running the color matching function automatically when644

some criteria is met.645

4.7. Eye Position Tracking646

Overview. To allow our system to render a set of correct stereo647

viewpoints from the user’s position, we need to obtain the po-648

sition of the viewer’s eyes in 3D space. Many approaches to649

tracking have been devised, such as measuring the magnetic650

field around a marker, segmenting and triangulating the posi-651

tion of reflective markers as seen by an array of cameras, and652

using computer vision techniques to recognize objects in im-653

ages. The latter approach has been used to obtain the 3D posi-654

tions of eyes with a conventional 2D camera, but assumptions655

or measurements must be made of the face. We aim to improve656

these techniques by incorporating depth information. One im-657

pressive recent approach [25] used depth information to build a658

deformable mesh that was tracked to a user’s face in real-time,659

but required a 6.7 second initialization time and achieved only660
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Figure 10: Color matching using 3D point correspondences. Plot shows color
correspondences between a pair of cameras for one color channel and the
RANSAC-fitted linear color matching function.

moderate real-time performance (10-12 Hz). Since we require661

higher performance and do not need tracking of the entire face,662

we look to an alternate approach – performing 2D eye detec-663

tion and transforming the detected position into 3D using the664

Kinect’s depth data.665

Requirements. Our tracking system should meet the following666

requirements for use in our telepresence system:667

1. Accuracy: at a 1 m distance, 15 mm of lateral movement668

causes the eye to sweep over one display subpixel seen669

through the barrier of our autostereo display; for best670

quality results tracking accuracy should be ±7.5mm.671

2. Speed, Latency: we do not anticipate rapid head move-672

ments in our application. To support the modest move-673

ment of 25 cm/sec, framerate must be > 33.3 Hz and la-674

tency must be < 30ms to meet the accuracy requirements675

above.676

2D Eye Tracking. To perform 2D eye detection on the color im-677

age, we use Viola [26] and Lienhart’s [27] approach of boosted678

Haar classifiers, as implemented in OpenCV. First the face is679

detected (using a classifier from Leinhart), and then eyes are de-680

tected in the facial region (using classifiers from Castrillon [28]).681

Once the eyes are found, their pattern is saved and subsequent682

eye searches are performed using normalized cross correlation.683

An image pyramid is used to accelerate the cross correlation684

search. If the strongest response to cross correlation falls be-685

low a threshold, detectors are again used to locate facial fea-686

tures. The face is first searched for in the region surrounding687

the last known eye position; if not found the entire image is688

again searched. All detection and tracking operations were per-689

formed in the CPU, as it was not heavily utilized elsewhere in690

our system. A single Kinect unit, mounted above the autostereo691

display, was used for tracking.692

Using Depth to Obtain 3D Eye Position. Once the center of693

both eyes have been detected, the 2D position is transformed694

into 3D using the Kinect’s depth information and measured695

camera intrinsics and extrinsics. To reduce the effects of noise696

and missing data, depth values are averaged over a small radius697

around the eye position. A Kalman filter was used to improve698

the accuracy and stability of the 3D tracked eye positions as699

well as predict the locations of the eyes between sensor read-700

ings. Although our tracking system requires no prior measure-701

ments of the user’s face, accuracy can be improved if the true702

interpupillary distance (IPD) is known. If the system is utilized703

by a single user over a capture session, an accurate IPD estimate704

can be learned over time.705

Discussion. Our tracking system offers several advantages over706

existing systems. It uses inexpensive hardware (the Kinect sen-707

sor) and allows the same device to be used for both tracking708

and 3D capture at the same time. Since the eyes are tracked709

independently, our system allows correct calculation of 3D eye710

positions without measurements or assumptions of face size or711

IPD.712

We believe our system could be improved with a more ro-713

bust set of feature detectors – our current system allows for only714

moderate head rotations and does not work well with glasses.715

Depth data could also be further utilized to improve speed; for716

example, the face search area could be restricted to depths that717

are within the range of a seated user. Multiple cameras could be718

utilized to offer better coverage of a rotated head or to improve719

the accuracy of the system.720

4.8. Stereo Display721

Overview. As mentioned, research [13] has shown that stereo722

displays can increase the sense of shared presence, although723

systems requiring 3D glasses obstruct eye contract and have724

been found to be disruptive to most users. Therefore, we desire725

an autostereo display for our system.726

Display Selection. Our display system should meet the follow-727

ing requirements for use in our telepresence system:728

1. Preservation of full captured color and detail.729

2. Large enough to allow remote scene to be observed as730

life-sized at proper viewing distance.731

3. Support for continuous viewpoints and horizontal and ver-732

tical parallax.733

4. Support for a range of movement typical of a seated user.734

5. Interactive update rates that meet our tracking require-735

ments.736

We were in possession of a fixed parallax barrier display737

that met these requirements – an X3D-40 display by X3D tech-738

nologies (circa 2004). The display measures 40 in diagonally739

and has a 1280×768 pixel resolution and a 60 Hz update rate.740

Since the display supports only a limited number of views, track-741

ing was employed. In a future system, we intend to utilize a742

display that supports multiple users, such as the Random Hole743

display of Ye et al [29].744
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Rendering for the Display. Since our system uses head track-745

ing, we rendered views for the display using off-axis frustra746

between the eyes and the display. The position of the eyes747

was determined using the tracking system, and the position of748

the monitor was measured using our 3D capture system. An749

OpenGL fragment shader was used to generate the diagonally750

interleaved pattern needed by our parallax barrier display for751

each pair of stereo views.752

Tracking Problem and Intra-Frame Rendering. While using our753

fixed parallax barrier display, a user may see an incorrect view754

or significant artifacts (dark black bands or fuzziness) if out of755

the expected viewing position. If the rendering update rate is756

lower than the rate required by our tracking system, a user may757

experience these effects if moving, resulting in poor stereo per-758

ception.759

This problem has been addressed previously for dynamic760

barrier displays [30] by generating the parallax barrier stripes761

asynchronously at higher rates than rendering takes place. For762

fixed barrier displays, we developed a new technique to address763

this problem – rendering barrier display patterns at a higher rate764

while new frames are rendered more slowly offscreen.765

Since the time it takes to generate a parallax barrier pattern766

for a new eye position is very short and fixed with our GPU767

implementation, we can draw one or more new barrier patterns768

while in the process of rendering a frame for the next view-769

ing perspective. These intra-frame barrier patterns use the new770

estimated eye position and the last rendered viewing position,771

saved in textures. Using OpenGL, we are able to draw to the772

screen mid-frame by switching between multiple frame buffers.773

To keep our parallax barrier generation rate and rendering rate774

independent, we stop to draw a new barrier pattern whenever775

a fixed amount of time has elapsed during rendering, periodi-776

cally flushing the pipeline to allow for better time granularity777

between asynchronous GL calls. The result is a high fixed bar-778

rier display rate, independent of rendering rate, at the expense779

of a small decrease in rendering rate. Specific rates are listed in780

Section 5.4781

5. Results782

5.1. Camera Coverage and Calibration Results783

Camera Coverage. Our camera arrangement (shown in upper784

left of Figure 3), includes most of the surfaces seen by a seated785

remote user, as shown in Figure 11. Overlapping camera cov-786

erage preserves large surfaces on the rear wall, which would787

otherwise be occluded by the seated user. Redundant coverage788

also helps prevent self shadowing. For example, in Figure 1 the789

coffee cup occludes part of the user’s chest with respect to one790

of the front cameras, but the missing surfaces are filled with791

data from the other front camera.792

Depth Bias Correction. To test the depth bias correction func-793

tions determined in Section 4.1, two checkerboard targets were794

placed centered in front of two Kinect units, so that nearer and795

farther targets were approximately 3.0 m and 3.5 m from the796

units respectively. The Kinects were aimed at the targets and797

Figure 11: Camera Coverage. Left: Camera coverage in our cubicle area using
five depth cameras. Right: Color coded contributions of individual cameras.

Figure 12: Depth bias correction results. Left: No depth bias correction applied.
Right: Depth bias correction applied.

positioned with a wide baseline of 2.5 m to accentuate errors798

in depth. The data from the two cameras was rendered using799

the techniques described in Section 4, except that the photo-800

metric constraint of Section 4.5 was disabled during blending801

so that the misalignments of the high contrast targets could be802

observed.803

The results are shown in Figure 12. One can see a signif-804

icant improvement in the alignment of both checkerboards be-805

tween cameras, although a small amount of misalignment re-806

mains.807

5.2. Data Processing and Rendering Results808

Mesh Generation. All images in Figure 13 show the result of809

mesh generation. Our requirements are met: the mesh offers810

a continuous surface, discontinuous surfaces (such as from the811

body to the rear wall) are properly separated, and missing data812

(small area under chin) is tolerated.813
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Figure 13: Data processing results. A: No enhancements applied. B: All enhancements except hole filling and smoothing. C: All enhancements except color
matching. D: All enhancements except quality weighted data merger. E: All enhancements applied. (“All enhancements” includes to hole filling, smoothing, data
merger, and color matching)

Figure 15: Data merger results. A1: No merger applied, meshes drawn on
top of each other. A2: Merger with simple average. A3: Merger with quality
weighting. B1: Color coded camera contributions with no merger. B2: Camera
contributions with quality-weighted merger.

Hole Filling and Smoothing. Image E of Figure 13 (as com-814

pared to image B of Figure 13) shows the result of the hole815

filling and smoothing filters applied on a scene with four over-816

lapping cameras. In this example, 100% of holes caused by817

interference were filled while textures remained aligned to the818

mesh (rates of > 90% are typical).819

The effect of the additional bilateral smoothing filter is il-820

lustrated in Figure 14. Note that the more distant surfaces (ex:821

wall) appear flatter and smoother with the addition of the bilat-822

eral filter (right image) than with the median-only smoothing of823

our previous system [12] (center image).824

Data Merger. Image E of Figure 13 (as compared to image825

D of Figure 13) and all of Figure 15 show the result of the826

data merger algorithm on four cameras, which is cleaner and827

smoother than meshes simply drawn over each other or aver-828

aged. In image B1 of Figure 15, one can see in the unmerged829

example that the mesh of the right-front camera (tinted blue) is830

drawn entirely over the data from the left-front camera (tinted831

red). These surfaces should coincide exactly, but a small cali-832

bration error places the surface from right-front camera closer833

to the viewer. In image B2 of Figure 15, one can see that834

the quality-weighted merger algorithm smoothly transitions be-835

tween camera data across the face.836

Figure 16 shows the improvement gained when the photo-837

metric constraint is incorporated into the data merger algorithm.838

Without the photometric constraint, some areas of the poster839

(for example, around the walking figures and the large letter È)840

have ghost images due to slightly misaligned surfaces between841

cameras. With the constraint enabled, the ghost images have842

mostly disappeared, although a faint outline is still visible.843

Figure 16: Photometric constraint. Top: No photometric constraint in data
merger algorithm. Bottom: Photometric constraint applied.
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Figure 14: Smoothing results. Left: No smoothing (or hole filling) applied. Center: Median smoothing. Right: Bilateral smoothing.

Figure 17: Cumulative enhancements. Left: Rendering using our previous system [12]. Right: Rendering using the improved calibration, data processing, and
rendering techniques described in this paper.
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Table 2: Tracking performance over 1600 frames.

Case # % Avg Time(ms)
Eyes found (full frame face/eye detect) 3 0.19 140.5
Eyes found (partial frame face/eye detect) 9 0.56 19.8
Eyes found (pattern search) 1585 99.06 2.3
Eyes not found 3 0.19 13.6

Color Matching. Image E of Figure 13 (as compared to im-844

age C of Figure 13) shows the result of color matching in a845

scene with four cameras. The unmodified image shows small846

color inconsistencies between the front cameras (on the face847

and clothing) and significant inconsistencies between the four848

cameras that overlap in the background – most notably on the849

far right side of the image. The automatic color matching al-850

gorithm mostly resolved these deviations, although some faint851

color seams are still visible.852

Cumulative Result. Figure 17 shows the cumulative effect of853

the enhanced data processing and rendering (as well as calibra-854

tion) techniques over those from our previous system [12]. Note855

the improved straightness of lines on the poster and checker-856

board, clearer textures on the face, t-shirt, and poster, and the857

absence of ghosting on the checkerboard.858

5.3. Eye Tracking and Stereo Display Results859

Eye Detection Rate and Speed. Table 2 shows the tracking per-860

formance typical of a seated user over a 1600 frame sequence.861

For the sequence, the user was seated centered 1 m from the862

display and tracking camera and moved his head left, right, for-863

ward and backward over a range of ±0.5 m. The average head864

movement speed was 48 cm/s, measured using the detected 3D865

eye positions. Positive eye detection occurred on >99% of the866

frames at an average rate of 2.7 ms. In the worst case, when the867

face was lost and the entire frame had to be searched, a notice-868

able delay of 140.5 ms on average occurred.869

Tracking Performance. Figure 18 provides a measure of the870

performance of the eye tracking by comparing the 3D distance871

between a pair of tracked eyes and the true measured interpupil-872

lary distance (IPD). IPD was used as the ground truth for accu-873

racy as we were not in possession of equipment that would al-874

low us to measure our positional accuracy directly. This metric875

was measured over a sequence of 1761 frames, in which a user876

seated 1 m from the tracking camera moved his head to the left,877

right, forward and backward over a range of ±0.5 m. 85.6% of878

measurements were within ±5 mm of the true IPD, and 96.4%879

were within ±10 mm.880

Tracking Accuracy and Stereo Quality. Since our tracking sys-881

tem is designed to support a stereo display, it is useful to test the882

two systems together. To demonstrate that our tracking system883

is fast and accurate enough to support our parallax barrier au-884

tostereo display with good quality, we shot video of our system885

through a tracking target (shown in Figure 20). Our tracking886

system is able to detect the target as if it were a real face and887

Figure 18: 3D Eye tracking performance. Plot shows measured deviations from
a known inter-pupil distance.

thus one of the stereo views will be generated from the cor-888

rect perspective of the camera placed behind an eye. Using this889

setup, the target and camera were positioned 1.25 m from the890

tracking camera and display and were moved at a rate of ap-891

proximately 24 cm/sec.892

Without tracking prediction and intra-frame rendering en-893

abled, the rendering and parallax barrier pattern generation rate894

was 21 Hz in our four camera test setup. As seen in the left of895

Figure 19, results were very poor; the tracking and rendering896

could not keep up with the target as it moved into the view-897

ing zone intended for the other eye and thus both views could898

be seen prominently and simultaneously. With tracking predic-899

tion and intra-frame rendering enabled (right of Figure 19), the900

rendering rate dropped slightly to 18 Hz but the barrier genera-901

tion rate more than doubled to 48 Hz. Results were much im-902

proved – the view seen by the camera is crisp and only very faint903

ghosting can be seen to the right of the mannequin head and904

box. [Please note that the performance numbers quoted in this905

paragraph and the images of Figure 19 were measured using906

our previous system [12] and performance has since increased907

due to a graphics card upgrade (see Table 3). Although the908

higher display rates of our upgraded hardware lessen the need909

for intra-frame rendering in our current setup, we believe the910

technique remains applicable to those with more modest hard-911

ware. It will also allow us to maintain stereo quality as more912

advanced (and computationally complex) reconstruction algo-913

rithms are utilized and more Kinects are added to the system in914

the future, and will allow increased head movement speeds.]915

5.4. System Performance916

Table 3 lists the performance achieved with our test system917

in various configurations. When rendering for a single view, the918

system was able to maintain average frame rates of 48 Hz for919

five depth cameras with all enhancements (meshing, hole fill-920

ing, quality-weighted data merger) enabled. For tracked stereo921

configurations, rendering rates fell to 34 Hz, but a parallax bar-922

rier pattern rate of 74 Hz preserves smooth head tracking and923

stereo quality.924
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Figure 19: Head-tracked stereo in motion. Left: Tracking prediction, intra-
frame rendering disabled. Right: Prediction, intra-frame rendering enabled.
(Note: faint image on right side is reflection of photographer).

Figure 20: Tracking target. Left: Head cutout used to test eye tracking, with
camera behind eye. Right: close-up of camera through eye.

Table 3: Average display rates (frames per second) for 5 Kinects

Single View w/ Selected Enhancements
Meshing 160
Meshing, Hole Filling/Smoothing 117
Meshing, Hole Filling/Smoothing, Data Merger 48

Stereo Views w/ All Enhancements
Head-Tracked 36
Head-Tracked w/Prediction (Render Rate) 34
Head-Tracked w/Prediction (Barrier Rate) 74

6. Conclusions and Future Work925

We have presented solutions to several issues related to build-926

ing a 3D capture system using multiple depth cameras: resolv-927

ing interference, data merging, and color matching between928

units. We have also introduced an eye position tracking system929

using depth sensors and demonstrated effective stereo display930

using rendering rates that would not usually support significant931

head motion. We have also incorporated improvements in cal-932

ibration, data filtering, and data merger that served to improve933

image quality over a previous version of the system [12].934

Using these solutions, we have demonstrated a telepresence935

system that is able to capture a fully dynamic 3D scene the size936

of a cubicle while allowing a remote user to look around the937

scene from any viewpoint. The system preserves eye gaze and938

does not require the user to wear any encumbrances. Using939

a single PC and graphics card, our system was able to render940

head-tracked stereo views at interactive rates and maintained941

stereo percept even with moderate head movement speeds.942

Although our test system is functional, there are areas that943

we would like to improve, notably image quality. Although944

we incorporated a simple temporal noise suppression function945

in our system, some temporal noise artifacts are still present946

at the edges of objects where the depth camera alternates be-947

tween providing a value and reporting no data at a given pixel.948

These depth pixels could be modified to keep a steady state or949

object contours could be smoothed and gaps could be filled in.950

Color calibration could be enhanced by combining our color951

correspondence-building algorithm with more robust color match-952

ing functions.953

We also intend to expand our test setup into the “ideal” sys-954

tem shown in the bottom of Figure 3 by supporting 3D capture955

and 3D display for multiple users in both spaces. As seen in956

Figure 2, we already support 3D capture of multiple users. In957

this future system, we intend to add support for multiple tracked958

users on both sides.959

Finally, we would like to expand the communication ability960

of our system by adding support for virtual objects that can be961

manipulated naturally by persons in the scene. Figure 21 shows962

an early experiment.963

Acknowledgments964

The authors would like to thank Herman Towles for propos-965

ing this system, Andrei State for helping to produce the sup-966

plemental video and both for making helpful suggestions for967

improving this paper. We also thank Kurtis Keller for advice968

on reducing Kinect interference, Adrian Ilie for recommenda-969

tions regarding color calibration, Ava Pope for helping to mea-970

sure the wavelength of the Kinect’s IR lasers. This work was971

supported in part by the National Science Foundation (award972

CNS-0751187) and by the BeingThere Centre, a collaboration973

of UNC Chapel Hill, ETH Zurich, NTU Singapore, and the Me-974

dia Development Authority of Singapore.975

16



Figure 21: Mixed Reality Application. A 3D virtual object (circuit board) is
incorporated into the scene during real-time 3D capture and naturally occludes
and is occluded by real objects.
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