The University of North Carolina at Chapel Hill

Comp 411 Computer Organization

Spring 2011

Problem Set \#3

Issued Monday, 3/14/11; Due Monday, 3/21/11
Note: You may use additional sheets of paper, but please enter your answers in the space provided in this document.

Problem 1. Mux Madness (16 points)

Suppose you wanted to implement a Boolean function Y of two inputs A and B using multiplexers, as shown in the figure.

Give binary values for $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3} that implement the following functions on the two inputs A and B :
a) $\mathrm{Y}=\operatorname{NOR}(\mathrm{A}, \mathrm{B})$
b) $\mathrm{Y}=(\mathrm{A}==\mathrm{B})$
c) $Y=(\mathrm{A}>=\mathrm{B})$
d) $\mathrm{Y}=\operatorname{XOR}(\mathrm{A}, \mathrm{B})$

Function $\mathbf{Y}=$	$\mathbf{I}_{\mathbf{0}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{3}}$
NOR(A, B)				
A == B				
A >= B				
XOR(A, B)				

Problem 2. "Go Forth and Multiply" (52 points)

a) [16 points] Complete the truth table below showing multiplication of two 2-bit unsigned integers $\mathrm{A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}_{1} \mathrm{~B}_{0}$, producing a 4-bit result $\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$. Please enter your answer directly in the table below.

$\mathrm{A}_{1} \mathrm{~A}_{0} \mathrm{~B}_{1} \mathrm{~B}_{0}$	$\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

b) [20 points] Suppose you wanted to compute the fourth power of a 2-bit number (i.e., A^{4}). Complete the truth table below in which the input column contains the 2-bit input $\left(A=A_{1} A_{0}\right)$, and the output column is the 8-bit result.

$\mathrm{A}_{1} \mathrm{~A}_{0}$	$\mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$
00	
01	
10	
11	

c) [16 points] For each of the 8 output bits from part (b), give the sum-of-products Boolean equation (circuit not needed):

$$
\begin{aligned}
& \mathrm{P}_{0}= \\
& \mathrm{P}_{1}= \\
& \mathrm{P}_{2}= \\
& \mathrm{P}_{3}= \\
& \mathrm{P}_{4}= \\
& \mathrm{P}_{5}= \\
& \mathrm{P}_{6}= \\
& \mathrm{P}_{7}=
\end{aligned}
$$

How many Boolean gates are needed for this implementation?

$$
\# \text { of AND gates }=\ldots, \quad \# \text { of OR gates }=\ldots, \# \text { of inverters }=
$$

Problem 3. "Fishing for Complements" (32 points). Show the complementary set of p-channel or n-channel transistors that complete the following CMOS circuits:

c)

d)

