The University of North Carolina at Chapel Hill

 Comp 411 Computer Organization

 Comp 411 Computer Organization}

Spring 2011
Problem Set \#5
Issued Wednesday, 3/30/11; Due Wednesday, 4/6/11 (beginning of class)
Note: You may use additional sheets of paper, but please enter your answers in the space provided in this document.

Problem 1. "Bits of Floating-Point" (20 points)

Represent the following in single-precision IEEE floating point. Give your answers in hexadecimal. Enter the answers in the table below.
a) -205.0
b) 60.125
c) $\left(2^{11}-1\right)$

Decimal	\boldsymbol{S} field	E field (binary)	F field (binary)	Complete Number (Hex)
-205.0				
60.125				
$2^{11}-1$				

Convert the following single-precision floating-point number (given in hexadecimal) to decimal, and enter the answer in the table below:
d) $0 \times 338 \mathrm{c} 0000$

After you determine the S, E, and F fields, compute the decimal value using a calculator.

Hex	\boldsymbol{S} field	E field (binary)	Significand (binary)	Decimal (using calculator)
338 c 0000				

Problem 2. "Floating-Point Arithmetic" (20 points)

Given the following two single-precision IEEE floating-point numbers:

$$
x=0 \times 35 c 00000 \quad \text { and } \quad y=0 \times 33 c 00000
$$

Compute the following in binary or hexadecimal showing all work: $\mathbf{x + y}$
NOTE: You must strictly follow the steps of binary floating-point addition, as presented in class. That is, handle exponents, mantissas, alignment, etc. as discussed in class. Do NOT simply convert these numbers into decimal and compute the answers using a calculator! (You will receive zero credit for doing so!)

In particular, show the following steps: (i) convert the hex numbers into their S, E, and F fields; (ii) perform any alignment, if needed; (iii) perform the addition; and (iv) perform any normalization of the result, if needed. Finally, verify that your answer is correct by using a calculator to find the decimal values of x and y, and the decimal value of your computed sum.

