
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 411 Computer Organization
Spring 2011

Problem Set #2

Issued Wed. 2/2/10; Due Wed. 2/9/11 (hardcopy, beginning of class)

Homework Information: Late homework will not be accepted. Feel free to get help from
others, but the work you hand in should be your own. You may not use solutions to a previous
year’s homework to aid you in completing this assignment. Please enter your answers in the
space provided, but feel free to attach any additional sheets of scratch work.

Problem 1: Converting Instructions to Assembly Language (35 points)
The conversion of a mnemonic instruction to its binary representation is called assembly. This
tedious process is generally delegated to a computer program for a variety of reasons. In the
following exercises, you will get a taste of what the task of translating from assembly to machine
language is like.

a) Match the instructions below with their hexadecimal counterparts. Enter your answer as the
letter ‘A’-‘R’ in the blank space to the left of each instruction.

___ addi $v0,$zero,0x8009 A: 0x000A4A40

___ slti $t2,$t1,-1 B: 0x21490009

___ addi $t1,$t2,9 C: 0x014B4820

___ loop: bne $t1,$t2,loop D: 0x014B4824

___ loop2: beq $t2,$t1,loop2 E: 0x000A4A43

___ sll $t1,$t2,9 G: 0x3C094809

___ and $9,$10,$11 H: 0x152AFFFF

___ ori $t1,$t2,9 J: 0x292AFFFF

___ lw $a1,0x09($v0) K: 0x312A4809

___ add $t1,$t2,$t3 L: 0x3C03FFFF

___ andi $t2,$t1,0x4809 M: 0x20028009

___ lui $t1,0x4809 N: 0x020A4820

___ lui $v1,0xFFFF O: 0x8C450009

___ sra $t1,$t2,9 P: 0x1149FFFF

___ add $t1,$s0,$t2 R: 0x35490009

Problem 1: Converting Instructions to Assembly Language (continued)

b) The “no-op” instruction consists of all zeroes: 0x00000000. Write the actual instruction that

this corresponds to (including registers).

Problem 2: Converting pseudo-instructions (35 points)

MIPS assembly language provides opcode mnemonics for instructions that are not part of the
instruction set architecture. For the most part, these pseudoinstructions can be generated using a
sequence of one or more “true” MIPS instructions.

Find a “true-instruction” equivalent for each of the following pseudo-instructions (some are
official MIPS pseudoinstructions, others are made up). Each of these can be implemented using
only one real MIPS instruction. Discuss of your implementations, if any, and whether or not your
implementation is unique (i.e. could some other instruction be used to achieve the same effect).

a) move rA, rB
Reg[rA] ← Reg[rB]
Move register rB to rA

b) not rA, rB
Reg[rA] ← ~Reg[rB]
Put the bitwise complement of rB into rA

c) neg rA, rB
Reg[rA] ← -Reg[rB]
Put the 2’s complement of rB into rA

d) dec rA
Reg[rA] ← Reg[rA] - 1
Decrement rA by 1 and place result in rA

e) Suppose we wanted to fill a register rA with the value 65535 (0x0000FFFF). Would the
instruction addi rA,$0,0xFFFF perform that action? If not, what would be the value in rA?

f) Suppose we wanted to fill a register rA with the value 255 (0x000000FF). Would the
instruction ori rA,$0,255 perform that operation? If not, what would be the value in rA?

g) Suppose we wanted to fill a register rA with the value -1 (0xFFFFFFFF). Would the
instruction ori rA,$0,-1 perform that operation? If not, what would be the value in rA?

Answer:

Answer:

Answer:

Answer:

Answer:

Problem 3. “Loading up at the Store” (30 points)

The MIPS ISA provides access to memory exclusively through load (lw) and store (sw)
instructions. Both instructions are encoded using the I-format, thus providing three operands, two
registers and a 16-bit sign-extended constant. The memory address is computed by adding the
contents of the register specified in the rs register field to the sign-extended 16-bit constant.
Then either the contents of the specified memory location are loaded in the register specified in rt
instruction field (lw), or that register’s contents are stored in the indicated memory location (sw).

It is possible to “directly” address a limited range of 32-bit memory locations by encoding the rs
field as $0.

a) How many distinct memory locations can be addressed this way?
(Note: Addresses generated by lw/sw instructions must be
multiples of 4, i.e., they must be word addresses.)

b) MIPS assemblers often provide a pseudoinstruction (see problem 2) for loading an effective
address into a register called “la” for load address. The syntax of this pseudoinstruction matches
the lw instruction, and an example is shown below:

la $t0, 100($t1)

What actual instruction can be used to implement this pseudoinstruction?

c) MIPS does not provide any instruction for specifying a memory address with a variable offset
from rs (i.e., allows only an immediate constant to be specified as the offset). Fill in the
multiple-instruction sequence below to accomplish this type of memory access using available
MIPS instructions. Assume the array’s base address (i.e., the location of its 0th member) is in
register $t0, the word index is located in $t1, and the value in memory is being loaded into $t2.

Thus, we effectively want to execute an instruction that would look like:

lw $t2, $t0(4*$t1)

However, the MIPS instruction set does not provide any such instruction. Your task is to use a
sequence of actual MIPS instructions to implement the same behavior. Indicate your answer in
the table below.

 (Hint: it may be helpful to come up with your own solution, then fill in the code below)

? $t3 $t1 2

ADD $t4 $t3 ?

LW $t2 ?(?)

Answer:

Answer:

