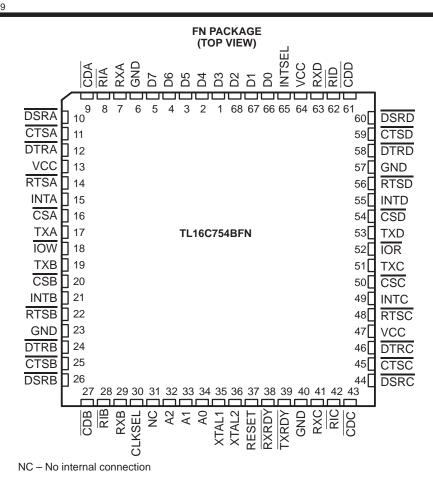

SLLS397 - NOVEMBER 1999

- ST16C654 Pin Compatible With Additional Enhancements
- Supports Up To 24-MHz Crystal Input Clock (1.5 Mbps)
- Supports Up To 48-MHz Oscillator Input Clock (3 Mbps) for 5-V Operation
- Supports Up To 32-MHz Oscillator Input Clock (2 Mbps) for 3.3-V Operation
- 64-Byte Transmit FIFO
- 64-Byte Receive FIFO With Error Flags
- Programmable and Selectable Transmit and Receive FIFO Trigger Levels for DMA and Interrupt Generation
- Programmable Receive FIFO Trigger Levels for Software/Hardware Flow Control
- Software/Hardware Flow Control
 Programmable Xon/Xoff Characters
 - Programmable Auto-RTS and Auto-CTS
- Optional Data Flow Resume by Xon Any Character
- DMA Signalling Capability for Both Received and Transmitted Data
- Supports 3.3-V or 5-V Supply

- Characterized for Operation From –40°C to 85°C
- Software Selectable Baud Rate Generator
- Prescalable Provides Additional Divide by 4 Function
- Fast Access 2 Clock Cycle IOR/IOW Pulse Width
- Programmable Sleep Mode
- Programmable Serial Interface Characteristics
 - 5, 6, 7, or 8-Bit Characters
 - Even, Odd, or No Parity Bit Generation and Detection
 - 1, 1.5, or 2 Stop Bit Generation
- False Start Bit Detection
- Complete Status Reporting Capabilities in Both Normal and Sleep Mode
- Line Break Generation and Detection
- Internal Test and Loopback Capabilities
- Fully Prioritized Interrupt System Controls
- Modem Control Functions (CTS, RTS, DSR, DTR, RI, and CD)

NC – No internal connection


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SLLS397 - NOVEMBER 1999

description

The TL16C754B is a quad universal asynchronous receiver/transmitter (UART) with 64-byte FIFOs, automatic hardware/software flow control, and data rates up to 3 Mbps. The TL16C754B offers enhanced features. It has a transmission control register (TCR) that stores received FIFO threshold level to start/stop transmission during hardware and software flow control. With the FIFO RDY register, the software gets the status of TXRDY/RXRDY for all four ports in one access. On-chip status registers provide the user with error indications, operational status, and modem interface control. System interrupts may be tailored to meet user requirements. An internal loopback capability allows onboard diagnostics.

The UART transmits data sent to it from the peripheral 8-bit bus on the TX signal and receives characters on the RX signal. Characters can be programmed to be 5, 6, 7, or 8 bits. The UART has a 64-byte receive FIFO and transmit FIFO and can be programmed to interrupt at different trigger levels. The UART generates its own desired baud rate based upon a programmable divisor and its input clock. It can transmit even, odd, or no parity and 1, 1.5, or 2 stop bits. The receiver can detect break, idle or framing errors, FIFO overflow, and parity errors. The transmitter can detect FIFO underflow. The UART also contains a software interface for modem control operations, and software flow control and hardware flow control capabilities.

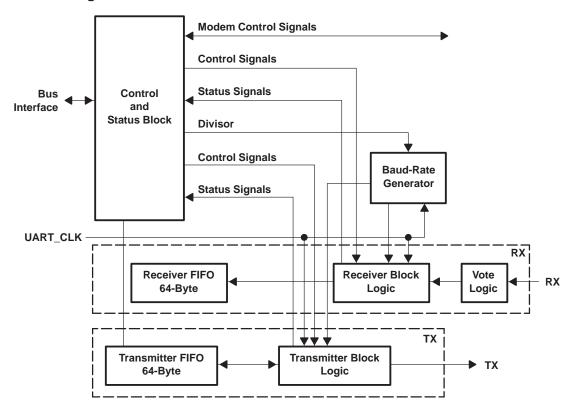
The TL16C754B is available in 80-pin TQFP and 68-pin PLCC packages.

SLLS397 - NOVEMBER 1999

Terminal Functions

TER	MINAL					
	NO.		1/0	DESCRIPTION		
NAME	PN	FN	1			
A0	30	34	1	Address bit 0 select. Internal registers address selection. Refer to Table 7 for Register Address Map.		
A1	29	33	1	Address bit 1 select. Internal registers address selection. Refer to Table 7 for Register Address Map		
A2	28	32	1	Address bit 2 select. Internal registers address selection. Refer to Table 7 for Register Address Map		
CDA, CDB CDC, CDD	79, 23 39, 63	9, 27 43, 61	I	Carrier detect (active low). These inputs are associated with individual UART channels A through D. A low on these pins indicates that a carrier has been detected by the modem for that channel.		
CLKSEL	26	30	I	Clock select. CLKSEL selects the divide-by-1 or divide-by-4 prescalable clock. During the reset, a logic 1 (V _{CC}) on CLKSEL selects the divide-by-1 prescaler. A logic 0 (GND) on CLKSEL selects the divide-by-4 prescaler. The value of CLKSEL is latched into MCR[7] at the trailing edge of RESET. A logic 1 (V _{CC}) on CLKSEL will latch a 0 into MCR[7]. A logic 0 (GND) on CLKSEL will latch a 1 into MCR[7]. MCR[7] can be changed after RESET to alter the prescaler value.		
CSA, CSB CSC, CSD	9, 13, 49, 53	16, 20, 50, 54	I	Chip select A, B, C, and D (active low). These pins enable data transfers between the user CPU and the TL16C754B for the channel(s) addressed. Individual UART sections (A, B, C, D) are addressed by providing a low on the respective CSA through CSD pin.		
CTSA, CTSB CTSC, CTSD	4, 18 44, 58	11, 25 45, 59	I	Clear to send (active low). These inputs are associated with individual UART channels A through D. A low on the CTS pins indicates the modem or data set is ready to accept transmit data from the 754A. Status can be checked by reading MSR bit 4. These pins only affect the transmit and receive operations when auto CTS function is enabled through the enhanced feature register (EFR) bit 7, for hardware flow control operation.		
D0–D2 D3–D7	68–70, 71–75	66–68, 1–5	I/O	Data bus (bidirectional). These pins are the eight bit, 3-state data bus for transferring information to or from the controlling CPU. D0 is the least significant bit and the first data bit in a transmit or receive serial data stream.		
DSRA, DSRB DSRC, DSRD	3, 19 43, 59	10, 26 44, 60	I	Data set ready (active low). These inputs are associated with individual UART channels A through D. A low on these pins indicates the modem or data set is powered on and is ready for data exchange with the UART.		
DTRA, DTRB DTRC, DTRD	5, 17 45, 57	12, 24 46, 58	0	Data terminal ready (active low). These outputs are associated with individual UART channels A through D. A low on these pins indicates that the 754A is powered on and ready. These pins can be controlled through the modem control register. Writing a 1 to MCR bit 0 sets the DTR output to low, enabling the modem. The output of these pins is high after writing a 0 to MCR bit 0, or after a reset.		
GND	16, 36, 56, 76	6, 23, 40, 57	Pwr	Signal and power ground		
INTA, INTB INTC, INTD	8, 14, 48, 54	15, 21, 49, 55	ο	Interrupt A, B, C, and D (active high). These pins provide individual channel interrupts, INTA-D. INTA-D are enabled when MCR bit 3 is set to a 1, interrupts are enabled in the interrupt enable register (IER) and when an interrupt condition exists. Interrupt conditions include: receiver errors, available receiver buffer data, transmit buffer empty, or when a modern status flag is detected. INTA-D are in the high-impedance state after reset.		
INTSEL	67	65	I	Interrupt select (active high with internal pulldown). INTSEL can be used in conjunction with MCR bit 3 to enable or disable the 3-state interrupts INTA-D or override MCR bit 3 and force continuous interrupts. Interrupt outputs are enabled continuously by making this pin a 1. Driving this pin low allows MCR bit 3 to control the 3-state interrupt output. In this mode, MCR bit 3 is set to a 1 to enable the 3-state outputs.		
IOR	51	52	I	Read input (active low strobe). A valid low level on \overline{IOR} will load the contents of an internal register defined by address bits A0–A2 onto the TL16C754B data bus (D0–D7) for access by an external CPU.		
IOW	11	18	I	Write input (active low strobe). A valid low level on IOW will transfer the contents of the data bus (D0–D7) from the external CPU to an internal register that is defined by address bits A0–A2.		

SLLS397 - NOVEMBER 1999


Terminal Functions (Continued)

TERM	INAL	AL		
NAME	N	0.	I/O	DESCRIPTION
NAME	PN	FN		
RESET	33	37	I	Reset. RESET will reset the internal registers and all the outputs. The UART transmitter output and the receiver input will be disabled during reset time. See TL16C754B external reset conditions for initialization details. RESET is an active high input.
RIA, RIB RIC, RID	78, 24 38, 64	8, 28 42, 62	I	Ring indicator (active low). These inputs are associated with individual UART channels A through D. A low on these pins indicates the modem has received a ringing signal from the telephone line. A low to high transition on these input pins generates a modem status interrupt, if it is enabled.
RTSA, RTSB RTSC, RTSD	7, 15 47, 55	14, 22 48, 56	0	Request to send (active low). These outputs are associated with individual UART channels A through D. A low on the RTS pins indicates the transmitter has data ready and waiting to send. Writing a 1 in the modem control register (MCR bit 1) sets these pins to low, indicating data is available. After a reset, these pins are set to 1. These pins only affects the transmit and receive operation when auto RTS function is enabled through the enhanced feature register (EFR) bit 6, for hardware flow control operation.
RXA, RXB RXC, RXD	77, 25 37, 65	7, 29 41, 63	I	Receive data input. These inputs are associated with individual serial channel data to the 754A. During the local loopback mode, these RX input pins are disabled and TX data is internally connected to the UART RX input internally.
RXRDY	34	38	0	Receive ready (active low). RXRDY contains the wire-ORed status of all four receive channel FIFOs, RXRDY A–D. It goes low when the trigger level has been reached or a timeout interrupt occurs. It goes high when all RX FIFOs are empty and there is an error in RX FIFO.
TXA, TXB TXC, TXD	10, 12 50, 52	17, 19 51, 53	0	Transmit data. These outputs are associated with individual serial transmit channel data from the 754A. During the local loopback mode, the TX input pin is disabled and TX data is internally connected to the UART RX input.
TXRDY	35	39	0	Transmit ready (active low). TXRDY contains the wire-ORed status of all four transmit channel FIFOs, TXRDY A–D. It goes low when there are a trigger level number of spares available. It goes high when all four TX buffers are full.
VCC	6, 46, 66	13, 47, 64	Pwr	Power supply inputs
XTAL1	31	35	I	Crystal or external clock input. XTAL1 functions as a crystal input or as an external clock input. A crystal can be connected between XTAL1 and XTAL2 to form an internal oscillator circuit (see Figure 10). Alternatively, an external clock can be connected to XTAL1 to provide custom data rates.
XTAL2	32	36	0	Output of the crystal oscillator or buffered clock. See also XTAL1. XTAL2 is used as a crystal oscillator output or buffered clock output.

SLLS397 - NOVEMBER 1999

functional block diagram

NOTE: The Vote logic determines whether the RX data is a logic 1 or 0. It takes three samples of the RX line and uses a majority vote to determine the logic level received. The Vote logic operates on all bits received.

functional description

The TL16C754B UART is pin compatible with the TL16C554 and ST16C654 UARTs. It provides more enhanced features. All additional features are provided through a special enhanced feature register.

The UART will perform serial-to-parallel conversion on data characters received from peripheral devices or modems and parallel-to-parallel conversion on data characters transmitted by the processor. The complete status of each channel of the TL16C754B UART can be read at any time during functional operation by the processor.

The TL16C754B UART can be placed in an alternate mode (FIFO mode) relieving the processor of excessive software overhead by buffering received/transmitted characters. Both the receiver and transmitter FIFOs can store up to 64 bytes (including three additional bits of error status per byte for the receiver FIFO) and have selectable or programmable trigger levels. Primary outputs RXRDY and TXRDY allow signalling of DMA transfers.

The TL16C754B UART has selectable hardware flow control and software flow control. Both schemes significantly reduce software overhead and increase system efficiency by automatically controlling serial data flow. Hardware flow control uses the RTS output and CTS input signals. Software flow control uses programmable Xon/Xoff characters.

The UART will include a programmable baud rate generator that can divide the timing reference clock input by a divisor between 1 and (2¹⁶–1). The CLKSEL pin can be used to divide the input clock by 4 or by 1 to generate the reference clock during the reset. The divide-by-4 clock is selected when CLKSEL pin is a logic 0 or the divide-by-1 is selected when CLKSEL is a logic 1.

SLLS397 – NOVEMBER 1999

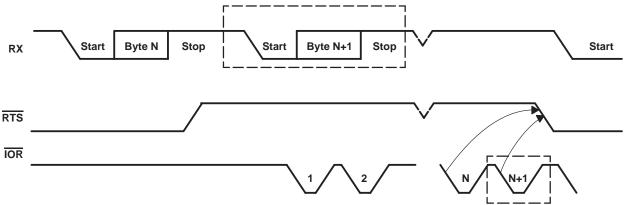
functional description (continued)

trigger levels

The TL16C754B UART provides independent selectable and programmable trigger levels for both receiver and transmitter DMA and interrupt generation. After reset, both transmitter and receiver FIFOs are disabled and so, in effect, the trigger level is the default value of one byte. The selectable trigger levels are available via the FCR. The programmable trigger levels are available via the TLR.

hardware flow control

Hardware flow control is composed of auto- $\overline{\text{CTS}}$ and auto- $\overline{\text{RTS}}$. Auto- $\overline{\text{CTS}}$ and auto- $\overline{\text{RTS}}$ can be enabled/disabled independently by programming EFR[7:6].


With auto-CTS, CTS must be active before the UART can transmit data.

Auto-RTS only activates the RTS output when there is enough room in the FIFO to receive data and deactivates the RTS output when the RX FIFO is sufficiently full. The HALT and RESTORE trigger levels in the TCR determine the levels at which RTS is activated/deactivated.

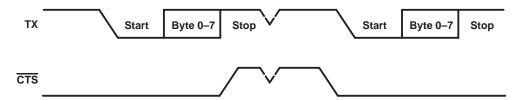
If both auto-CTS and auto-RTS are enabled, when RTS is connected to CTS, data transmission does not occur unless the receiver FIFO has empty space. Thus, overrun errors are eliminated during hardware flow control. If not enabled, overrun errors occur if the transmit data rate exceeds the receive FIFO servicing latency.

auto-RTS

Auto-RTS data flow control originates in the receiver block (see functional block diagram). Figure 1 shows RTS functional timing. The receiver FIFO trigger levels used in Auto-RTS are stored in the TCR. RTS is active if the RX FIFO level is below the HALT trigger level in TCR[3:0]. When the receiver FIFO HALT trigger level is reached, RTS is deasserted. The sending device (e.g., another UART) may send an additional byte after the trigger level is reached (assuming the sending UART has another byte to send) because it may not recognize the deassertion of RTS until it has begun sending the additional byte. RTS is automatically reasserted once the receiver FIFO reaches the RESUME trigger level programmed via TCR[7:4]. This reassertion allows the sending device to resume transmission.

NOTES: A. N = receiver FIFO trigger level

B. The two blocks in dashed lines cover the case where an additional byte is sent as described in Auto-RTS.


Figure 1. RTS Functional Timing

functional description (continued)

auto-CTS

The transmitter circuitry checks CTS before sending the next data byte. When CTS is active, the transmitter sends the next byte. To stop the transmitter from sending the following byte, CTS must be deasserted before the middle of the last stop bit that is currently being sent. The auto-CTS function reduces interrupts to the host system. When flow control is enabled, the CTS state changes and need not trigger host interrupts because the device automatically controls its own transmitter. Without auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error can result. Figure 2 shows CTS functional timing, and Figure 3 shows an example of autoflow control.

NOTES: A. When CTS is low, the transmitter keeps sending serial data out.

- B. When CTS goes high before the middle of the last stop bit of the current byte, the transmitter finishes sending the current byte, but it does not send the next byte.
- C. When CTS goes from high to low, the transmitter begins sending data again.

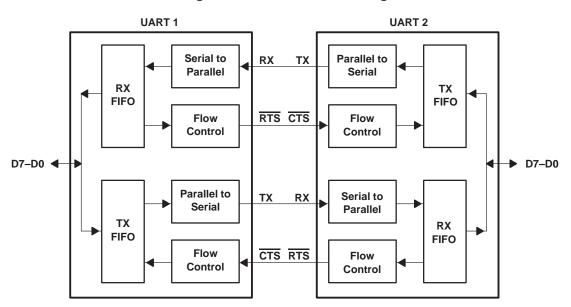


Figure 2. CTS Functional Timing

Figure 3. Autoflow Control (Auto-RTS and Auto-CTS) Example

software flow control

Software flow control is enabled through the enhanced feature register and the modem control register. Different combinations of software flow control can be enabled by setting different combinations of EFR[3–0]. Table 1 shows software flow control options.

Two other enhanced features relate to S/W flow control:

 Xon Any Function [MCR(5): Operation will resume after receiving any character after recognizing the Xoff character.

SLLS397 - NOVEMBER 1999

functional description (continued)

NOTE:

It is possible that an Xon1 character is recognized as an Xon Any character, which could cause an Xon2 character to be written to the RX FIFO.

Special Character [EFR(5)]: Incoming data is compared to Xoff2. Detection of the special character sets the Xoff interrupt {IIR(4)] but does not halt transmission. The Xoff interrupt is cleared by a read of the IIR. The special character is transferred to the RX FIFO.

BIT 3	BIT 2	BIT 1	BIT 0	Tx, Rx SOFTWARE FLOW CONTROLS
0	0	Х	Х	No transmit flow control
1	0	Х	Х	Transmit Xon1, Xoff1
0	1	Х	Х	Transmit Xon2, Xoff2
1	1	Х	Х	Transmit Xon1, Xon2: Xoff1, Xoff2
Х	Х	0	0	No receive flow control
Х	Х	1	0	Receiver compares Xon1, Xoff1
Х	Х	0	1	Receiver compares Xon2, Xoff2
1	0	1	1	Transmit Xon1, Xoff1 Receiver compares Xon1 or Xon2, Xoff1 or Xoff2
0	1	1	1	Transmit Xon2, Xoff2 Receiver compares Xon1 or Xon2, Xoff1 or Xoff2
1	1	1	1	Transmit Xon1, Xon2: Xoff1, Xoff2 Receiver compares Xon1 and Xon2: Xoff1 and Xoff2
0	0	1	1	No transmit flow control Receiver compares Xon1 and Xon2: Xoff1 and Xoff2

 Table 1. Software Flow Control Options EFR[3:0]

When software flow control operation is enabled, the TL16C754B will compare incoming data with Xoff1/2 programmed characters (in certain cases Xoff1 and Xoff2 must be received sequentially¹). When an Xoff character is received, transmission is halted after completing transmission of the current character. Xoff character detection also sets IIR[4] and causes INT to go high (if enabled via IER[5]).

To resume transmission an Xon1/2 character must be received (in certain cases Xon1 and Xon2 must be received sequentially). When the correct Xon characters are received IIR[4] is cleared and the Xoff interrupt disappears.

NOTE:

If a parity, framing or break error occurs while receiving a software flow control character, this character will be treated as normal data and will be written to the RCV FIFO.

Xoff1/2 characters are transmitted when the RX FIFO has passed the programmed trigger level TCR[3:0].

Xon1/2 characters are transmitted when the RX FIFO reaches the trigger level programmed via TCR[7:4].

An important note here is that if, after an Xoff character has been sent, software flow control is disabled, the UART will transmit Xon characters automatically to enable normal transmission to proceed. A feature of the TL16C754B UART design is that if the software flow combination (EFR[3:0]) changes after an Xoff has been sent, the originally programmed Xon is automatically sent. If the RX FIFO is still above the trigger level the newly programmed Xoff1/2 will be transmitted.

1. When pairs of Xon/Xoff characters are programmed to occur sequentially, received Xon1/Xoff1 characters will be written to the Rx FIFO if the subsequent character is not Xon2/Xoff2.

functional description (continued)

The transmission of Xoff/Xon(s) follows the exact same protocol as transmission of an ordinary byte from the FIFO. This means that even if the word length is set to be 5, 6, or 7 characters then the 5, 6, or 7 least significant bits of Xoff1,2/Xon1,2 will be transmitted. The transmission of 5, 6, or 7 bits of a character is seldom done, but this functionality is included to maintain compatibility with earlier designs.

It is assumed that software flow control and hardware flow control will never be enabled simultaneously. Figure 4 shows a software flow control example.

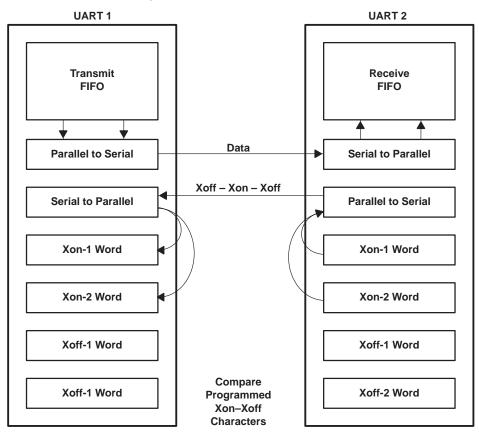


Figure 4. Software Flow Control Example

software flow control example

Assumptions: UART1 is transmitting a large text file to UART2. Both UARTs are using software flow control with single character Xoff (0F) and Xon (0D) tokens. Both have Xoff threshold (TCR [3:0]=F) set to 60 and Xon threshold (TCR[7:4]=8) set to 32. Both have the interrupt receive threshold (TLR[7:4]=D) set to 52.

UART1 begins transmission and sends 52 characters, at which point UART2 will generate an interrupt to its processor to service the RCV FIFO, but assume the interrupt latency is fairly long. UART1 will continue sending characters until a total of 60 characters have been sent. At this time UART2 will transmit a 0F to UART1, informing UART1 to halt transmission. UART1 will likely send the 61st character while UART2 is sending the Xoff character. Now UART2 is serviced and the processor reads enough data out of the RCV FIFO that the level drops to 32. UART2 will now send a 0D to UART1, informing UART1 to resume transmission.

SLLS397 – NOVEMBER 1999

functional description (continued)

reset

Table 2 summarizes the state of registers after reset.

REGISTER	RESET CONTROL	RESET STATE
Interrupt enable register	RESET	All bits cleared
Interrupt identification register	RESET	Bit 0 is set. All other bits cleared.
FIFO control register	RESET	All bits cleared
Line control register	RESET	Reset to 00011101 (1D hex).
Modem control register	RESET	Bit 6–0 cleared. Bit 7 reflects the inverse of the CLKSEL pin value.
Line status register	RESET	Bits 5 and 6 set. All other bits cleared.
Modem status register	RESET	Bits 0–3 cleared. Bits 4–7 input signals.
Enhanced feature register	RESET	Bit 6 – 0 is cleared. Bit 7 reflects the inverse of the CLKSEL pin value.
Receiver holding register	RESET	Pointer logic cleared
Transmitter holding register	RESET	Pointer logic cleared
Transmission control register	RESET	All bits cleared
Trigger level register	RESET	All bits cleared

Table 2. Register Reset Functions

NOTE: Registers DLL, DLH, SPR, Xon1, Xon2, Xoff1, Xoff2 are not reset by the top-level reset signal RESET, i.e., they hold their initialization values during reset.

Table 3 summarizes the state of some signals after reset.

SIGNAL	RESET CONTROL	RESET STATE
TX	RESET	High
RTS	RESET	High
DTR	RESET	High
RXRDY	RESET	High
TXRDY	RESET	Low

Table 3. Signal Reset Functions

interrupts

The TL16C754B UART has interrupt generation and prioritization (6 prioritized levels of interrupts) capability. The interrupt enable register (IER) enables each of the 6 types of interrupts and the INT signal in response to an interrupt generation. The IER can also disable the interrupt system by clearing bits 0–3, 5–7. When an interrupt is generated, the interrupt identification register(IIR) indicates that an interrupt is pending and provides the type of interrupt through IIR[5–0]. Table 4 summarizes the interrupt control functions.

SLLS397 - NOVEMBER 1999

functional description (continued)

IIR[5–0]	PRIORITY LEVEL	INTERRUPT TYPE	INTERRUPT SOURCE	INTERRUPT RESET METHOD
000001	None	None	None	None
000110	1	Receiver line status	OE, FE, PE, or BI errors occur in characters in the RX FIFO	FE< PE< BI: All erroneous characters are read from the RX FIFO. OE: Read LSR
001100	2	RX timeout	Stale data in RX FIFO	Read RHR
000100	2	RHR interrupt	DRDY (data ready) (FIFO disable) RX FIFO above trigger level (FIFO enable)	Read RHR
000010	3	THR interrupt	TFE (THR empty) (FIFO disable) TX FIFO passes above trigger level (FIFO enable)	Read IIR OR a write to the THR
000000	4	Modem status	MSR[3:0]= 0	Read MSR
010000	5	Xoff interrupt	Receive Xoff character(s)/special character	Receive Xon character(s)/Read of IIR
100000	6	CTS, RTS	RTS pin or CTS pin change state from active (low) to inactive (high)	Read IIR

Table 4. Interrupt Control Functions

It is important to note that for the framing error, parity error, and break conditions, LSR[7] generates the interrupt. LSR[7] is set when there is an error anywhere in the RX FIFO and is cleared only when there are no more errors remaining in the FIFO. LSR[4–2] always represent the error status for the received character at the top of the Rx FIFO. Reading the Rx FIFO updates LSR[4–2] to the appropriate status for the new character at the top of the FIFO. If the Rx FIFO is empty, then LSR[4–2] is all zeros.

For the Xoff interrupt, if an Xoff flow character detection caused the interrupt, the interrupt is cleared by an Xon flow character detection. If a special character detection caused the interrupt, the interrupt is cleared by a read of the ISR.

interrupt mode operation

In interrupt mode (if any bit of IER[3:0] is1), the processor is informed of the status of the receiver and transmitter by an interrupt signal, INT. Therefore, it is not necessary to continuously poll the line status register (LSR) to see if any interrupt needs to be serviced. Figure 5 shows interrupt mode operation.

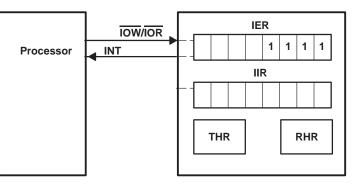


Figure 5. Interrupt Mode Operation

polled mode operation

In polled mode (IER[3:0] = 0000), the status of the receiver and transmitter can then be checked by polling the line status register (LSR). This mode is an alternative to the interrupt mode of operation where the status of the receiver and transmitter is automatically known by means of interrupts sent to the CPU. Figure 6 shows polled mode operation.

SLLS397 - NOVEMBER 1999

functional description (continued)

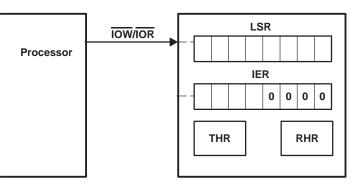


Figure 6. FIFO Polled Mode Operation

DMA signalling

There are two modes of DMA operation, DMA mode 0 or 1, selected by FCR[3].

In DMA mode 0 or FIFO disable (FCR[0]=0) DMA occurs in single character transfers. In DMA mode 1 multicharacter (or block) DMA transfers are managed to relieve the processor for longer periods of time.

single DMA transfers (DMA mode0/FIFO disable)

Transmitter: When empty, the \overline{TXRDY} signal becomes active. \overline{TXRDY} will go inactive after one character has been loaded into it.

Receiver: RXRDY is active when there is at least one character in the FIFO. It becomes inactive when the receiver is empty.

Figure 7 shows TXRDY and RXRDY in DMA mode 0/FIFO disable.

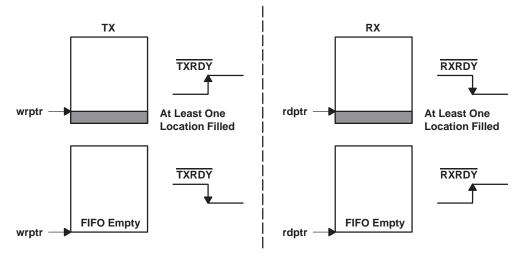


Figure 7. TXRDY and RXRDY in DMA Mode 0/FIFO Disable

block DMA transfers (DMA mode 1)

Transmitter: TXRDY is active when a trigger level number of spaces are available. It becomes inactive when the FIFO is full.

functional description (continued)

Receiver: RXRDY becomes active when the trigger level has been reached or when a timeout interrupt occurs. It will go inactive when the FIFO is empty or an error in the RX FIFO is flagged by LSR(7)

Figure 8 shows TXRDY and RXRDY in DMA mode 1.

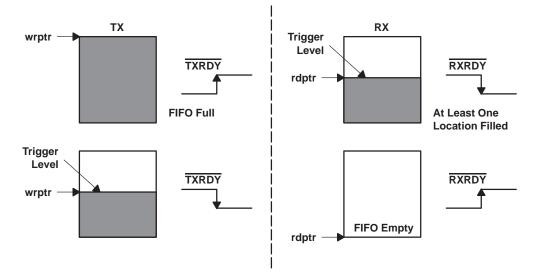


Figure 8. TXRDY and RXRDY in DMA Mode 1

sleep mode

Sleep mode is an enhanced feature of the TL16C754B UART. It is enabled when EFR[4], the enhanced functions bit, is set and when IER[4] is set. Sleep mode is entered when:

- The serial data input line, RX, is idle (see break and time-out conditions).
- The TX FIFO and TX shift register are empty.
- There are no interrupts pending except THR and timeout interrupts.

Sleep mode will not be entered if there is data in the RX FIFO.

In sleep mode the UART clock and baud rate clock are stopped. Since most registers are clocked using these clocks the power consumption is greatly reduced. The UART will wake up when any change is detected on the RX line, when there is any change in the state of the modem input pins or if data is written to the TX FIFO.

NOTE:

Writing to the divisor latches, DLL and DLH, to set the baud clock, **must not** be done during sleep mode. Therefore it is advisable to disable sleep mode using IER[4] before writing to DLL or DLH.

break and timeout conditions

An RX timeout condition is detected when the receiver line, RX, has been high for a time equivalent to (4X programmed word length)+12 bits and there is at least one byte stored in the Rx FIFO.

When a break condition occurs, the TX line is pulled low. A break condition is activated by setting LCR[6].

SLLS397 - NOVEMBER 1999

functional description (continued)

programmable baud rate generator

The TL16C754B UART contains a programmable baud generator that divides reference clock by a divisor in the range between 1 and (2¹⁶–1). The output frequency of the baud rate generator is 16x the baud rate. An additional divide-by-4 prescaler is also available and can be selected by the CLKSEL pin or MCR[7], as shown in the following. The formula for the divisor is:

Divisor = (XTAL1 crystal input frequency / prescaler) / (desired baud rate × 16)

Where

 $prescaler = \begin{cases} 1 \text{ when CLKSEL} = \text{high during reset, or MCR[7] is set to 0 after reset} \\ 4 \text{ when CLKSEL} = \text{low during reset, or MCR[7] is set to 1 after reset} \end{cases}$

Figure 9 shows the internal prescaler and baud rate generator circuitry.

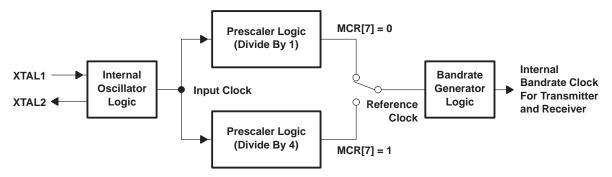


Figure 9. Prescaler and Baud Rate Generator Block Diagram

DLL and DLH must be written to in order to program the baud rate. DLL and DLH are the least significant and most significant byte of the baud rate divisor.

If DLL and DLH are both zero, the UART is effectively disabled, as no baud clock will be generated.

The programmable baud rate generator is provided to select both the transmit and receive clock rates.

Table 5 and Table 6 show the baud rate and divisor correlation for the crystal with frequency 1.8432 MHz and 3.072 MHz, respectively.

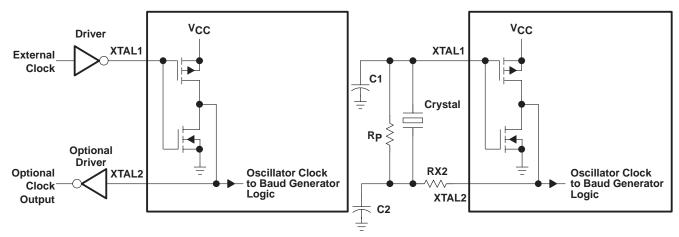
SLLS397 - NOVEMBER 1999

programmable baud rate generator (continued)

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 × CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
1800	64	
2000	58	0.69
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19200	6	
38400	3	
56000	2	2.86

Table 5. Baud Rates Using a 1.8432-MHz Crystal

Table 6. Baud Rates Using a 3.072-MHz Crystal


DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 × CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	
75	2560	
110	1745	0.026
134.5	1428	0.034
150	1280	
300	640	
600	320	
1200	160	
1800	107	0.312
2000	96	
2400	80	
3600	53	0.628
4800	40	
7200	27	1.23
9600	20	
19200	10	
38400	5	

SLLS397 - NOVEMBER 1999

programmable baud generator (continued)

Figure 10 shows the crystal clock circuit reference.

TYPICAL CRYSTAL OSCILLATOR NETWORK

CRYSTAL	L RP R)		C1	C2
3.072 MHz	1 MΩ	1.5 kΩ	10-30 pF	40-60 pF
1.8432 MHz	1 MΩ	1.5 kΩ	10-30 pF	40-60 pF

Figure 10. Typical Crystal Clock Circuits[†]

[†] For crystal with fundamental frequency from 1 MHz to 24 MHz

NOTE: For input clock frequency higher then 24 MHz, the crystal is not allowed and the oscillator must be used, since the TL16C754B internal oscillator cell can only support the crystal frequency up to 24 MHz.

SLLS397 - NOVEMBER 1999

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 6 V
Input voltage range, V ₁	–0.5 V to V _{CC} +0.5 V
Output voltage range, V _O	–0.5 V to V _{CC} +0.5 V
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stg}	0°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

low voltage (3.3 V nominal)

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		2.7	3.3	3.6	V
Input voltage, VI		0		VCC	V
High-level input voltage, VIH (se	e Note 1)	0.7V _{CC}			V
Low-level input voltage, VIL (see	Note 1)			0.3VCC	V
Output voltage, VO (see Note 2)		0		VCC	V
Lich lovel output ourrest March	I _{OH} = –8 mA, See Note 4	V _{CC} -0.8			V
High-level output current, VOH	I _{OH} = –4 mA, See Note 5	V _{CC} -0.8			
	I _{OL} = 8 mA, See Note 4			0.5	v
Low-level output current, VOL	I _{OL} = 4 mA, See Note 5			0.5	
Input capacitance, Cl				18	pF
Operating free-air temperature,	Γ _Α	-40	25	85	°C
Virtual junction temperature range	ge, TJ (see Note 3)	0	25	125	°C
Oscillator/clock speed				35	MHz
Clock duty cycle			50%		
Jitter specification				±100	ppm
	1.8 MHz, 3.6 V		12		mA
Supply current, I _{CC} (see Note 6)	25 MHz, 3.6 V		25		
	Sleep Mode, 3.6 V		1.5		

NOTES: 1. Meets TTL levels, $V_{IH(min)} = 2 V$ and $V_{IL(max)} = 0.8 V$ on nonhysteresis inputs.

2. Applies for external output buffers.

3. These junction temperatures reflect simulated conditions. Absolute maximum junction temperature is 150°C. The customer is responsible for verifying junction temperature.

4. These parameters apply for D7–D0.

5. <u>These parameters apply for DTRA, DTRB, DTRC, DTRD, INTA, INTB, INTC, INTD, RTS_A, RTS_B, RTS_C, RTS_D, RSRDY, TXRDY, TX_A, TX_B, TX_C, TX_D.</u>

6. Measurement condition:

a) Normal operation other than sleep mode

 $V_{CC} = 3.3 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}.$

Full duplex serial activity on all four serial (UART) channels at the clock frequency specified in above table with divisior of one. b) Sleep mode

 $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}.$

After enabling the sleep mode for all four channels, all serial and host activity is kept idle.

SLLS397 - NOVEMBER 1999

recommended operating conditions (continued)

standard voltage

		MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}		4.5	5	5.5	V	
Input voltage, VI		0		VCC	V	
High-level input voltage, VIH		0.7V _{CC}			V	
Low-level input voltage, VIL				0.3VCC	V	
Output voltage, VO		0		VCC	V	
	I _{OH} = -8 mA, See Note 8	V _{CC} -0.8			V	
High-level output current, VOH	I _{OH} = -4 mA, See Note 9	V _{CC} -0.8			V	
	I _{OL} = 8 mA, See Note 8			0.5	v	
Low-level output current, VOL	I _{OL} = 4 mA, See Note 9			0.5		
Input capacitance, Cl				18	pF	
Operating free-air temperature,	TA	-40	25	85	°C	
Virtual junction temperature range	ge, TJ (see Note 7)	0	25	125	°C	
Oscillator/clock speed				50	MHz	
Clock duty cycle			50%			
	50 MHz, 5.5 V		50		1	
Supply current, ICC	25 MHz, 5.5 V		42			
(see Note 12)	1.8 MHz, 5.5 V		21		- mA	
	Sleep mode, 5.5 V		2.5			

NOTES: 7. Applies for external output buffers

8. These junction temperatures reflect simulated conditions. Absolute maximum junction temperature is 150°C. The customer is responsible for verifying junction temperature.

9. These parameters apply for D7–D0, IRQ3–IRQ15, DRO0, DRO1, and DRO3.

10. These parameters apply for GPIO0–GPIO7, XSOUT, XRTS, XDTR, XIR–TXD.

11. These parameters apply for XOUT.

12. Measurement condition:

a) Normal operation other than sleep mode

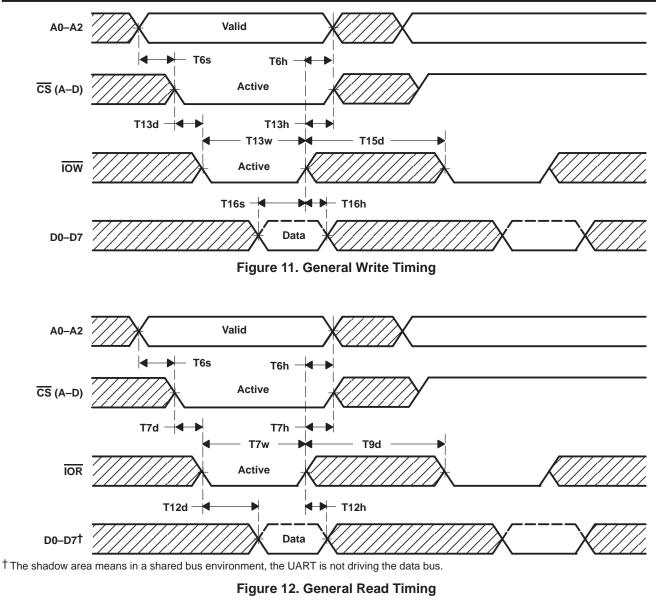
 $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

Full duplex serial activity on all four serial (UART) channels at the clock frequency specified in above table with divisior of one. b) Sleep mode

 $V_{CC} = 5 V, T_A = 25^{\circ}C.$

After enabling the sleep mode for all four channels, all serial and host activity is kept idle.

SLLS397 - NOVEMBER 1999


timing requirements T_A = –40°C to 85°C, V_{CC} = 3.3 V to 5 V \pm 10% (unless otherwise noted)(see Figures 9–16)

	PARAMETER	TEST CONDITIONS	LIM	TS	UNIT	
	FARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
С _Р	Clock period		20		ns	
TRESET	Reset pulse width		200		ns	
To	Oscillator/Clock speed	$V_{CC} = 4.5 V$		50	MHz	
Т _{Зw}	Oscillator/Clock speed	$V_{CC} = 3 V$		45		
T _{6s}	Address setup time		0		ns	
T _{6h}	Address hold time		0		ns	
T _{7d}	IOR delay from chip select		10		ns	
T _{7w}	IOR strobe width		2P‡			
T _{7h}	Chip select hold time from IOR		0		ns	
T _{8d}	Delay time between successive assertion of IOW and IOR		4P‡		ns	
T _{8s}	Setup time from \overline{IOW} or \overline{IOR} assertion to XTAL1 clock \uparrow		20		ns	
T _{8h}	Hold time from XTAL1 clock \downarrow to $\overline{\text{IOW}}$ or $\overline{\text{IOR}}$ release		20		ns	
T _{9d}	Read cycle delay		2P‡			
Trai	Delay from IOD to date	$V_{CC} = 4.5 V$		30		
T _{12d}	Delay from IOR to data	$V_{CC} = 3 V$		47	ns	
T _{12h}	Data disable time			15	ns	
T _{13d}	IOW delay from chip select		10		ns	
T _{13w}	IOW strobe width		2P‡			
T _{13h}	Chip select hold time from IOW		0		ns	
T _{15d}	Write cycle delay		2P‡			
T _{16s}	Data setup time		16		ns	
T _{16h}	Data hold time		15		ns	
T _{17d}	Delay from IOW to output	50 pF load		50	ns	
T _{18d}	Delay to set interrupt from MODEM input	50 pF load		70	ns	
T _{19d}	Delay to reset interrupt from IOR	50 pF load		70	ns	
T _{20d}	Delay from stop to set interrupt			1 _{Rclk}	†	
T _{21d}	Delay from IOR to reset interrupt	50 pF load		70	ns	
T _{22d}	Delay from stop to interrupt			100	ns	
T _{23d}	Delay from initial IOW reset to transmit start		8	24	†	
T _{24d}	Delay from IOW to reset interrupt			70	ns	
T _{25d}	Delay from stop to set RXRDY			1	Clk	
T _{26d}	Delay from IOR to reset RXRDY			1	μs	
T _{27d}	Delay from IOW to set TXRDY			70	ns	
T _{28d}	Delay from start to reset TXRDY			16	†	
T _{30s}	Address setup time		10		ns	

† Baudrate

[‡]P= Input clock period

SLLS397 - NOVEMBER 1999

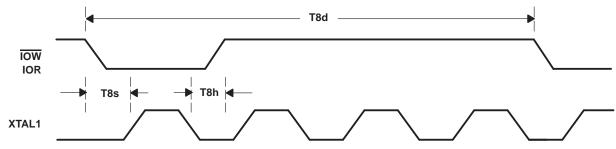
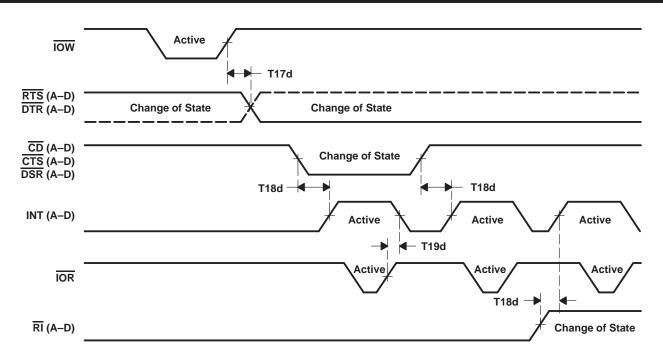



Figure 13. Alternate Read/Write Strobe Timing

SLLS397 - NOVEMBER 1999

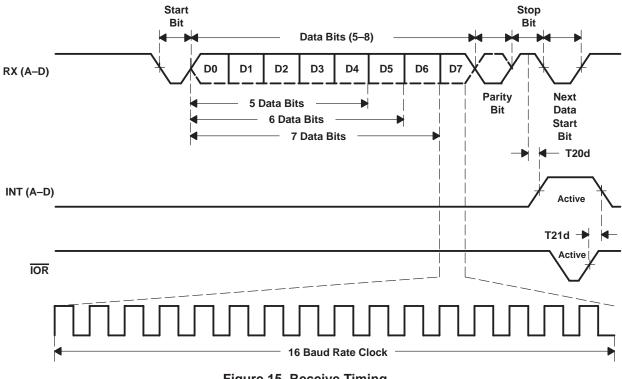
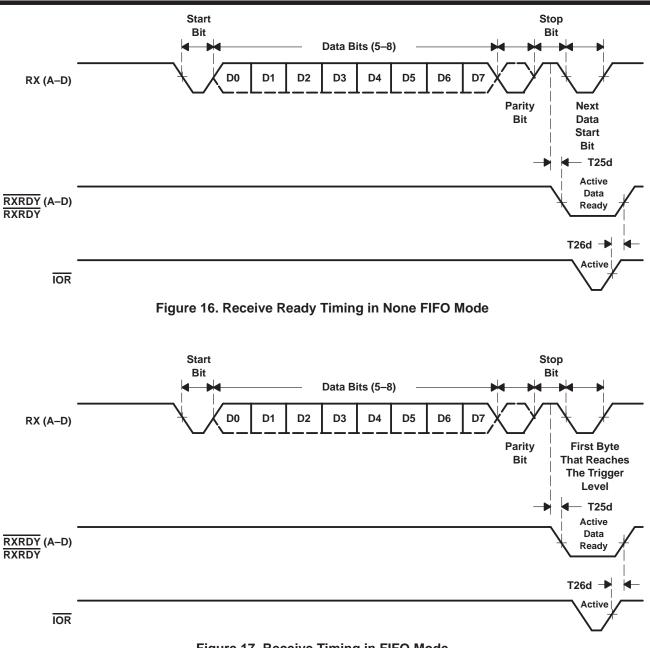
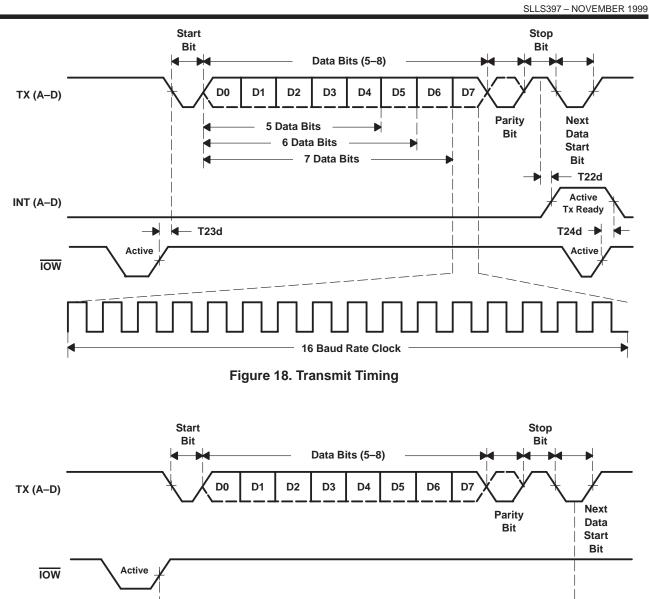



Figure 15. Receive Timing



SLLS397 - NOVEMBER 1999

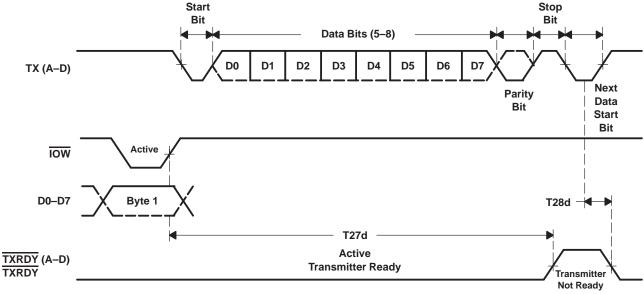


Figure 19. Transmit Ready Timing in None FIFO Mode

SLLS397 - NOVEMBER 1999

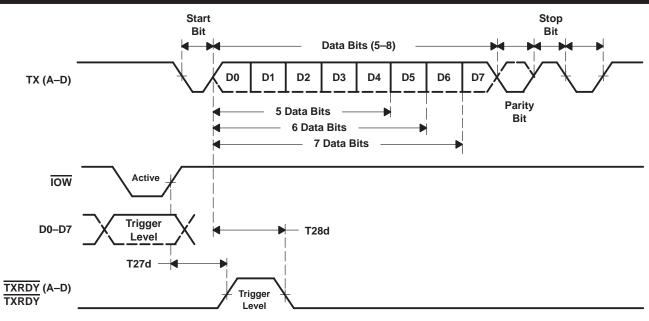


Figure 20. Transmit Ready Timing in FIFO Mode

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

register map[†]

Each register is selected using address lines A[0], A[1], A[2] and, in some cases, bits from other registers. The programming combinations for register selection are shown in Table 7.

A[2]	A[1]	A[0]	READ MODE	WRITE MODE
0	0	0	Receive holding register (RHR)	Transmit holding register (THR)
0	0	1	Interrupt enable register (IER)	Interrupt enable register
0	1	0	Interrupt identification register (IIR)	FIFO control register (FCR)
0	1	1	Line control register (LCR)	Line control register
1	0	0	Modem control register (MCR)	Modem control register
1	0	1	Line status register (LSR)	
1	1	0	Modem status register (MSR)	
1	1	1	Scratch register (SPR)	Scratch register (SPR)
0	0	0	Divisor latch LSB (DLL)	Divisor latch LSB (DLL)
0	0	1	Divisor latch MSB (DLH)	Divisor latch MSB (DLH
0	1	0	Enhanced feature register (EFR)	Enhanced feature register
1	0	0	Xon-1 word	Xon-1 word
1	0	1	Xon-2 word	Xon-2 word
1	1	0	Xoff-1 word	Xoff-1 word
1	1	1	Xoff-2 word	Xoff-2 word
1	1	0	Transmission control register (TCR)	Transmission control register
1	1	1	Trigger level register (TLR)	Trigger level register
1	1	1	FIFO ready register	

Table 7. Register Map – Read/Write Properties

[†] DLL and DLH are accessible only when LCR bit-7 is 1.

Enhanced feature register, Xon1, 2 and Xoff1, 2 are accessible only when LCR is set to 10111111 (8hBF).

Transmission control register and trigger level register are accessible only when EFR[4] = 1 and MCR[6] = 1, i.e.. EFR[4] and MCR[6] are read/write enables.

FCR FIFORdy register is accessible when any CS A-D = 0, MCR [2] = 1 and loopback MCR [4] = 0 is disabled. MCR[7] can only be modified when EFR[4] is set.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

register map (continued)

Table 8 lists and describes the TL16C754B internal registers.

	Table 8. TL16C754B Internal Registers									
Addr	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	READ/ WRITE
000	RHR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read
000	THR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Write
001	IER	0/CTS interrupt enableT	0/RTS interrupt enableT	0/Xoff interrupt enableT	0/X Sleep modeT	Modem status interrupt	Rx line status interrupt	THR empty interrupt	Rx data available interrupt	Read/ Write
010	FCR	Rx trigger level	Rx trigger level	0/TX trigger levelT	0/TX trigger levelT	DMA mode select	Resets Tx FIFO	Resets Rx FIFO	Enables FIFOs	Write
010	liR	FCR(0)	FCR(0)	0 <u>/CTS,</u> RTST	0/Xoff†	Interrupt priority Bit 2	Interrupt priority Bit 1	Interrupt priority Bit 0	Interrupt status	Read
011	LCR	DLAB and EFR enable	Break control bit	Sets parity	Parity type select	Parity enable	No. of stop bits	Word length	Word length	Read/ Write
100	MCR	1x or 4X clock	TCR and TLR enable	0/Xon Any	0/Enable loopback	IRQ Enable	FIFOrdy Enable	RTS	DTR	Read/ Write
101	LSR	0/Error in Rx FIFO	THR and TSR empty	THR empty	Break interrupt	Framing error	Parity error	Over-run error	Data in receiver	Read
110	MSR	CD	RI	DSR	CTS	ΔCD	ΔRI	ΔDSR		Read
111	SPR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
000	DLL	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
001	DLH	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Read/ Write
010	EFR	Auto-CTS	Auto-RTS	Special character detect	Enable enhanced- functions [†]	S/W flow control Bit 3	S/W flow control Bit 2	S/W flow control Bit 1	S/W flow control Bit 0	Read/ Write
100	Xon1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
101	Xon2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
110	Xoff1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
111	Xoff2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
110	TCR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
111	TLR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read/ Write
111	FIFORdy	RX FIFO D status	RX FIFO C status	RX FIFO B status	RX FIFO A status	TX FIFO D status	TX FIFO C status	TX FIFO B status	TX FIFO A status	Read

Table 8. TL16C754B Internal Registers

[†] The shaded bits in the above table can only be modified if EFR[4] is enabled, i.e., if enhanced functions are enabled.

NOTE: Refer to the notes under Table 7 for more register access information.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

receiver holding register (RHR)

The receiver section consists of the receiver holding register (RHR) and the receiver shift register (RSR). The RHR is actually a 64-byte FIFO. The RSR receives serial data from RX terminal. The data is converted to parallel data and moved to the RHR. The receiver section is controlled by the line control register. If the FIFO is disabled, location zero of the FIFO is used to store the characters. If overflow occurs, characters are lost. The RHR also stores the error status bits associated with each character.

transmit holding register (THR)

The transmitter section consists of the transmit holding register (THR) and the transmit shift register (TSR). The transmit holding register is actually a 64-byte FIFO. The THR receives data and shifts it into the TSR where it is converted to serial data and moved out on the TX terminal. If the FIFO is disabled, location zero of the FIFO is used to store the byte. Characters are lost if overflow occurs.

FIFO control register (FCR)

This is a write-only register which is used for enabling the FIFOs, clearing the FIFOs, setting transmitter and receiver trigger levels, and selecting the type of DMA signalling. Table 9 shows FIFO control register bit settings.

BIT NO.	BIT SETTINGS
0	0 = Disable the transmit and receive FIFOs 1 = Enable the transmit and receive FIFOs
1	0 = No change 1 = Clears the receive FIFO and resets it's counter logic to zero. Will return to zero after clearing FIFO.
2	0 = No change 1 = Clears the transmit FIFO and resets it's counter logic to zero. Will return to zero after clearing FIFO.
3	0 = DMA Mode 0 1 = DMA MOde 1
5:4	Sets the trigger level for the TX FIFO: 00 – 8 spaces 01 – 16 spaces 10 – 32 spaces 11 – 56 spaces
7:6	Sets the trigger level for the RX FIFO: 00 – 8 characters 01 – 16 characters 10 – 56 characters 11 – 60 characters

Table 9. FIFO Control Register (FCR) Bit Settings

NOTE: FCR[5–4] can only be modified and enabled when EFR[4] is set. This is because the transmit trigger level is regarded as an enhanced function.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

line control register (LCR)

This register controls the data communication format. The word length, number of stop bits, and parity type are selected by writing the appropriate bits to the LCR. Table 10 shows line control register bit settings.

Table 10. Line Control Register (LCR) Bit Settings

BIT NO.	BIT SETTINGS
1:0	Specifies the word length to be transmitted or received. 00 - 5 bits 01 - 6 bits 10 - 7 bits 11 - 8 bits
2	Specifies the number of stop bits: 0-1 stop bits (Word length = 5, 6, 7, 8) 1-1.5 stop bits (Word length = 5) 1-2 stop bits (Word length = 6, 7, 8)
3	0 = No parity 1 = A parity bit is generated during transmission and the receiver checks for received parity.
4	0 = Odd parity is generated (if LCR(3) = 1) 1 = Even parity is generated (if LCR(3) = 1)
5	Selects the forced parity format (if LCR(3) = 1) If LCR(5) = 1 and LCR(4) = 0 the parity bit is forced to 1 in the transmitted and received data. If LCR(5) = 1 and LCR(4) = 1 the parity bit is forced to 0 in the transmitted and received data.
6	Break control bit. 0 = Normal operating condition 1 = Forces the transmitter output to go low to alert the communication terminal.
7	0 = Normal operating condition 1 = Divisor latch enable

line status register (LSR)

Table 11 shows line status register bit settings.

Table 11. Line Status Register (LSR) Bit Settings

BIT NO.	BIT SETTINGS
0	0 = No data in the receive FIFO 1 = At least one character in the RX FIFO
1	0 = No overrun error 1 = Overrun error has occurred.
2	0 = No parity error in data being read from RX FIFO 1 = Parity error in data being read from RX FIFO
3	0 = No framing error in data being read from RX FIFO 1 = Framing error occurred in data being read from RX FIFO (i.e., received data did not have a valid stop bit)
4	0 = No break condition 1 = A break condition occurred and associated byte is 00. (i.e., RX was low for at least one character time frame).
5	0 = Transmit hold register is NOT empty 1 = Transmit hold register is empty. The processor can now load up to 64 bytes of data into the THR if the TX FIFO is enabled.
6	0 = Transmitter hold AND shift registers are not empty. 1 = Transmitter hold AND shift registers are empty.
7	0 = Normal operation 1 = At least one parity error, framing error or break indication are stored in the receiver FIFO. Blt 7 is cleared when no errors are present in the FIFO.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

line status register (LSR) (continued)

When the LSR is read, LSR[4:2] reflects the error bits [BI, FE, PE] of the character at the top of the RX FIFO (next character to be read). The LSR[4:2] registers do not physically exist, as the data read from the RX FIFO is output directly onto the output data-bus, DI[4:2], when the LSR is read. Therefore, errors in a character are identified by reading the LSR and then reading the RHR.

LSR[7] is set when there is an error anywhere in the RX FIFO and is cleared only when there are no more errors remaining in the FIFO.

NOTE:

Reading the LSR does not cause an increment of the RX FIFO read pointer. The RX FIFO read pointer is incremented by reading the RHR.

modem control register (MCR)

The MCR controls the interface with the modem, data set, or peripheral device that is emulating the modem. Table 12 shows modem control register bit settings.

BIT NO.	BIT SETTINGS
0	0 = Force <u>DTR</u> output to inactive (high) 1 = Force DTR output to active (low). In loopback controls MSR[5].
1	0 = Force RTS output to inactive (high) 1 = Force RTS output to active (low). In loopback controls MSR[4]. If Auto-RTS is enabled the RTS output is controlled by hardware flow control
2	0 Disables the FIFORdy register 1 Enable the FIFORdy register. In loopback controls MSR[6].
3	0 = Forces the IRQ(A-D) outputs to high-impedance state 1 = Forces the IRQ(A-D) outputs to the active state. In loopback controls MSR[7].
4	0 = Normal operating mode 1 = Enable local loopback mode (internal) In this mode the MCR[3:0] signals are looped back into MSR[3:0] and the TX output is looped back to the RX input internally.
5	0 = Disable Xon Any function 1 = Enable Xon Any function
6	0 = No action 1 = Enable access to the TCR and TLR registers.
7	0 = Divide by one clock input 1 = Divide by four clock input This bit reflects the inverse of the CLKSEL pin value at the trailing edge of the RESET pulse.

Table 12. Modem Control Register (MCR) Bit Settings

NOTE: MCR[7:5] can only be modified when EFR[4] is set i.e., EFR[4] is a write enable.

SLLS397 – NOVEMBER 1999

PRINCIPLES OF OPERATION

modem status register (MSR)

This 8-bit register provides information about the current state of the control lines from the modem, data set, or peripheral device to the processor. It also indicates when a control input from the modem changes state. Table 13 shows modem status register bit settings.

Table 13. Modem Status Register (MSR) Bit Settings

BIT NO.	BIT SETTINGS					
0	Indicates that CTS input (or MCR[1] in loopback) has changed state. Cleared on a read.					
1	Indicates that DSR input (or MCR[0] in loopback) has changed state. Cleared on a read.					
2	Indicates that RI input (or MCR[2] in loopback) has changed state from low to high. Cleared on a read.					
3	Indicates that CD input (or MCR[3] in loopback) has changed state. Cleared on a read.					
4	This bit is equivalent to MCR[1] during local loop-back mode. It is the complement to the CTS input.					
5	This bit is equivalent to MCR[0] during local loop-back mode. It is the complement to the DSR input.					
6	This bit is equivalent to MCR[2] during local loop-back mode. It is the complement to the RI input.					
7	This bit is equivalent to MCR[3] during local loop-back mode. It is the complement to the CD input.					

NOTE: The primary inputs RI, CD, CTS, DSR are all active low but their registered equivalents in the MSR and MCR (in loopback) registers are active high.

interrupt enable register (IER)

The interrupt enable register (IER) enables each of the six types of interrupt, receiver error, RHR interrupt, THR interrupt, Xoff received, or CTS/RTS change of state from low to high. The INT output signal is activated in response to interrupt generation. Table 14 shows interrupt enable register bit settings.

Table 14. Interrupt Enable Register (IER) Bit Settings

BIT NO.	BIT SETTINGS
0	0 = Disable the RHR interrupt 1 = Enable the RHR interrupt
1	0 = Disable the THR interrupt 1 = Enable the THR interrupt
2	0 = Disable the receiver line status interrupt 1 = Enable the receiver line status interrupt
3	0 = Disable the modem status register interrupt 1 = Enable the modem status register interrupt
4	0 = Disable sleep mode 1 = Enable sleep mode
5	0 = Disable the Xoff interrupt 1 = Enable the Xoff interrupt
6	0 = Disable the RTS interrupt 1 = Enable the RTS interrupt
7	0 = Disable the <u>CTS</u> interrupt 1 = Enable the <u>CTS</u> interrupt

NOTE: IER[7:4] can only be modified if EFR[4] is set, i.e., EFR[4] is a write enable.

Re-enabling IER[1] will cause a new interrupt, if the THR is below the threshold.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

interrupt identification register (IIR)

The IIR is a read-only 8-bit register which provides the source of the interrupt in a prioritized manner. Table 15 shows interrupt identification register bit settings.

Table 15. Interrupt Identification Register (IIR) Bit Settings

BIT NO.	BIT SETTINGS			
0	0 = An interrupt is pending 1 = No interrupt is pending			
3:1	3-Bit encoded interrupt. See Table 14.			
4	1 = Xoff/Special character has been detected.			
5	CTS/RTS low to high change of state			
7:6	Mirror the contents of FCR[0]			

The interrupt priority list is illustrated in Table 16.

PRIORITY LEVEL	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	INTERRUPT SOURCE	
1	0	0	0	1	1	0	Receiver line status error	
2	0	0	1	1	0	0	Receiver timeout interrupt	
2	0	0	0	1	0	0	RHR interrupt	
3	0	0	0	0	1	0	THR interrupt	
4	0	0	0	0	0	0	Modem interrupt	
5	0	1	0	0	0	0	Received Xoff signal/special character	
6	1	0	0	0	0	0	CTS, RTS change of state from active (low) to inactive (high)	

enhanced feature register (EFR)

This 8-bit register enables or disables the enhanced features of the UART. Table 17 shows the enhanced feature register bit settings.

BIT NO.	BIT SETTINGS
3:0	Combinations of software flow control can be selected by programming bit 3-bit 0. See Table 1.
4	 Enhanced functions enable bit. 0 = Disables enhanced functions and writing to IER bits 4–7, FCR bits 4–5, MCR bits 5–7. 1 = Enables the enhanced function IER bits 4–7, FCR bit 4–5, and MCR bits 5–7 can be modified, i.e., this bit is therefore a write enable.
5	 0 = Normal operation 1 = Special character detect. Received data is compared with Xoff-2 data. If a match occurs, the received data is transferred to FIFO and IIR bit 4 is set to 1 to indicate a special character has been detected.
6	RTS flow control enable bit 0 = Normal operation 1 = RTS flow control is enabled i.e., RTS pin goes high when the receiver FIFO HALT trigger level TCR[3:0] is reached, and goes low when the receiver FIFO RESTORE transmission trigger level TCR[7:4] is reached.
7	$\overline{\text{CTS}}$ flow control enable bit 0 = Normal operation 1 = $\overline{\text{CTS}}$ flow control is enabled i.e., transmission is halted when a high signal is detected on the $\overline{\text{CTS}}$ pin.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

divisor latches (DLL, DLH)

Two 8-bit registers store the 16-bit divisor for generation of the baud clock in the baud rate generator. DLH, stores the most significant part of the divisor. DLL stores the least significant part of the division.

DLL and DLH can only be written to before sleep mode is enabled (i.e., before IER[4] is set).

transmission control register (TCR)

This 8-bit register is used to store the receive FIFO threshold levels to start/stop transmission during hardware/software flow control. Table 18 shows transmission control register bit settings.

Table 18. Transmission Control Register (TCR) Bit Settings

BIT NO.	BIT SETTINGS	
3:0	RCV FIFO trigger level to HALT transmission (0-60)	
7:4	RCV FIFO trigger level to RESTORE transmission (0-60)	

TCR trigger levels are available from 0-60 bytes with a granularity of four.

TCR can only be written to when EFR[4] = 1 and MCR[6] = 1. The programmer must program the TCR such that TCR[3:0] > TCR[7:4]. There is no built-in hardware check to make sure this condition is met. Also, the TCR must be programmed with this condition before Auto- \overline{RTS} or software flow control is enabled to avoid spurious operation of the device.

trigger level register (TLR)

This 8-bit register is used to store the transmit and received FIFO trigger levels used for DMA and interrupt generation. Trigger levels from 4–60 can be programmed with a granularity of 4. Table 19 shows trigger level register bit settings.

Table 19. Trigger Level Register (TLR) Bit Settings

BIT NO.	BIT SETTINGS	
3:0	Transmit FIFO trigger levels (4–60), number of spaces available	
7:4	4 RCV FIFO trigger levels (4–60), number of characters availab	

TLR can only be written to when EFR[4] = 1 and MCR[6] = 1. If TLR[3:0] or TLR[7:4] are zero, then the selectable trigger levels via the FIFO control register (FCR) are used for the transmit and receive FIFO trigger levels. Trigger levels from 4–60 bytes are available with a granularity of four. The TLR should be programmed for N/4, where N is the desired trigger level.

FIFO ready register

The FIFO ready register provides real-time status of the transmit and receive FIFOs. Table 20 shows the FIFO ready register bit settings.

Table 20. FIFO Ready Register

BIT NO.	BIT SETTINGS
3:0	0 = There are less than a TX trigger level number of spaces available in the TX FIFO.1 = There are at least a TX trigger level number of spaces available in the TX FIFO
7:4	0 = There are less than a RX trigger level number of characters in the RX FIFO. 1 = The RX FIFO has more than a RX trigger level number of characters available for reading OR a timeout condition has occurred.

The FIFORdy register is a read only register and can be accessed when any of the four UARTs are selected CS A-D = 0, MCR[2] (FIFORdy Enable) is a 1 and loopback is disabled. Its address space is 111.

SLLS397 - NOVEMBER 1999

PRINCIPLES OF OPERATION

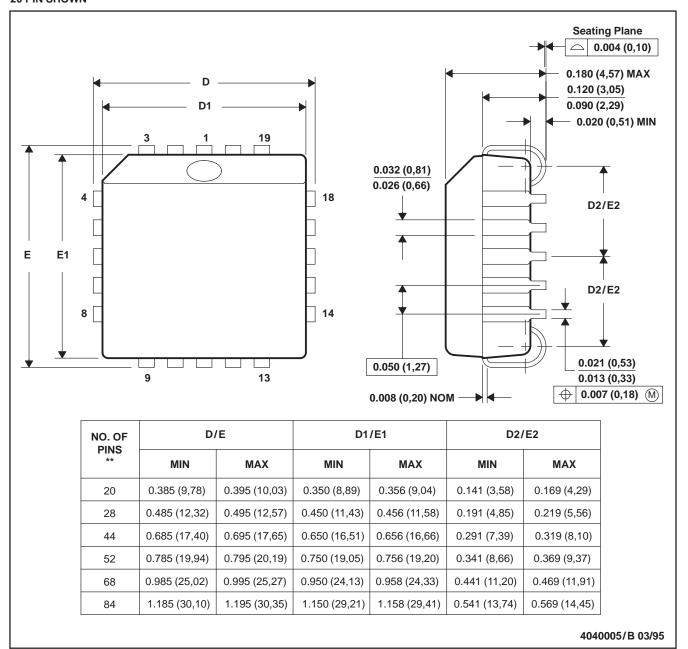
TL16C754B Programmer's Guide

The base set of registers that are used during high speed data transfer have a straightforward access method. The extended function registers require special access bits to be decoded along with the address lines. The following guide will help with programming these registers. Note that the descriptions below are for individual register access. Some streamlining through interleaving can be obtained when programming all the registers.

Set baud rate to VALUE1,VALUE2	Read LCR (03), save in temp Set LCR (03) to 80 Set DLL (00) to VALUE1 Set DLM (01) to VALUE2 Set LCR (03) to temp
Set Xoff1,Xon1 to VALUE1,VALUE2	Read LCR (03), save in temp Set LCR (03) to BF Set Xoff1 (06) to VALUE1 Set Xon1 (04) to VALUE2 Set LCR (03) to temp
Set Xoff2,Xon2 to VALUE1,VALUE2	Read LCR (03), save in temp Set LCR (03) to BF Set Xoff2 (07) to VALUE1 Set Xon2 (05) to VALUE2 Set LCR (03) to temp
Set software flow control mode to VALUE	Read LCR (03), save in temp Set LCR (03) to BF Set EFR (02) to VALUE Set LCR (03) to temp
Set flow control threshold to VALUE	Read LCR (03), save in temp1 Set LCR (03) to BF Read EFR (02), save in temp2 Set EFR (02) to 10 + temp2 Set LCR (03) to 00 Read MCR (04), save in temp3 Set MCR (04) to 40 + temp3 Set TCR (06) to VALUE Set LCR (03) to BF Set EFR (02) to temp2 Set LCR (03) to temp1 Set MCR (04) to temp3

SLLS397 - NOVEMBER 1999

Set xmt and rcv FIFO thresholds to VALUE	Read LCR (03), save in temp1 Set LCR (03) to BF Read EFR (02), save in temp2 Set EFR (02) to 10 + temp2 Set LCR (03) to 00 Read MCR (04), save in temp3 Set MCR (04) to 40 + temp3 Set TLR (07) to VALUE Set LCR (03) to BF Set EFR (02) to temp2 Set LCR (03) to temp1 Set MCR (04) to temp3
Read FIFORdy register	Read MCR (04), save in temp1 Set temp2 = temp1 * EF Set MCR (04), save in temp2 Read FRR (07), save in temp2 Pass temp2 back to host Set MCR (04) to temp1



SLLS397 - NOVEMBER 1999

MECHANICAL DATA

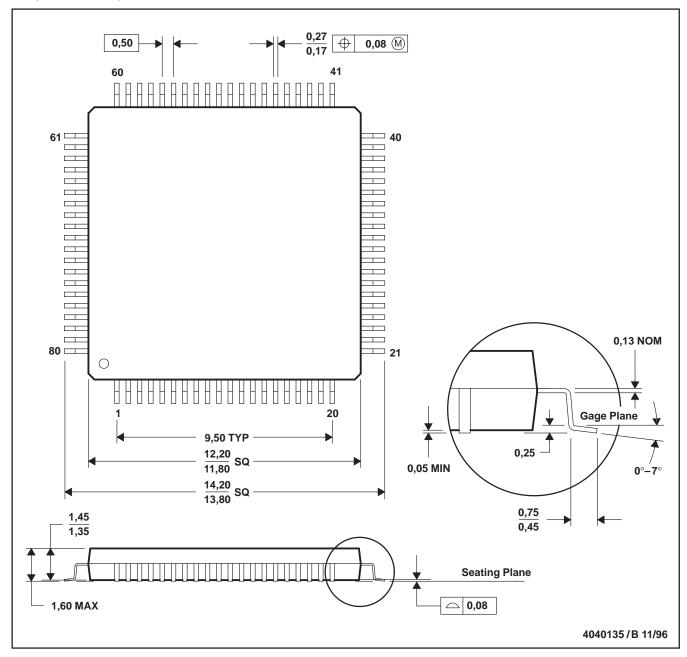
PLASTIC J-LEADED CHIP CARRIER

FN (S-PQCC-J**) 20 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-018



SLLS397 - NOVEMBER 1999

MECHANICAL DATA

PN (S-PQFP-G80)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated