150 Programming Language Processors in Java

The above declarations of the standard environment are not syntactically valid in
Mini-Triangle, and so cannot be introduced by processing a normal input file. In fact,
these declarations are entered into the identification table using a method called estab-
1ishStandardEnvironment, which the contextual analyzer calls before checking
the source program.

,Once the standard environment is entered in the identification table, the source
program can be checked for any type errors. At every applied occurrence of an
identifier, the identification table will be searched in exactly the same way (regardless of
whether the identifier turns out to be in the standard environment or the source
program), and its corresponding attribute used to determine its type.

O

5.2 Type checking

The second task of the confextual analyzer is to ensure that the source program contains
no type errors. The key property of a statically-typed language is that the compiler can
detect any type errors without actually running the program. In particular, for every
expression E in the language, the compiler can infer either that E has some type T or
that E is ill-typed. If E does have type T, then evaluating E will always yield a value of
that type T. If E occurs in a context where a value of type T" is expected, then the
compiler can check that T is equivalent to 7", without actually evaluating E. This is the
task that we call type checking.

Here we shall focus on the type checking of expressions. Bear in mind, however,
that some phrases other than expressions have types, and therefore also must be type-
checked. For example, a variable-name on the left-hand side of an assignment command
has a type. Even an operator has a type. We write a unary operator’s type in the form
Ty — T, meaning that the operator must be applied to an operand of type T1, and will
yield a result of type T,. We write a binary operator’s type in the form 7 x Ty — Ta,
meaning that the operator must be applied to a left operand of type T and a right
operand of type T5, and will yield a result of type T5.

For most statically-typed programming languages, type checking is straightforward.
The type checker infers the type of each expression bottom-up (i.e., starting with literals
and identifiers, and working up through larger and larger subexpressions):

* Literal: The type of a literal is immediately known.

o Identifier: The type of an applied occurrence of identifier / is obtained from the
corresponding declaration of 1.

e Unary operator application: Consider the expression ‘O E’, where O is a unary
operator of type T} — T. The type checker ensures that E’s type is equivalent to T,
and thus infers that the type of ‘O E’ is T,. Otherwise there is a type error.

. Al e R Sl

* Binary operat:
operator of ty]
to Ty, and that
is T3. Otherwi

In general, {
subexpressions,

In some phra
an expected typ
typical language
equivalent to the
the type of the ¢
whether two giv

Example 5.8
Mini-Triangle h
easily be represe

public ¢
priwv

publ:
Bt

publ.

It is a simpl
variable identifi(
of 1. If I is dec]
been inferred to

ConstDeclaration

-

Ident. ...Expr.

e
x "o



