
Automatic Dynamic Parallelotope Bundles for Reachability of
Nonlinear Dynamical Systems

Edward Kim

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Master of Science in the Department of
Computer Science in the College of Arts and Sciences.

Chapel Hill
2022

Approved by:

Sridhar Duggirala

Stanley Bak

Saba Eskandarian

©2022
Edward Kim

ALL RIGHTS RESERVED

ii

ABSTRACT

Edward Kim: Automatic Dynamic Parallelotope Bundles for Reachability of Nonlinear Dynamical
Systems

(Under the direction of Parasara Sridhar Duggirala)

Reachable set computation is an important technique for the verification of safety properties of

dynamical systems. In this thesis, we investigate reachable set computation for discrete non-linear

systems based on parallelotope bundles. The crux of the reachability algorithm relies on computing

an upper and lower bound on the supremum and infimum respectively of a non-linear function

over a rectangular domain. Bernstein Expansion of a polynomial function has been explored as a

traditional method for computing these bounds effciently. In light of this, we aim to improve the

traditional parallelotope-based reachability method by removing the manual step of parallelotope

template selection in order to make the procedure fully automatic. Furthermore, we show that adding

templates dynamically during computations can improve accuracy. To this end, we investigate two

techniques for generating template directions. The first technique approximates the dynamics as

a linear transformation and generates templates using this transformation. The second technique

uses Principal Component Analysis (PCA) of sample trajectories for generating templates. We

have implemented our approach in a Python-based tool called Kaa, which uses two types of global

optimization solvers, the first using Bernstein polynomials and the second using the Kodiak library.

We demonstrate the improved accuracy of our approach on several standard nonlinear benchmark

systems, including a high-dimensional COVID19 model. Finally, we explore a potential application

of the Bernstein expansion technique to real-time reachability. We present evidence of several hurdles

and barriers against effectively utilizing our Bernstein coefficient pruning method.

iii

ACKNOWLEDGEMENTS

I would like to thank the UNC Computer Science community for supporting my work and

providing me a warm community to pursue this research. In particular, I would like to thank my

advisor, Parasara Sridhar Duggirala, for the opporunity to perform research and participate in his

group. Bineet Ghosh, Manish Goyal, Abel Karimi, and Meghan Stuart were all great colleagues and I

enjoyed my time exchanging ideas, proof-reading drafts, and socializing over group lunches. I would

also like to thank Stanley Bak for helping me improve the implementation of Kaa and providing

valuable feedback during this research. Juan Garcia is a wonderful collegue and an equally wonderful

friend. The nights we raided Peabody and Phillips hall was certainly a memorable time. Finally, I

would like to thank my parents and my family for their ardent, unending support.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Related Work . 3

2 Preliminaries . 4

2.1 Basic Definitions . 4

2.2 Parallelotope-based Reachability . 7

2.2.1 Parallelotopes . 7

2.2.2 Bernstein Polynomials . 15

2.2.3 The Static Algorithm . 17

3 Dynamic Paralleotope Bundles . 24

3.1 Drawbacks to the Static Algorithm . 24

3.2 Local Linear Approximations . 26

3.3 Principal Component Analysis . 27

3.4 The Dynamic Algorithm . 27

4 Evaluations . 30

4.1 Kaa. 30

4.2 Benchmarks . 32

4.3 COVID19 Supermodel . 32

4.4 Comparison of Template Generation Techniques . 35

4.4.1 Accuracy of Dynamic Strategies. 35

v

4.4.2 Performance under Increasing Initial Sets . 36

4.4.3 Performance against Random Static Templates . 36

5 Applications to Real-time Reachability . 41

5.1 Motivation and Algorithm . 41

5.2 Experimental Results . 45

5.2.1 Discrepancy of Degrees . 46

5.2.2 Contributions of Many Overlapping Cells . 49

6 Conclusion . 52

A Additional Benchmark Model Definitions . 53

A.1 Vanderpol Oscillator . 53

A.2 Jet Engine . 53

A.3 Coupled Vanderpol . 54

A.4 Neuron Model . 54

BIBLIOGRAPHY . 55

vi

LIST OF TABLES

4.1 Benchmark models and relevant information . 33

vii

LIST OF FIGURES

2.1 Discretized Dynamics of SIR model . 6

2.2 Plot of the axis-aligned parallelotope of Example 2.2. The template di-
rections are displayed as normal vectors to the pairs of parallel planes
defining the parallelotope. O represents the origin (0, 0) and each side of
a grid cell represents one unit of distance. 10

2.3 Plot of the rotated parallelotope of Example 2.3. Note the manner in which
the template directions and their negative counterparts define parallel
planes and the parallelotope’s definition as the intersection of the postive
and negative half-spaces of all pairs of parallel planes. O represents the
origin (0, 0) and each side of a grid cell represents one unit of distance. 11

2.4 Plot of the generator representation for Example 2.3. The vertex v repre-
sents the anchor while the two vectors g1, g2 are the generator vectors. 12

2.5 Half-Space to Generator Representation Conversion Algorithm. 13

2.6 Plot of the generator representation for Example 2.5. The vertex v repre-
sents the anchor while the two vectors g1, g2 are the generator vectors. 14

2.7 Reachable set computation using manual and static templates. 19

2.8 Projection of Reachable Set of SIR propagated 300 steps in time. 21

2.9 Discretized Dynamics of Phosphorlay Model. 22

2.10 Projection of Reachable Set of the Phosporaley model propagated 300
steps in time. 23

3.1 Consequences of choosing inappropriate template directions as demon-
strated by the Coupled Vanderpol model. See Section A.3 for the model
definition. 25

3.2 The Automatic, Dynamic Reachability Algorithm. 29

4.1 Dynamics for the Discretized COVID19 Supermodel. 33

4.2 Reachable Sets for India’s COVID19 Confirmed Population for the period
06/21/20-10/01/20. 34

viii

4.3 Effect of varying ratio between the number of PCA and Linear Approx-
imation parallelotopes. The Vanderpol (left) and the FitzHugh-Nagumo
Neuron (right) phase plots are shown to illustrate differing effects of vary-
ing the PCA/LinApp ratio. The initial set for the Vanderpol model is set
to x ∈ [0, 0.05], y ∈ [1.95, 2], and the initial set Neuron model is set to
x ∈ [0.9, 1.1], y ∈ [2.4, 2.6] . 37

4.4 Tables presenting upper bounds on the total reachable set volume by strat-
egy. The static directions are retrieved and/or inspired from Sapo models
of equal dimension for benchmarking. The best performing strategy is
highlighted in bold.. 38

4.5 Comparison between the performance of diagonal static parallelotope
bundles and that of the best performing dynamic parallelotope bundles as
the volume of the initial set grows. 39

4.6 Comparision between random static strategies and the best performing dy-
namic strategies as the volume of the initial set grows. The total reachable
set volumes for random static strategies are averaged over ten trials for
each system. 40

5.1 Bernstein coefficient interval pre-computation algorithm. 42

5.2 Modified Reachability Algorithm . 43

5.3 Output for First step of Reachability algorithm with the Vanderpol Model. 48

5.4 Example of Wrapping Error Obstacle demonstrated for Step 4 for Vander-
pol Model. 50

ix

CHAPTER 1

Introduction

One of the most widely-used techniques for performing safety analysis of non-linear dynamical

systems is reachable set computation. For instance, reachability analysis has found a panoply of

applications in formally verifying the safety properties of Cyber-physical Systems (CPS), such as

autonomous vehicles (Althoff, 2010), F-16 aircraft (Heidlauf et al., 2018), and CPS systems governed

by Neural Network Controllers (Tran et al., 2019; Fan et al., 2020; Bak, 2021). The reachable set is

defined to be the set of states visited by at least one of the trajectories of the system starting from an

initial set and propagated forward in time by a fixed number of steps. Computing the exact reachable

set for non-linear systems is challenging due to several reasons: First, unlike linear dynamical

systems whose solutions can be expressed in closed form, non-linear dynamical systems generally

do not admit such a nice form. Second, computationally speaking, current tools for performing

non-linear reachability analysis are not very scalable. This is also in stark contrast to several scalable

approaches developed for linear dynamical systems (Duggirala and Viswanathan, 2016; Bak and

Duggirala, 2017). Finally, computing the reachable set using various set representations involves

wrapping error which may be too conservative for practical use. That is, the over-approximation

acquired at a given step would increase the conservativeness of the over-approximation for all future

steps.

One of the several techniques for computing the over-approximation of reachable sets for discrete

non-linear systems is encoding the reachable set through parallelotope bundles. Here, the reachable

set is represented as a parallelotope bundle, an geometric data structure representing an intersection

of several simpler objects called parallelotopes. One of the advantages of this technique is its

exploitation of a special form of non-linear optimization problem to over-approximate the reachable

set. The usage of a specific form of non-linear optimization mitigates many drawbacks involved with

the scalability of non-linear analysis.

However, wrapping error still remains to be a problem for reachability using parallelotope

bundles. An immediate reason stems from the responsibility of the practitioner to define the template

directions specifiying the parallelotopes. Often times these template directions are selected to be

either the cardinal axis directions or some directions from octahedral domains. However, it is not

certain that the axis-aligned and octagonal directions are optimal for computing reachable sets over

general non-linear dynamics. Additionally, even an expert user of reachable set computation tools

may not be able to ascertain a suitable set of template directions for computing reasonably accurate

over-approximations of the reachable set. Picking unsuitable template directions would only cause

the wrapping error to grow, leading to the aforementioned issue of overly conservative reachable sets.

In this thesis, we investigate techniques for generating template directions automatically and

dynamically, which is the culmination of several publications in different venues (Kim and Duggirala,

2020; Kim et al., 2021; Geretti et al., 2021). Specifically, we propose a method where instead of

the user providing the template directions to define the parallelotope bundle, he or she specifies the

number of templates whose template directions are to be generated by our algorithm automatically.

To this end, we study two techniques for generating the said template directions. First, we

compute a local linear approximation of the non-linear dynamics and use the linear approximation

to compute the template directions. Second, we generate a set of trajectories sampled from within

the reachable set and use Principal Component Analysis (PCA) over these trajectories. We observe

that the accuracy of the reachable set can be drastically improved by using templates generated

using these two techniques. To address scalability, we demonstrate that even when the size of the

initial set increases, our template generation algorithm returns more accurate reachable sets than both

manually-specified and random template directions. We experiment with our dynamic template gen-

eration algorithm’s effectiveness on approximating the reachable set of high-dimensional COVID19

dynamics proposed by the Indian Supermodel Committee (National Supermodel Committee , 2020).

The results were published in an ACM blogpost detailing the utility of reachable set computation in

modeling disease dynamics (Bak et al., 2021b).

Finally, we investigate an application of Bernstein expansion-based reachability to the real-time

domain. We attempt to pre-compute the relevant Bernstein coefficients over the entire domain and

2

prune the coefficients which do not appear as either a maximum or minimum coefficient. The idea

is to decrease the total number of coefficients the reachability algorithm has to compute in order to

gain a speedup. However, we show that there are several obstacles which hinder the utility of our

pre-processing step.

1.1 Related Work

Reachable set computation of non-linear systems using template polyhedra and Bernstein polynomials

was first proposed in (Dang and Salinas, 2009). In (Dang and Salinas, 2009), Bernstein polynomial

representation is used to compute an upper bound of a special type of non-linear optimization

problem. This enclosing property of Bernstein polynomials has been actively studied in the area of

global optimization (Nataray and Kotecha, 2002; Garloff, 2003; Nataraj and Arounassalame, 2007).

Furthermore, several heuristics have been proposed for improving the computational performance of

optimization using Bernstein polynomials (Smith, 2009; Muñoz and Narkawicz, 2013).

Several improvements to this algorithm were suggested in (Dang and Testylier, 2012; Sassi et al.,

2012) and (Dang et al., 2014) extends it for performing parameter synthesis. The representation of

parallelotope bundles for reachability was proposed in (Dreossi et al., 2016) and the effectiveness of

using bundles for reachability was demonstrated in (Dreossi, 2017; Dreossi et al., 2017). However,

all of these papers used static template directions for computing the reachable set. In other words,

the user must specify the template directions before the reachable set computation proceeds.

Using template directions for reachable set has been proposed in (Sankaranarayanan et al.,

2008) and later improved in (Dang and Gawlitza, 2011). Leveraging the Principal Component

Analysis of sample trajectories for computing reachable set has been proposed in (Stursberg and

Krogh, 2003; Chen and Ábrahám, 2011; Seladji, 2017). More recently, connections between

optimal template directions for reachability of linear dynamical systems and bilinear programming

have been highlighted in (Gronski et al., 2019). For static template directions, octahedral domain

directions (Clarisó and Cortadella, 2004) remain a popular choice.

3

CHAPTER 2

Preliminaries

We begin with some preliminaries pertaining to reachability and parallelotopes. The definition

of Bernstein polynomials and their enclosure properties will be stated. Finally, an outline of the

reachability algorithm given by (Dreossi et al., 2016) for polynomial dynamical systems will be

presented.

2.1 Basic Definitions

As stated in the previous section, this thesis pertains to the reachability analysis of dynamical

systems. Roughly speaking, a dynamical system describes the behavior of states governed by a set of

differential equations. The states of the system evolve according to the flow of time and the vector

field induced by the governing differential equations.

Towards introducing more terminology, the state of a system, denoted as x, lies in a domain

D ⊆ Rn where the solutions to the differential equations are defined. In the reachability analysis

literature, there are several definitions for dynamical systems which appear depending on the authors’

taste for formalisms. Here is a more rigorous definition appearing in (Dang and Maler, 1998):

Definition 2.1. A continuous dynamical system is a tuple 〈X, f〉whereX = Rn is finite-dimensional

Euclidean space and f is a continuous function on X . A point (state) of x0 ∈ X evolves according

to a trajectory ξ(t) : R+ → X such that the following hold:

ξ(0) = x0

dξ(t)

dt
= f(ξ(t)) ∀t ∈ R+

(2.1)

♦

Note that, by a simple separation of variables argument and an initial value of ξ(0) = x0, Equation

2.1 yields the following form for ξ:

ξ(t) = x0 +

∫ t

0
f(ξ(τ)) dτ (2.2)

However, many members of the research community choose to simply express the system as:

x′ = f(x) (2.3)

for a continuous function f : Rn → Rn. We restrict our attention to a discretized version of this

definition for this thesis:

Definition 2.2. A discrete-time dynamical system is denoted as

x+ = f(x) (2.4)

where f : Rn → Rn is a function and x+ denotes the evolved output state. ♦

In other words, the function f takes input a state of the system and outputs the next step of

the system evolved according to the dynamics. The function f generally represents a discretized

version of some specified continuous dynamical system. Here, a discrete-time dynamical system is

considered to be linear if its dynamics can be expressed as

x+ = Ax, A ∈ Rn×n

Otherwise, we deem the system to be non-linear. Hence, in particular, a non-linear function f cannot

be expressed as some matrix A ∈ Rn×n.

Examples of prominent non-linear dynamical systems include the Lotka-Volterra predator-

prey model (Wangersky, 1978), the Fitz-Hugh Neuron model (FitzHugh, 1961), and the recently

introduced COVID19 disease model (National Supermodel Committee , 2020). Throughout this

thesis, we discretize any continuous dynamics through the well-known Euler method. Thus, up

to some error term of bounded degree, we can turn any non-linear system into the form given by

Equation 2.4.

5

Example 2.1. The SIR Epidemic model is a 3-dimensional dynamical system governed by the

following continuous dynamics:

s′ = β · si

i′ = β · si− γ · i

r′ = γ · i

(2.5)

where s, i, r represent the fractions of a population of individuals designated as susceptible, infected,

and recovered respectively. There are two parameters, namely β and γ, which influence the evolution

of the system. β is labeled as the contraction rate and 1/γ is the mean infective period. Discretizing

Equation 2.5 according the Euler method yields the dynamics:

sk+1 = sk − (β · skik) ·∆

ik+1 = ik + (β · skik − γ · ik) ·∆

rk+1 = rk + (γ · ik) ·∆

Figure 2.1: Discretized Dynamics of SIR model

Here, ∆ is the discretization step and the index k ∈ N simply represents the current step. Note the

non-linear terms skik, which preclude the expression of the dynamics as a linear transformation.

♦

We can now give a discretized version of a trajectory as presented in Definition 2.1. The trajectory

of a system that evolves according to Equation 2.4, denoted as ξx0 , is a sequence x0, x1, . . . where

xi+1 = f(xi). The kth element in this sequence xk is denoted as ξx0(k).

Definition 2.3. Given an initial set Θ ⊆ Rn, the reachable set at step k, denoted as Θk is defined as

Θk = {ξx(k) | x ∈ Θ} (2.6)

6

If we set the number of steps to be some n ∈ N, we say the reachable set is

Θ =
n⋃
i=1

Θi (2.7)

♦

Example 2.7 gives the plot of the reachable set of the discretized SIR model presented in Figure 2.1.

2.2 Parallelotope-based Reachability

2.2.1 Parallelotopes

The heart of our reachability algorithm relies on geometric objects called parallelotopes. In this

section, we define parallelotopes and two representations for them.

Definition 2.4. A parallelotope P ⊂ Rn is captured by the tuple 〈Λ, c〉 where Λ ∈ R2n×n is a

matrix and c ∈ R2n is a column vector. We impose the condition that Λi+n = −Λi for all 1 ≤ i ≤ n

such that

x ∈ P if and only if Λx ≤ c. (2.8)

♦

We deem Λ as the template direction matrix where Λi denotes the ith row of Λ called the ith

template direction. The column vector c is called the offset vector with c(i) denoting the ith element

of c. If we unpack Equation 2.8, we can re-express the inequalities as a conjunction of half-space

constraints. If we define cu = [c(1), c(2), · · · , c(n)]T and cl = [c(n + 1), c(n + 2), · · · , c(2n)]T ,

then Equation 2.8 tells us that, for 1 ≤ i ≤ n:

Λix ≤ cu(i) (2.9)

−Λix ≤ cl(i) (2.10)

Additionally, the definition of the paralleotope above requires that for each of n “positive” directions,

there must exist a corresponding “negative” direction. This is encoded into the template matrix Λ

by the condition Λi+n = −Λi. However, by the observation made above, we only need to keep the

7

positive directions and divide our offset vector into equal components with the top half encoding the

offsets for the positive directions and the bottom half encoding the offsets for the negative directions.

The bottom half must be multiplied by a negative sign to account for Inequality 2.10. Combining

these remarks yields the half-space representation of parallelotope P .

Definition 2.5. The half-space representation of parallelotope P is tuple 〈Λ, cl, cu〉where Λ ∈ Rn×n

and cl, cu ∈ Rn such that

P = {x | cl ≤ Λx ≤ cu} (2.11)

In a more explicit form:

P =
n∧
i=1

[cl(i) ≤ Λi · x ≤ cu(i)] (2.12)

♦

In particular, as a bounded intersection of n pairs of parallel half-spaces, it is convex.

Example 2.2. Consider the 2D plane, namely R2. We can construct a two simple examples of

parallelotopes. First, if we define our parallelotope’s template directions to be the rows of the matrix:

Λ =

1 0

0 1

 (2.13)

We see that our template directions will be the vectors [1, 0]T , [0, 1]T . Suppose now we set our upper

and lower offsets to be:

cl = [−1,−1]T , cu = [1, 1]T (2.14)

Then by Definition 2.5, the half-space representation is given by:

−1

−1

 ≤
1 0

0 1

x
y

 ≤
1

1

 (2.15)

8

Accordingly, by Equation 2.12, the bounded region in space will be the intersection of the following

linear constraints:

−1 ≤ x ≤ 1

−1 ≤ y ≤ 1

(2.16)

This is exactly the scaled unitbox [−1, 1]× [−1, 1]. In fact, we can easily generalize this to a general

n-dimensional system by considering the template direction matrix Λ = In where In is the n× n

identity matrix and two offset vectors cl, cu of length n. This would yield the shifted n-dimensional

unitbox:

[cl(1), cu(1)]× [cl(2), cu(2)]× · · · × [cl(n), cu(n)] (2.17)

It is worth noting that axis-aligned box on the 2D plane above would give the representation:

Λ =

1 0

0 1

−1 0

0 −1

, c = [2, 2,−1,−1]T (2.18)

if we were to convert the half-space representation above into the form defined in Equation 2.8. From

here on out, we refer to parallelotopes defined by the n axis-aligned directions as the axis-aligned

parallelotopes. For a visual plot of above axis-aligned parallelotope, see Figure 2.2.

♦

Example 2.3. We can also consider the axis-aligned directions rotated 45◦ counter-clockwise. This

would yield the two diagonal directions [1, 1]T , [−1, 1]T . Suppose we set the upper and lower offsets

to be cu = [1, 1]T and cl = [−1,−1]T respectively. Then once again by Definition 2.5:

−1

−1

 ≤
 1 1

−1 1

x
y

 ≤
1

1

 (2.19)

9

[0, 1]

[1, 0][−1, 0]

[0,−1]

O

Figure 2.2: Plot of the axis-aligned parallelotope of Example 2.2. The template directions are displayed as normal vectors
to the pairs of parallel planes defining the parallelotope. O represents the origin (0, 0) and each side of a grid cell represents
one unit of distance.

The bounded region in R2 will be the conjunction of the linear inequalities:

−1 ≤ x+ y ≤ 1

−1 ≤ y − x ≤ 1

(2.20)

In general, we define diagonal directions are defined to be vectors created by adding and subtracting

distinct pairs of unit axis-aligned vectors from each other. As a matter of convenience however, we

refer to diagonal parallelotopes as those defined by a combination of axis-aligned and diagonal

directions. This definition will be useful when we consider parallelotopes defined by unconventional

directions (i.e those template directions which are neither axis-aligned nor diagonal). To see a visual

plot of the diagonal parallelotope, see Figure 2.3.

♦

Alternatively, a parallelotope can also be represented in a generator representation.

Definition 2.6. The generator representation of a parallelotope P is a tuple of vectors 〈v, g1, . . . , gn〉

such that v, g1, · · · gn ∈ Rn. The vector v is called the anchor and the gi are called the generators.

The parallelotope is defined as the set:

P := {x | ∃α1, . . . , αn ∈ [0, 1], x = v +

n∑
i=1

αigi}

♦

10

[1, 1]

[−1,−1]

[−1, 1]

[1,−1]

O

Figure 2.3: Plot of the rotated parallelotope of Example 2.3. Note the manner in which the template directions and their
negative counterparts define parallel planes and the parallelotope’s definition as the intersection of the postive and negative
half-spaces of all pairs of parallel planes. O represents the origin (0, 0) and each side of a grid cell represents one unit of
distance.

Remark 2.1. This is esstentially a convex representation of the parallelotope, which shares many sim-

ilarities to Zonotopes (Girard, 2005; Althoff et al., 2010) and Star sets (Duggirala and Viswanathan,

2016). The most general definition of so-called template polyhedra in Rn is a tuple 〈Λ, c〉 such that

Λ ∈ Rm×n for some m ∈ N and c ∈ Rn. The polyhedron is defined by the conjunction of linear

inequalities:
m∧
i=1

Λi · x ≤ ci (2.21)

It follows that parallelotopes are template polyhedra with m = 2n such that Λi+n = −Λi for

1 ≤ i ≤ n. Several verification tasks of hybrid automata with template polyhedra have been

investigated in the reachability literature. See (Dang and Gawlitza, 2011; Gronski et al., 2019;

Sankaranarayanan et al., 2008) for more on related topics. ♦

There is a simple method to convert from the half-space representation of P to its equivalent

generator representation. The algorithm is sketched in Algorithm 2.5. Line 1 ascertains the lower-

most corner vertex of the input parallelotope. This vertex will be our anchor. The first loop starting

at Line 2 finds all of the vertices which are incident to the lower-most vertex through an boundary

edge. There will be exactly n of these incident vertices. The ith incident vertex can be computed

by replacing the value stored in index i of the lower offset vector cl with the value stored in the

corresponding index i of upper offset vector cu. Intuively, this process can be visualized as following

the lower half-space boundary for each pair of parallel planes until we reach the intersection of the

11

O

v

g1 g2

Figure 2.4: Plot of the generator representation for Example 2.3. The vertex v represents the anchor while the two vectors
g1, g2 are the generator vectors.

boundary with several other upper half-space boundaries. See Figure 2.4 for a plot of this on the

diagonal example considered in Example 2.3. Finally, the second loop starting at line eight calculates

the generator vectors which will span the paralleltope through a convex combination ᾱ ∈ [0, 1]n.

Note that the anchor is simply shifting the generator vectors gi from the origin to the point required

to properly span P .

There also exists a procedure to perform the reverse direction, namely to convert from the

generator representation to the half-space representation. However, we will not require this procedure

for this thesis. Refer to (Dang et al., 2014) for a more detailed exposition of these conversions.

As a final remark, notice that for a parallelotope P , the generator representation also defines an

affine transformation that maps [0, 1]n to P . We refer to this affine transformation associated to P as

TP : [0, 1]n → P when necessary.

Example 2.4. Let us return to the axis-aligned box considered in Example 2.2. To obtain the

anchor, we end up with the trivial solution x = 1, y = 1 by adhering to Step 1. Hence, the anchor

is set to v = (1, 1). Subsequently, we solve for the two other vertices by following Step 2 to

obtain x = 2, y = 1 and x = 1, y = 2. By Step 3, this would imply that the two generators are

g1 = (2, 1) − (1, 1) = (1, 0) and g2 = (1, 2) − (1, 1) = (0, 1). Now combine the anchor and

generators to get the generator representation for this paralellotope:

P = (1, 1) + α1 · (1, 0) + α2 · (0, 1) α1, α2 ∈ [0, 1] (2.22)

12

Input: Parallelotope P = 〈Λ, cl, cu〉 in Half-Space Representation
Output: Generator Representation of P = 〈a, g1 · · · , gn〉

1 v0 ← SolveLinearEq(Λ, cl)
2 for i← 1 to n do
3 µj ← cl
4 µj [i]← cu[i]
5 vi ← SolveLinearEq(Λ, µi)

6 end
7 a← v0

8 for i← 1 to n do
9 gi ← vi − v0

10 end
11 return 〈a, g1, · · · , gn〉

Figure 2.5: Half-Space to Generator Representation Conversion Algorithm.

This is exactly the unit box [0, 1]2 with its corner at the origin shifted to (1, 1). ♦

Example 2.5. Parallelotope P is given in half-plane representation as 0 ≤ x− y ≤ 1, 0 ≤ y ≤ 1.

This is a parallelotope with vertices at (0, 0), (1, 0), (2, 1), and (1, 1). The template directions of the

parallelotope P are given by the directions [1,−1] and [0, 1]. The half-space representation in matrix

form is given as follows: 0

0

 ≤
1 −1

0 1

x
y

 ≤
1

1

 . (2.23)

To compute the generator representation of P , we need to compute the anchor and the generators.

The anchor is obtained by solving the linear equations x− y = 0, y = 0. Therefore, the anchor a

is the vertex at origin (0, 0) To compute the two generators of the parallelotope, we compute two

vertices of the parallelotope. Vertex v1 is obtained by solving the linear equations x− y = 1, y = 0.

Therefore, vertex v1 is the vertex (1, 0). Similarly, vertex v2 is obtained by solving the linear

equations x− y = 0, y = 1. Therefore, v2 is the vertex (1, 1). The generator g1 is the vector v1 − a,

that is (1, 0)− (0, 0) = (1, 0) The generator g2 is the vector v2 − a, that is (1, 1)− (0, 0) = (1, 1).

Therefore, all the points in the paralellotope can be written as (x, y) = (0, 0)+α1 ·(1, 0)+α2 ·(1, 1),

α1, α2 ∈ [0, 1]. Figure 2.6 portrays a visual plot of the derived generator representation. ♦

The reachable set will be expressed an intersection of parallelotopes. These parallelotopes will

be encoded into a parallelotope bundle.

13

O
v g1

g2

Figure 2.6: Plot of the generator representation for Example 2.5. The vertex v represents the anchor while the two vectors
g1, g2 are the generator vectors.

Definition 2.7. A parallelotope bundle Q is a set of parallelotopes {P0, . . . , Pm} such that

Q =

m⋂
i=1

Pi

. ♦

Remark 2.2. There is a slight abuse of notation above where we refer to the parallelotope bundle Q

as both the set of parallelotopes and the region in Rn of the intersection of all the parallelotopes Pi.

To specify the set of parallelotopes which consists the bundle, we will write

P(Q) = {P0, . . . , Pm}

♦

This parallelotope bundle will be the geometric data structure enclosing the region we compute

to be the over-approximation of the exact reachable set. Observe that Q can be expressed as the

conjunction of all the linear constraints defining each parallelotope Pi ∈ P(Q).

14

2.2.2 Bernstein Polynomials

In this section, we define Bernstein polynomials and state some of their enclosure properties. A

multi-index i of length n is defined as tuple of n elements i = (i1, · · · , in) such that each ik ∈ N.

Furthermore, we order the multi-indices as follows: if i and j are two multi-indices of length n, then

i ≤ j ⇐⇒ ik ≤ jk, 1 ≤ k ≤ n

Finally, we generalize the product of binomial coefficients over multi-indices as:

(
i

j

)
:=

n∏
k=1

(
ik
jk

)

Given two multi-indices i and d of size n, where i ≤ d, the Bernstein basis polynomial of degree d

and index i is defined as:

B(i,d)(x) = βi1,d1(x1)βi2,d2(x2) . . . βin,dn(xn). (2.24)

where for i, d ∈ N and x ∈ R:

βi,d(x) =

(
d

i

)
xi(1− x)d−i (2.25)

Let p : Rn → R be a real polynomial of degree at most d. We can express p as a linear combination

of monomials of degree at most d:

p(x) =
∑
i≤d

ai · xi

where xi represents the monomial xi11 x
i2
2 · · ·xinn . One of the most important properties of Berstein

polynomials is that the Bernstein basis polynomials of degree d span the vector space of real

multivariate polynomials of degree at most d: In other words, given a polynomial p(x1, . . . , xn) =∑
j∈J ajxj where J is a set of multi-indices iterating through the degrees found in p with aj ∈ R,

then p(x1, . . . , xn) can be converted into its counterpart under the Bernstein basis, p(x1, . . . , xn) =∑
j∈J bjBj where bj are the corresponding Bernstein coefficients.

15

Property 2.1. Every real polynomial p of degree at most d can be represented as linear

combination of Bernstein basis polynomials of degree d:

p(x) =
∑
i≤d

bi · B(i,d)(x) (2.26)

where bi denotes the ith Bernstein Coefficient:

bi =
∑
j≤i

(
i
j

)(
d
j

) · aj (2.27)

The primary advantage of the Bernstein representation of a polynomial p(x1, ..., xn) is that an

upper bound on the supremum and lower bound on the infimum of p(x1, ..., xn) in [0, 1]n can be

computed purely by observing the coefficients of the polynomial in the Bernstein basis. Specifically,

the upper and lower bounds of p(x1, . . . , xn) over [0, 1]n are bounded by the Bernstein coefficients.

We state this as a property without proof.

Property 2.2. (Enclosure Property) Let p : Rn → R be a real multivariate polynomial of degree

d, and let p(x) =
∑

i≤d bi · B(i,d)(x) be the Bernstein expansion of p, then

min
i≤d
{bi} ≤ inf

x∈[0,1]n
p(x) ≤ sup

x∈[0,1]n
p(x) ≤ max

i≤d
{bi}

As mentioned earlier, a parallelotope P can also be represented as an affine transformation

Tp from [0, 1]n to P . Therefore, upper bounds on the suprenum of a polynomial function p over

P is equivalent to upper bound of p ◦ Tp over [0, 1]n. A similar argument follows for the lower

bound on the infimum. The crux of the reachability algorithm involves exploiting this property

of Bernstein polynomials to approximate the solution of certain non-linear optimization problem

involving polynomial predicates over the unitbox, [0, 1]n. We will cover this algorithm in the

upcoming section. For a more rigorous exposition on Bernstein polynomials and Property 2.2, refer

to (Garloff, 2003).

16

2.2.3 The Static Algorithm

We will end with an outline of the static algorithm first investigated in works (Dang and Testylier,

2012; Dreossi et al., 2016). As mentioned in the previous section, the building block of the reachabil-

ity algorithm relies on approximate solutions to a non-linear optimization problem over the unit-box

domain. Consider a non-linear function h : Rn → R. The most general form of this optimization

problem can be expressed as:

max h(x) (2.28)

s.t. x ∈ [0, 1]n.

In the static algorithm, the user manually specifies the number of parallelotopes and a set of

static directions for each parallelotope. In other words, the user must specify the template matrix

Λ and its corresponding offset vector c for each parallelotope P = 〈Λ, c〉 contained in the bundle

before the computation begins.

We now proceed to formally describe the static algorithm. First, a small remark on the template

matrix of the parallelotopes Pi contained in some bundle Q. It is possible that some of the parallelo-

topes share the same template matrix directions. In other words, for Pi = 〈ΛPi , cPi〉, Pj = 〈ΛPj , cPj 〉

such that Pi, Pj ∈ P(Q), there could exist some k such that ΛPi
k = Λ

Pj

k as row vectors. Thus, a

more compact method of encoding the bundle is by taking the distinct template directions as rows of

a new template matrix ΛQ along with its corresponding offset vector cQ. To distinguish between

the distinct parallelotopes contained in the bundle, we add a new matrix called the bundle index

matrix, T Q ∈ Np×n, such that T Qi is a vector of row indices of ΛQ which specify the template

directions defining parallelotope Pi ∈ P(Q). The number of rows will thus be the number of distinct

parallelotopes contained in the bundle p = |P(Q)|.

Remark 2.3. If none of the paralleotopes Pi ∈ P(Q) share common template directions, then ΛQ

will simply be the template direction matrices {ΛP }P∈P(Q) concatenated along their rows. This will

generally be the matrix generated by the dynamic algorithm we will outline in a future section. ♦

17

Example 2.6. Set our space to be R2. Consider the parallelotope bundle Q containing three

individual parallelotopes P0, P1, P2 with the following template direction matrices:

ΛP0 =

1 0

0 1

 , ΛP1 =

1 0

1 1

 , ΛP2 =

 0 1

−1 1

The associated template direction matrix and bundle index matrix for Q will then be defined as

follows:

ΛQ =

1 0

0 1

1 1

−1 1

, T Q =

0 1

0 2

1 3

♦

Another input to the algorithm is the initial parallelotope bundle, given as Q. When the initial set is a

box, P0 will be defined by the axis-aligned template directions.

The output of the algorithm is, for each step k, the set Θk, which is an over-approximation of

the reachable set at step k, Θk ⊆ Θk. The total over-approximation of the reachable set for a finite

number of steps n will be Θ = ∪nk=1Θk. The high-level pseudo-code is written in Algorithm 2.7.

The algorithm simply calls TransformBundle for each step, producing a new parallelotope

bundle computed from the previous step’s bundle. To compute the image of Q, the algorithm

computes the upper and lower bounds of f(x) with respect to each template direction ΛQi . Since

computing the maximum value of f(x) along each template direction over the intersection of the

entire bundleQ in one shot is computationally difficult, the algorithm instead computes the maximum

value over each of the constituent parallelotopes and uses the minimum of all these maximum values.

The TransformBundle operation works as follows. Consider a parallelotope P in the

bundle Q. Given a template direction ΛQi , the maximum value of ΛQi · f(x) for all x ∈ Q is

less than or equal to the maximum value of ΛPi · f(x) for all x ∈ P if ΛQi is a row in ΛP .

Similar argument holds for the minimum value of ΛQi · f(x) for all x ∈ Q. Observe that these

inequalities hold by virtue of the fact that Q ⊆ P by definition. To describe this more formally: if

18

Input: Dynamics f , Initial Parallelotope bundle Q, Step Bound S, Template Directions
Matrix ΛQ, Bundle Index Matrix T Q

Output: Reachable Set Overapproximation Θk for each step k
1 Q0 ← Q
2 for k ← 1 to S do
3 Qk ← TransformBundle (f , Qk−1, Λ)
4 Θk ← Qk
5 end
6 return Θ1 . . .ΘS

7

8 Proc TransformBundle(f , Q, ΛQ):
9 Q′ ← {}; cu ← +∞; cl ← −∞

10 for P ∈ P(Q) do
11 〈a, g1, · · · , gn〉 ← ComputeGeneratorRepresentation ((P))
12 GP ← ΛQi · f(a+

∑n
i=1 αigi)

13 for each ΛQi in ΛQ do
14 c′u[i]← min{optBox(GP), c′u[i]} (Equation 2.32)
15 c′l[i]← max{−1× optBox(−1× GP), c′l[i]}
16 end
17 end
18 Construct parallelotopes P ′1, . . . , P

′
k from ΛQ, c′l, c

′
u and indexes from T Q

19 Q′ ← {P ′1, . . . , P ′k}
20 return Q′

Figure 2.7: Reachable set computation using manual and static templates.

λQi = {P ∈ P(Q) | ΛQi = ΛPk for some k}, then

max
x∈Q

ΛQi · f(x) ≤ min
P∈λQi

max
x∈P

ΛPi · f(x) (2.29)

max
P∈λQi

min
x∈P

ΛPi · f(x) ≤ min
x∈Q

ΛQi · f(x) (2.30)

Hence, to compute the upper and lower bounds of each template direction Λif(x) for all x ∈ P , we

must find a solution to the following optimization problem:

max ΛPi · f(x) (2.31)

s.t. x ∈ P.

19

Note that ΛPi · f(x) is a dot product between the row vector ΛPi and the component-wise dynamics

of f(x). This is similar to the method of computing support functions over convex sets (Boyd et al.,

2004).

By Definition 2.6, all the states in P can be expressed as a vector summation of an anchor and

a convex combination of generators. Let 〈v, g1, · · · , gn〉 be the generator representation of P . The

optimization problem given in Equation 2.31 would then transform as follows.

max ΛPi · f(a+ Σn
i=1αigi) (2.32)

s.t. α ∈ [0, 1]n.

Equation 2.32 is a form of optBox(Λi · f) over [0, 1]n. One can compute an upper-bound to

this non-linear optimization by computing the Bernstein coefficients of Λi · f(a+ Σn
i=1αigi) and

taking the maximum and minimum coefficients as shown in Property 2.2. Similarly, we compute the

lower-bound of Λi · f(x) for all x ∈ P by computing the upper-bound of −1× Λi · f(x).

Remark 2.4. The original algorithm exploiting Bernstein expansion was proposed by (Dreossi

et al., 2016) and assumed polynomial dynamics i.e f is polynomial in the system variables. This

is to ensure that a Λi · f(x) is a polynomial after the composition shown in Equation 2.32. Proper

Bernstein expansion of this polynomial allows us to exploit the enclosure property of Bernstein

coefficients. However, the use of other non-linear optimization solvers, such as Kodiak (NASA,

2017), allows us to use more general dynamics involving trigonometric and root functions. A Taylor

expansion of any analytic function can also be truncated to some suffciently large degree to admit a

power series expansion. ♦

We iterate this process (i.e., computing the upper and lower bound of ΛQi · f(x)) for each

parallelotope in the bundle Q according to Equation 2.29 and Equation 2.30). Therefore, the tightest

upper bound on ΛQi · f(x) over Q is the least of the upper-bounds computed from each of the

parallelotopes. A similar argument holds for lower bounds of ΛQi · f(x) over Q. Therefore, the

image of the bundle Q will be the bundle Q′ where the upper and lower-bounds for templates

directions are obtained by solving a series of non-linear optimization problems of the form presented

in Equation 2.31.

20

Finally, once the loop on step two of Algorithm 2.7 halts at step S, the outputted reachable set

will be the computed over-approximations Θ1, · · · ,ΘS . As step four within the loop implies, this is

simply the image bundles Q′ returned by our TransformBundle procedure.

Example 2.7. We return to the SIR model briefly treated in Section 2.1. Figure 2.8 shows the

reachable set computed with the static algorithm and plotted using the following parameters:

• The parameters of the model are set to β = 0.34 and γ = 0.05. The discretization step is set

to ∆ = 0.1.

• The parallelotope only has one static parallelotope, namely the initial box. This shows that our

template matrix for P is

ΛQ =

1 0 0

0 1 0

0 0 1

 T Q =

[
0 1 2

]

cPl =

[
−0.79 −0.19 0

]T
cPu =

[
0.8 0.2 0

]T
• We set the number of time steps S = 300.

Figure 2.8: Projection of Reachable Set of SIR propagated 300 steps in time.

21

There a few points worth noting here. First, by the discussion leading to Definition 2.5, the

initial set would be the box [0.79, 0.8]× [0.19, 0.2]× 0. This can be interpreted as initializing the

model such that 79 − 80% of the population is susceptible (not yet infected) with 19 − 20% of

the population is infected. As the simulation is beginning, no percentage of the population has

recovered from the disease. Hence, the third parameter r is set to zero. Second, since we only

have the axis-aligned parallelotope in our initial bundle, the matrix T Q will consist of only one row

indicing the axis-aligned directions expressed as distinct rows in ΛQ. ♦

Example 2.8. To include an example of a higher-dimensional non-linear system, we introduce the

Phosporaley model. The Phosphoraley model describes a certain cellular regulatory system. It is

captured by seven variables governed by the discretized dynamics stated in Figure 2.8.

x1
k+1 = x1

k + (−α · x1
k + β · x3

kx
4
k) ·∆

x2
k+1 = x2

k + (α · x1
k − x2

k) ·∆

x3
k+1 = x3

k + (x2
k − β · x3

kx
4
k) ·∆

x4
k+1 = x4

k + (β · x5
kx

6
k − β · x3

kx
4
k) ·∆

x5
k+1 = x5

k + (−β · x5
kx

6
k + β · x3

kx
4
k) ·∆

x6
k+1 = x6

k + (α · x7
k − β · x5

kx
6
k) ·∆

x7
k+1 = x7

k + (−α · x7
k + β · x5

kx
6
k) ·∆

Figure 2.9: Discretized Dynamics of Phosphorlay Model.

Here, we set the two parameters α, β as α = 0.5 and β = 5. The discretization step is set to

∆ = 0.01 and we propagate the reachble set for S = 300 time steps. Additionally, the initial box is

set to be [1.00, 1.01]7 × [−100, 100]. Under these parameters, Figure 2.10 depicts the projection of

the reachable set on the first three variables x1, x2, x3. The relevant matrices are defined as:

22

Figure 2.10: Projection of Reachable Set of the Phosporaley model propagated 300 steps in time.

ΛQ =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 1 0 0 0

, T Q =

0 1 2 3 4 5 6

0 1 2 4 5 6 7

 (2.33)

T Q tells us that the bundle consists of the axis-aligned parallelotope (the first row T Q1) and another

diagonal parallelotope (the second row T Q2). ♦

23

CHAPTER 3

Dynamic Paralleotope Bundles

In this chapter, we cover a method of generating template directions dynamically and auto-

matically. By dynamic, we mean that the template directions must be generated adaptively based

on sampled trajectories and/or data from the state of the system. By automatic, we mean that

the template directions require no consideration from the user to proceed with the reachable set

computation. This is in contrast to the original static algorithm treated in Section 2.2.3 where the user

must input his or her own template directions to specify the parallelotopes before the computation

begans. To briefly outline the structure of this chapter, we first expound on two techniques we utilize

to dynamically generate template directions at each step. The first method is based on local linear

approximations where the algorithm approximates the dynamics as a linear transformation based on

sample trajectories. The second method is based on Principal Component Analysis (PCA) where the

algorithm runs the PCA procedure on the image points of the sample trajectories. Finally, we cover

the high-level pseudo-code of the dynamic algorithm and explain a set of parameters we feed into the

algorithm in order to improve performance and the accuracy of the outputted reachable set.

3.1 Drawbacks to the Static Algorithm

Before we embark on introducing the dynamic algorithm, let us first consider a few motivating

factors. As discussed in Section 2.2.3, the static algorithm requires template directions to be specified

by the user in order for the reachable set computation to proceed. The parallelotopes tended to be

defined by a combination of axis-aligned directions or diagonal directions. However, it is unclear

whether these template directions work reasonably well over general non-linear dynamics. This is a

problem which has profound consequences for computing useful over-approximations. Choosing

the incorrect directions could very well lead to an over-approximation too conservative for any

Figure 3.1: Consequences of choosing inappropriate template directions as demonstrated by the Coupled Vanderpol model.
See Section A.3 for the model definition.

practical use. Figure 3.1 portrays a simple example of a reachable set whose wrapping error becomes

explosive after a few steps. In light of these ramifications, it is esstentially incumbent on the user to

choose fruitful template directions that control the growth of the over-approximation. Due to the

inherent difficult nature of choosing these template directions, it may be unreasonable to delegate

this responsibility to a practitioner who knows little about parallelotope-based reachability. These

drawbacks to the static algorithm motivate the rationale behind the automatic aspect of our modified

algorithm.

Additionally, as the template directions are set at the beginning before the reachable set compu-

tation proceeds, these directions cannot adapt to the dynamics as the computation executes. There

may be template directions which may yield much leaner over-approximations at an intermediate

step during the computation. Hence, the ability to change the composition of the parallelotope

bundle by adding and removing parallelotopes based on a data-driven approach could yield leaner

over-approximations. These considerations motivate the rationale behind the dynamic aspect of our

modified algorithm.

25

3.2 Local Linear Approximations

Intuitively speaking, if time step is discretized to be sufficiently small, propagating trajectories

according to the non-linear dynamics f for one time step could lead to good lienar approximations of

the dynamics within a small region. To do this, we first sample a set of points in the parallelotope

bundle called support points and propagate them to the next step using the dynamics f . Support

points are a subset of the vertices of the parallelotope that either maximize or minimize the template

directions over the parallelotope bundle. That is the support points are the set of points Psupp defined

as:

Psupp =

n⋃
i=1

{max
x∈Q

ΛQi · x, min
x∈Q

ΛQi · x} (3.1)

for all template directions of the bundle ΛQi . We use the support points as a data-driven approach to

determine the best-fit linear function to use. All points are found by a straightforward linear program.

To find the approximate linear transformation, let xi denote the support points calculated by Equation

3.1. We perform the following least-squares procedure: the objective would be to find an linear

transformation A such that it minimizes the following objective function:

min
A

∑
xi

||f(xi)−Axi||22 (3.2)

where || · ||2 is the standard Euclidean norm on Rn. If the dynamics of a system are linear, i.e.,

x+ = Ax, the image of the parallelotope cl ≤ Λx ≤ cu, is the set cl ≤ Λ ·A−1x ≤ cu. To see this,

recall the constraint associated to the half-space representation (Definition 2.5 and Equation 2.11). If

we set our new template directions to be Λ ·A−1, the image points of A which satisfy the half-space

constraint according to fixed offset vectors cl, cu should be:

cl ≤ (Λ ·A−1)Ax ≤ cu =⇒ cl ≤ Λx ≤ cu

This is satisfied by all the points defining parallelotope P as desired. Therefore, the new template

directions will exactly define the image of P under linear dynamics. To exploit this property, given

the template directions of the initial set as T0, we compute the local linear approximation of the

26

non-linear dynamics and change the template directions by multiplying them with the inverse of the

approximate linear dynamics.

3.3 Principal Component Analysis

The second technique for generating template directions performs Principal Component Analysis

(PCA) over the images of the support points. PCA is a standard technique in Statistical Machine

Learning used to reduction of dimensionality by performing Singular Value Decomposition (SVD)

on the covariance matrix generated by a set of data points. Since the covariance matrix is symmetric

by definition (i.e A = AT), the eigenvectors of this matrix will always be a orthonormal basis of the

system. Using PCA is a reasonable choice as it produces orthonormal directions that can construct a

rotated box for bounding the points. To compute the images of the trajectory points, the algorithm

must first compute Psupp and propagate them one step forward by the dynamics f . These image

points fed into the PCA procedure.

3.4 The Dynamic Algorithm

Observe that in general, our input dynamics are non-linear and therefore, the reachable set is

generally non-convex. On the other hand, a parallelotope bundle is always a convex set. To mitigate

the drawbacks of this discrepancy, we can improve the accuracy of this representation by considering

more template directions and more parallelotopes. To this end, we add a parameter called template

lifespan, where we use the generated linear approximation and/or PCA template directions not

only from the current step but also from previous steps. During our benchmarks, we tune each of

the options (PCA / linear approximation as well as lifespan option) to demonstrate that specific

parameters generate more accurate reachable sets than those generated by the static algorithm

presented in Algorithm 2.7.

The new approach is given in Algorithm 3.2. During each step, the algorithm computes a

collection of template directions from the two techniques outlined in the previous two sections. The

subroutines will be encoded as a subroutine labeled ApproxLinearTrans and PCA respectively.

The ApproxLinearTrans function computes the best linear approximation of the dynamics as

specified in Section 3.2. The PCA function returns a set of orthogonal directions using principal

27

component analysis of a set of points as specified in Section 3.3. Now each subroutine will return a

collection of n template directions, which in turn will specifiy exactly one parallelotope. Hence, two

parallelotopes, one generated by ApproxLinearTrans and the other by PCA, can be added to

the parallelotope bundle at each step.

There are a few subtle points to be made about the sub-routines used in Algorithm 3.2. First, the

algorithm makes use of helper function hstack, which attaches two matrices along their rows. In

other words, hstack can be visualized as two matrices with the same number of columns stacked on

top of one another. Second, we assume that the sub-routine PCA returns the orthonormal eigenvectors

as rows. This assures that the eigenvectors are rows of a template direction matrix of a parallelotope.

Third, the Maximize and Minimize sub-routines encapsulate the linear programming procedures

required to compute the support points as discussed in Equation 3.1. Both sub-routines take the

feasible region as the first parameter and the objective function as the second parameter. Finally, the

subroutine TransformBundle is the same as specified in Algorithm 2.7.

Algorithm 3.2 computes the dynamic templates for each time step k. Line 10 computes the

linear approximation of the non-linear dynamics and this approximation is used to compute the new

template directions according to this linear transformation in Line 13. The PCA directions of the

images of support points is computed in Line 14. For the time step k, the linear approximation and

PCA templates direction matrices are given as Λlink and Λpcak , respectively. To improve the accuracy

of the reachable set, we compute the over-approximation of the reachable set with respect to not

just the template directions at the current step, but with respect to other template directions for time

steps that are within the template lifespan parameter L. Alternatively, we assign each parallelotope a

parameter L which dictates the number of steps we keep the parallelotope in the bundle after adding

it in the current step.

28

Input: Dynamics f , Initial Parallelotope P0, Step Bound S, Lifespan Parameter L
Output: Reachable Set Overapproximation Θk at each step k

1 Q0 ← {P0}
2 Λaccum ← In // Set to Identity Matrix
3

4 ΛQ0 ← ΛP0 // Init Template Directions
5 for k ← 1 to S do
6 Psupp ←GetSupportPoints (Qk−1) // Support points of Qk−1

7

8 Pprop ← PropagatePointsOneStep (Psupp, f) // Image of support
points

9

10 A← ApproxLinearTrans (Psupp, Pprop)
11 Λaccum ← Λaccum ·A−1

12 Λlin
k ← Λaccum

13

14 Λ
pca
k ← PCA(Pprop)

15 Λk ← hstack(Λlin
k ,Λ

pca
k)

16 Λtotal ← Λk
17 for i← 1 to, L do
18 // If L = 0, then skip

19 Λtotal ← hstack(Λtotal,Λk−i)

20 end
21

22 Qk ← TransformBundle (f , Qk−1,Λk)
23 Θk ← Qk
24 end
25 return Θ1 . . .ΘS

26

27 Proc GetSupportPoints(Q):
28 Psupp ← ∅
29 for P ∈ P(Q) do
30 for i← 1 to n do
31 Psupp ← Psupp ∪ Maximize(Q,ΛPi) ∪ Maximize(Q,−ΛPi)
32 end
33 end
34 return Psupp

Figure 3.2: The Automatic, Dynamic Reachability Algorithm

29

CHAPTER 4

Evaluations

4.1 Kaa

We evaluate the efficacy of our dynamic parallelotope bundle strategies with our tool, Kaa . Kaa is

written in Python and relies on several modules to perform reachable set computation.

Numpy: The Numpy module is used to do all matrix computations, such as matrix multiplication

and matrix inversions. It is also used to efficiently solve systems of linear equations, especially

those which arise from converting from half-space representation to generator representation

(See Algorithm 2.5), and execute the Least Squares routine required to compute the solution to

Problem 3.2.

Sympy: The Sympy module is used to do all symbolic computations. The polynomials which result

from performing the Λi · f(x) in Equation 2.32 are all simplified and encapsulated by the

sp.Poly object. This allows extraction of coefficients of monomial terms to become a simple

call to sp.Poly.coeff monomial.

Sklearn: The Sklearn module called to perform PCA on the end-points of the sample trajectories as

described in Section 3.3. The exact method is sklearn.decomposition.PCA.

Scipy: The Scipy module offers several auxiliary routines important to the our analysis of reachable

sets, especially scipy.spatial.ConvexHull.

Matplotlib: The Matplotlib module is for all plotting of the computed reachable sets. Kaa utilizes

the library’s animation features to even animate the evolution of the parallelotope bundle as

the reachable set computation proceeds.

Multiprocessing: The multiprocessing module parallelizes all the non-linear optimization proce-

dures required to compute the new upper and lower offsets of all the template directions of the

parallelotope bundle. This is expressed by Lines 14, 15 in Algorithm 2.7.

Swiglpk: The swiglpk module is a simple Python wrapper over the C library, GLPK (GNU Linear

Programming Kit). Kaa uses swiglpk for all linear programming problems, such as those

which arise from computing the support points over a bundle (see Equation 3.1).

The original version of Kaa was created to compactify and simplify Sapo, a previous tool

exploring reachability computation with static parallelotope bundles (Dreossi, 2017). Through the

expressiveness and terseness of Python, Algorithm 2.7 was implemented in only 650 lines of code.

We released as a pedagogical tool to allow practitioners and students to easily experiment with

parallelotopes-based reachability and understand the effects of choosing different template directions

(Kim and Duggirala, 2020).

To extend Kaa to handle dynamic parallelotope bundles, we replaced the original optimization

procedure leveraging Bernstein polynomials (see Section 2.2.2) to Kodiak (NASA, 2017). Kodiak

is an optimization library implemented in C++ that implements a branch-and-bound algorithm for

numerical approximations. It uses a combination of interval arithmetric and Bernstein enclosure to

approximate solutions to optimization problems of the form shown in Equation 2.28. The optimization

procedure for finding the direction offets is performed through Kodiak. We decided to use Kodiak

primarily for two reasons:

1. Kodiak is very fast as a Python wrapper over the original C++ implementation. It is much

faster than Kaa’s original procedure of computing all relevant Bernstein coefficients.

2. Kodiak can handle a wider variety of dynamics, including those which feature trigonometric

terms and square root terms. This allows us to generalize beyond the polynomial dynamcis

first considered by (Dreossi et al., 2016).

To estimate volume of reachable sets, we employ two techniques for estimating the volume of

individual parallelotope bundles. For systems of dimension fewer than or equal to three, we utilize

Scipy’s convex hull routine. For higher-dimensional systems, we employ the volume of the tightest

enveloping box around the parallelotope bundle. The total volume estimate of the over-approximation

31

will be the sum of all the computed bundles’ volume estimates. To be specific, if ApproxVol is the

routine used to approximate the volume of a bundle, then by the notation introduced in Line 25 of

Algorithm 3.2:

ApproxVol(Θ) =
∑
k

ApproxVol(Θk) (4.1)

4.2 Benchmarks

For benchmarking, we select six non-linear models with polynomial dynamics. Since many of

these models are also implemented in Sapo, we choose benchmarks with polynomial dynamics to

directly compare the performance of our dynamic strategies with the Sapo’s static parallelotopes.

To provide meaningful comparisions, we set the number of dynamic parallelotopes to be equal to

the number of static ones excluding the initial box. Recall through the discussion in Example 2.3

that we refer to parallelotopes defined only by axis-aligned and diagonal directions as diagonal

parallelotopes. Similarly, diagonal parallelotope bundles are parallelotope bundles solely consisting

of diagonal parallelotopes. Sapo primarily utilizes static diagonal parallelotope bundles to perform

its reachability computation. Note that the initial box, which is defined only through the axis-aligned

directions, is contained in every bundle. For our experiments, we are concerned with the effects

of additional static or dynamic parallelotopes added alongside the initial box. We refer to these

parallelotopes non-axis-aligned parallelotopes.

Table 4.1 summarizes five standard benchmarks used for experimentation. The last seven-

dimensional COVID supermodel is explained in the subsequent section below. The remaining

models’ dynamics can be found in Appendix A.

4.3 COVID19 Supermodel

We benchmark our dynamic strategies with the recently introduced COVID supermodel (Ansumali

et al., 2020), (National Supermodel Committee , 2020). This model is a modified SIR model

accounting for the possibility of asymptomatic patients. These patients can infect susceptible

members with a fixed probability. The dynamics account for this new group and its interactions with

the traditional SIR groups.

32

Model Dimension Parameters # steps ∆ Initial Box

Vanderpol 2 – 70 0.08
x ∈ [0, 0.1]

y ∈ [1.99, 2]

Jet
Engine

2 – 100 0.2
x ∈ [0.8, 1.2]

y ∈ [0, 8, 1.2]

Neuron 2 – 200 0.2
x ∈ [0.9, 1.1]

y ∈ [2.4, 2.6]

SIR 3
β = 0.05
γ = 0.34

150 0.1

s ∈ [0.79, 0.8]

i ∈ [0.19, 0.2]

r = 0

Coupled
Vanderpol

4 – 40 0.08

x1 ∈ [1.25, 2.25]

y1 ∈ [1.25, 2.25]

x2 ∈ [1.25, 2.25]

y2 ∈ [1.25, 2.25]

COVID 7
β = 0.05
γ = 0.0
η = 0.02

200 0.08 Stated in Section 4.3

Table 4.1: Benchmark models and relevant information

S′A = SA − (βSA(A+ I)) ·∆

S′I = SI − (βSI(A+ I)) ·∆

A′ = A+ (βSI(A+ I)− γI) ·∆

I ′ = I + (βSI(A+ I)− γI) ·∆

R′A = RA + (γA) ·∆

R′I = RI + (γI) ·∆

D′ = D + (ηI) ·∆

Figure 4.1: Dynamics for the Discretized COVID19 Supermodel.

The system variables denote the fraction of a population of individuals designated as Suscep-

tible to Asymptomatic (SA), Susceptible to Symptomatic (SI), Asymptomatic (A), Symptomatic

(I), Removed from Asymptomatic (RA), Removed from Symptomatic (RI), and Deceased (D). We

33

choose the parameters (β = 0.25, γ = 0.02, η = 0.02) where β is the probablity of infection, γ is

the removal rate, and η is the mortality rate. The parameters are fixed based on figures shown in

(Ansumali et al., 2020). The discretization step is chosen to be ∆ = 0.1 and the initial box is set to be

following dimensions: SA ∈ [0.69, 0.7], SI ∈ [0.09, 0.1], A ∈ [0.14, 0.15], I ∈ [0.04, 0.05], RA =

0, RI = 0, D = 0. The discretized dynamics are given in Figure 4.1.

Plots of the reachable set for this model tuned to specific values of parameters β, γ, η were

published in an ACM Sigbed Blogpost detailing applications of formal methods for simulating

disease dynamics (Bak et al., 2021b). The main theme revolved around the difficulty of extracting

accurate parameters from real-world data samples. Certainly we could attempt to estimate the

parameters by analyzing real-world data. However, minute changes in the parameters could yield

estimates which would vastly overestimate or underestimate the true population of infected or

asymptomatic patients. This error is further compounded as our time horizon increases, due to many

(a) Confirmed population from 06/21/20-08/22/20,

(b) Confirmed population from 08/22/20-10/01/20

Figure 4.2: Reachable Sets for India’s COVID19 Confirmed Population for the period 06/21/20-10/01/20

34

issues pertaining to wrapping error as discussed in the introduction of this thesis (see Section 1).

Reachability analysis provides not only a method of simulating the disease dynamics in order to

provide illuminating information for policy decisions but also to demonstrate the effect of slight

changes in the parameters on the conservativeness of the outputted reachable set. See Figure 4.2

for the two plots published in the blogpost. The Confirmed population is the sum of the number of

Symptomatic (I) and Asymptomatic (A) populations of the dynamics presented in Equation 4.1. The

plots were created by dividing the total period into two separate periods. We decided to separate

the periods as the parameters presented in the original paper (Ansumali et al., 2020) were estimated

separately according to these exact periods. Furthermore, we wished to control the conservativeness

of the over-approximation of the reachable set. The red line represents the real data gathered from

India during the prescribed time periods with the light blue region representing the predicted region

based on the parameters given in (Ansumali et al., 2020). Several lines representing trajectories

generated according to specific parameter values are also plotted in order to convey the effect on the

confirmed population under slight perturbations of the underlying parameters.

4.4 Comparison of Template Generation Techniques

4.4.1 Accuracy of Dynamic Strategies

The results of testing our dynamic strategies against static ones are summarized in Table 4.4. For

models previously defined in Sapo, we set the static parallelotopes to be exactly those found in Sapo.

If a model is not implemented in Sapo, we simply use the static parallelotopes defined in a model of

equal dimension. To address the unavailability of a four-dimensional model implemented in Sapo,

we sampled random subsets of five static non-axis-aligned parallelotopes and chose the flowpipe

with smallest volume. A cursory analysis shows that the number of possible templates with diagonal

directions grows order O(nn) with the number of dimensions and hence an exhaustive search on

optimal template directions is infeasible.

From our experiments, we conclude there is no universal optimal ratio between the number of

dynamic parallelotopes defined by PCA and Linear Approximation directions which perform well on

every single benchmarks. In Figure 4.3, we demonstrate two cases where varying the ratio imparts

differing effects. Observe that using parallelotopes defined by linear approximation directions is

35

more effective than those defined by PCA directions in the Vanderpol model whereas the Neuron

model shows the opposite trend.

4.4.2 Performance under Increasing Initial Sets

A key advantage of our dynamic strategies is the improved ability to control the wrapping error

naturally arising from larger initial sets. Figure 4.5 presents charts showcasing the effect of increasing

initial sets on the total flowpipe volume. We vary the initial box dimensions to gradually increase the

box’s volume. We then plot the total flowpipe volume after running the benchmark. The same initial

boxes are also used in computations using Sapo’s static parallelotopes. The number of parallelotopes

defined by PCA and Linear Approximation directions were chosen based on best performance as seen

in Table 4.4. We remark that our dynamic strategies perform better than static ones in controlling the

total flowpipe volume as the initial set becomes larger. On the other hand, the performance of static

parallelotopes tends to degrade rapidly as we increase the volume of the initial box.

4.4.3 Performance against Random Static Templates

We additionally benchmark our dynamic strategies against static random parallelotope bundles. We

sample such parallelotopes in n dimensions by first sampling a set of n directions uniformly on the

surface of the unit (n− 1)-sphere, then defining our parallelotope using these sampled directions.

We sample twenty of these parallelotopes for each trial and average the total flowpipe volumes. As

shown in Figure 4.6, our best-performing dynamic strategies consistently outperform static random

strategies for all tested benchmarks.

36

(a) 5 Lin (b) 1 PCA 5 Lin

(c) 5 PCA (d) 5 PCA 1 Lin

(e) Sapo (f) Sapo

Figure 4.3: Effect of varying ratio between the number of PCA and Linear Approximation parallelotopes. The Vanderpol
(left) and the FitzHugh-Nagumo Neuron (right) phase plots are shown to illustrate differing effects of varying the
PCA/LinApp ratio. The initial set for the Vanderpol model is set to x ∈ [0, 0.05], y ∈ [1.95, 2], and the initial set Neuron
model is set to x ∈ [0.9, 1.1], y ∈ [2.4, 2.6]

37

Strategy Total Volume
5 LinApp 0.227911

1 PCA, 4 LinApp 0.225917
2 PCA, 3 LinApp 0.195573
3 PCA, 2 LinApp 0.188873
4 PCA, 1 LinApp 1.227753

5 PCA 1.509897
5 Static Diagonal(Sapo) 2.863307

(a) Vanderpol

Strategy Total Volume
5 LinApp 58199.62

1 PCA, 4 LinApp 31486.16
2 PCA, 3 LinApp 5204.09
3 PCA, 2 LinApp 6681.76
4 PCA, 1 LinApp 50505.10

5 PCA 84191.15
5 Static Diagonal (Sapo) 66182.18

(b) Jet Engine

Strategy Total Volume
5 LinApp 154.078

1 PCA, 4 LinApp 136.089
2 PCA, 3 LinApp 73.420

3 PCA , 2 LinApp 73.126
4 PCA, 1 LinApp 76.33

5 PCA 83.896
5 Static Diagonal (Sapo) 202.406

(c) FitzHugh-Nagumo

Strategy Total Volume
2 LinApp 0.001423

1 PCA, 1 LinApp 0.106546
2 PCA 0.117347

2 Static Diagonal (Sapo) 0.020894
(d) SIR

Strategy Total Volume
5 LinApp 5.5171

1 PCA, 4 LinApp 5.2536
2 PCA, 3 LinApp 5.6670
3 PCA, 2 LinApp 5.5824
4 PCA, 1 LinApp 312.2108

5 PCA 388.0513
5 Static Diagonal (Best) 3023.4463

(e) Coupled Vanderpol

Strategy Total Volume
3 LinApp 2.95582227 ∗ 10−10

1 PCA, 2 LinApp 2.33007583 ∗ 10−10

2 PCA, 1 LinApp 4.02751770 ∗ 10−9

3 PCA 4.02749571 ∗ 10−9

3 Static Diagonal (Sapo) 4.02749571 ∗ 10−9

(f) COVID

Figure 4.4: Tables presenting upper bounds on the total reachable set volume by strategy. The static directions are retrieved
and/or inspired from Sapo models of equal dimension for benchmarking. The best performing strategy is highlighted in
bold.

38

(a) Vanderpol (b) Jet Engine

(c) Neuron (d) Coupled Vanderpol

(e) SIR (f) COVID

Figure 4.5: Comparison between the performance of diagonal static parallelotope bundles and that of the best performing
dynamic parallelotope bundles as the volume of the initial set grows.

39

(a) Vanderpol (b) Jet Engine

(c) Neuron (d) Coupled Vanderpol

(e) SIR (f) COVID

Figure 4.6: Comparision between random static strategies and the best performing dynamic strategies as the volume of the
initial set grows. The total reachable set volumes for random static strategies are averaged over ten trials for each system.

s

40

CHAPTER 5

Applications to Real-time Reachability

In this chapter, we briefly present some experimental results on an application of the Bernstein

expansion on the realm of real-time reachability. First, we outline a few motivating factors alongside

our proposed reachability algorithm. Second, we expound on some observations and negative

experimental results as well as some early obstacles working against the efficacy of our proposed

algorithm.

5.1 Motivation and Algorithm

The context of these experiments is focused towards the perspectives of real-time reachability.

Roughly speaking, the objective of an effective real-time reachability algorithm can be described as

covering two criteria:

1. The computed reachable set must be within some ε distance of the exact reachable set. We can

think of this as the constraint dictating that the computed reachable set lies within an ε bloat of

the exact reachable set. In more formal terms, if Θ denotes the exact reachable set and Θ its

computed over-approximation, then Θ ⊂ Bε(Θ) where Bε(Θ) =
⋃
x∈ΘBε(x). Here, Bε(x)

denotes the ε-ball around point x.

2. The running time to compute the over-approximation Θ must be strictly upper-bounded by

some “reasonable” time period. Here, by reasonable, we generally speak of a time constraint

imposed on real-time systems where predictable running is mandatory for proper functionality.

Recall from Sections 2.2.2 and 2.2.3 that computing the Bernstein coefficients and taking their

maximum and minimum coefficients is tantamount to bounding the solutions to non-linear optimiza-

tion problems of the form presented in Equation 2.32. As the degrees of the polynomial objective

Input: Total Domain D, Number of grid cells g, Dynamics f , Template Direction Matrix Λ
Output: G sets of monomials each indiced by a grid cell

1 // Partition domain into equally-sized G grid cells
2 G←ComputeGridCells (D, g)
3 for grid cell G ∈ G do
4 RG ← ComputeGridGeneratorRep (f,G)
5 for template direction Λi in Λ do
6 BG,i ←ComputeBernsteinCoeffIntervals (Λi, RG)
7

8 // Find the max/min intervals and any overlaps
9 mG,Λi,max ← ComputeMaxIntervalMonomials (BG,i)

10 mG,Λi,min ← ComputeMinIntervalMonomials (BG,i)
11 end
12 end
13 M = {mG,Λi,max}G∈G,i ∪ {mG,Λi,min}G∈G,i
14 returnM
15

16 Proc ComputeBernsteinCoeffIntervals (Λi, RG):
17 P ← Λi ·RG // Compute predicate (Eq 2.32)
18 return BernsteinCoeffIntervals (P)
19

20 Proc ComputeGridGeneratorRep (f ,G):
21 a← G
22 for i← 1 to n do
23 gi ← G
24 end
25 return a+

∑n
i=1 αigi // Generator Representation where

coefficients are instead intervals spanning grid cell
26

Figure 5.1: Bernstein coefficient interval pre-computation algorithm.

functions described by Equation 2.32 and dimensions of the system grow, the number of Bernstein

coefficients also grows in exponential order. This is evident from the Bernstein coefficient formula

defined in Equation 2.26.

To mitigate this explosive growth in coefficients, we can pose the following question: Is there

a method for ascertaining a small subset of the basis monomials such that the correct maximum

and minimum coefficients can be computed from this subset rather the entire set of Bernstein basis

monomials? Towards this end, we propose the following algorithm outlined in Algorithm 5.1 and

elaborate on the individual subroutines. In the context of these experiments, we assume the dynamics

f are polynomial. This is to ensure we have a Bernstein expansion of the composed dynamics f ◦ Tp.

42

Input: Dynamics f , Bundle Q, Template Directions Matrix ΛQ, Max/Min Monomial
Lookup TableM, Grid Partition G

Output: New parallelotope bundle Q′

1 Proc TransformBundle(f , Q, ΛQ,M, G):
2 Q′ ← {}; cu ← +∞; cl ← −∞
3 for P ∈ P(Q) do
4 〈a, g1, · · · , gn〉 ← ComputeGeneratorRepresentation (P)
5 for each ΛQi in ΛQ do
6 c′u[i]← min{RetreiveMaxMonomials (P,M,G), c′u[i]}
7 c′l[i]← max{RetreiveMinMonomials (P,M,G), c′l[i]}
8 end
9 end

10 Construct parallelotopes P ′1, . . . , P
′
k from ΛQ, c′l, c

′
u and indexes from T Q

11 Q′ ← {P ′1, . . . , P ′k}
12 return Q′

13

14 Proc RetreiveMaxMonomials (P, M, G):
15 O ← FindOverlapsWithGrid (P,G)
16 Pmax ← ∅
17 for grid cell G ∈ O do
18 {mG,Λi,max}i =M.lookup(G)
19 Pmax ← Pmax ∪ {mG,Λi,max}i
20 end
21 return Pmax

22

23 Proc RetreiveMinMonomials (P, M, G):
24 O ← FindOverlapsWithGrid (P,G)
25 Pmin ← ∅
26 for grid cell G ∈ O do
27 {mG,Λi,min}i =M.lookup(G)
28 Pmin ← Pmin ∪ {mG,Λi,min}i
29 end
30 return Pmin

Figure 5.2: Modified Reachability Algorithm

1. Parition Domain into Grid Cells:

We first partition the domain into grid cells of equal dimension. Naturally the entire domain

is infinite, so we must restrict the domain into a bounded box of sufficiently large dimension.

This box must bound the reachable set computed for a finite number of steps forward. These

grid cells will act as constraints to feed into our generator representation.

43

2. Initialize Generator Representation:

For each of the cells computed in the previous step, we set the anchor vertex and generator

vector components to their corresponding grid cell dimension. In other words, we constrain

the parallelotope to be contained within the cell through the generator representation. Formally

speaking, suppose we have a grid cell G in n-dimensional Euclidean space Rn of the form

G = [l1, u1]× [l2, u2]× · · · [ln × un]. To constrain our parallelotope P = 〈a, g1, · · · , gn〉 to

be contained within g, it suffices to set the component variables such that a, g1, · · · , gn ∈ G.

For example, to set a ∈ G, the constraints should be initialized as below:

a(i)← [l1, u1] a(2)← [l2, u2] · · · a(n)← [ln, un] (5.1)

In Algorithm 5.1, this is executed in Line 4.

3. Perform the Functional Composition:

As stated in Equation 2.32, the non-linear optimization predicate should be Λi · f for fixed

template direction Λi. Under the assignments of the variables according to Equation 5.1 and

interval arithmetic, we have the polynomial Λi · (f ◦ Tp) where the coefficients are intervals

rather than real values.

4. Compute Bernstein Coefficient Intervals:

Now with our computed polynomial with interval coefficients, we can compute the Bernstein

coefficient intervals using the formula displayed in Equation 2.26. By our initialization scheme

above, this computation will yield intervals such that the Bernstein coefficients computed from

any parallelotope contained in grid cell P ⊆ G should lie within their respective coefficient

intervals. Let {bi}i∈IG,Λi
be the set of computed coefficient intervals where IG,Λi is an index

of degrees which depend on the grid cell G and template direction Λi. For the sake of clarity,

we shall just denote this index set as I .

5. Find the Maximum/Minimum Interval:

Using the coeffcient intervals {bi}, we find the maximum and minimum interval by simply

plucking the interval which has the largest upper-bound and the interval which has the smallest

44

lower-bound. If bi = [li, ui], then

Imax := IG,Λi,max = arg max
i∈I

ui (5.2)

Imin := IG,Λi,min = arg min
i∈I

li (5.3)

Note that Imax, Imin are the degrees of the Bernstein basis monomials whose intervals domi-

nate the others. Additionally, we add all the intervals which overlap with the maximum and

minimum intervals:

mG,Λi,max = {i ∈ I | bi ∩ bImax 6= ∅}

mG,Λi,min = {i ∈ I | bi ∩ bImin
6= ∅}

(5.4)

6. Store into Lookup Table:

The maximum and minimum intervals and their associated degrees are stored into a lookup

table indiced by each grid cell G and template direction Λi in Λ.

The required modifications to the reachability algorithm now turn out to be simple. Instead of

computing all of the Bernstein coefficients, the algorithm first determines the grid cells with non-

empty overlap with the parallelotope in question (FindOverlapsWithGrid). It then queries the

monomials stored for each overlapping grid cell G: mG,Λi max,mG,Λi min in respect to the template

direction Λi. Lines 18 and 27 of Algorithm 5.2 reflect this operation. The retrival itself is called on

Lines 6 and 7. The rest of the reachability algorithm follows exactly as the logic of Algorithm 2.7.

5.2 Experimental Results

We move onwards to the experimental results and observations. Our experiments were limited to the

Vanderpol Model (Appendix Section A.1). A few parameters are required to be stated for posterity:

• We attempted to run the modified reachability algorithm for seven steps.

• We partitioned the domain and fixed the initial set for each model according to the below

inputs:

45

Model Domain Initial Set # of Grid Cells

Vanderpol [−3, 3]× [−3, 3] [0.001, 0.005]× [1.995, 2] 1600

During the course of experimentation, several observations hinting towards major obstacles

hindering any trivial speed-up have been discovered for the Vanderpol model. We list those obstacles

below.

5.2.1 Discrepancy of Degrees

This issue arises when we determine the maximum and minimum intervals and their associated

monomials during the pre-computation step. We will demonstrate this phenomenon as such:

Recall that the generator representation for a parallelotope P would yield the linear transforma-

tion TP : [0, 1]→ P which looks like

TP (x, y) = q + g0 · x+ g1 · y

for an anchor (base) vertex q and two generator vectors g0, g1. The composition with the generator

representation would be tantamount to substituting the symbolic expressions as follows:

x← q0 + g00 · x+ g10 · y (5.5)

y ← q1 + g01 · x+ g11 · y (5.6)

The components of the composed mapping f ◦ T will individually look like:

(f ◦ T)0 = q1 + g01 · x+ g11 · y (5.7)

(f ◦ T)1 = (1− (q0 + g00 · x+ g10 · y)2) ∗ (q1 + g01 · x+ g11 · y)− (q0 + g00 · x+ g10 · y)

(5.8)

If you inspect the polynomial (f ◦ T)1, the square times another linear factor of x, y gives us a

polynomial of degree (3, 3). Suppose we calculate the non-linear optimization objective function as:

Λi · (f ◦ TP) where we set Λi = [0, 1]T (i.e the y-axis aligned vector), then the polynomial will be

precisely be (f ◦ T)1, which has degree (3, 3).

46

However, the following occurs during the reachability algorithm: the actual polynomial computed

for template direction Λi = [0, 1]T , that is the polynomial computed naturally during the parallelotope

reachability algorithm, actually has degree lower than (3, 3). Furthermore, the maximum and/or

minimum degrees pre-computed are actually of higher degree than the degree of the polynomial

computed during the progression of the algorithm. This means that the pre-computed degrees and

their coefficients will never show up in the Bernstein expansion of the polynomial arising after the

composition shown in Equation 2.32. To see this, recall Property 2.1.

Consider the output presented in Figure 5.3 computed with just the axis-aligned parallelotope

over the VanderPol model with a grid parition of 40 × 40. We run the algorithm for one step and

display the output during the optimization procedure for template direction Λi = [0, 1]T . During the

first step, the maximum degree is a lone monomial:

Returned set of Maximum Monom from Lookup Table:

[((3, 3), 2.18359741950000)]

This means that the actual monomial with the maximum Bernstein coefficient:

Actual Max Monom Deg: (2, 0)

was pruned out during the pre-computation phase. What seems to happen quite frequently is the

maximum or minimum intervals and their overlaps dominate the degree of the polynomial computed

after composition during the reachability computation. To see this, note the anchor and generator

vectors computed for the generator representation:

BASE VERTEX: [0.005, 2.0]

GENERATORS: [[-0.004, 0.0], [0.0, -0.0049999999999999]]

The generators are axis-aligned, meaning that several degrees are annihilated during the compo-

sition Λi · (f ◦ TP) due to the zero components. Hence, during our pre-processing stage, we consider

a more general set of monomial degrees which may not reflect the relevant degree statistics found

during the actual computation phase.

This poses the issue of being privy to the degrees supplied to the algorithm before it even begins.

In other words, we are uncertain about how the interactions of the functional composition with the

generator representation affect the degree of the resulting polynomial. If the degree is smaller than

47

Computing Step 0

BASE VERTEX: [0.005, 2.0]
GENERATORS: [[-0.004, 0.0], [0.0, -0.0049999999999999]]
....
....

Stats for Template Direction: [0. 1.]

Queried Max Monom Deg: (3, 3)
Queried Min Monom Deg: (0, 0)

Actual Max Monom Deg: (2, 0)
Actual Min Monom Def: (0, 1)

Actual Composed Poly:
0.0004*x - 0.00499999999999989*y
+ 0.1*(1 - 2.5e-5*(1 - 0.8*x)**2)*(2.0 - 0.00499999999999989*y)
+ 1.9995

Total Poly Degree: [2, 1]

Returned set of Maximum Monom from Lookup Table:
[((3, 3), 2.18359741950000)]

Returned set of Minimum Monom from Lookup Table:
[((0, 0), 2.19949500000000)]

Set of ALL basis degrees and true Bernstein coeffs:
[((0, 0), 2.199495),
((0, 1), 2.1939950125000003),
((1, 0), 2.1996990000000003),
((1, 1), 2.1941990025000004),
((2, 0), 2.1998998000000003),
((2, 1), 2.1943998005000007)]

Difference between Queried Max Coeff and Actual Max Coeff:
-0.0163023804999995

Difference between Queried Min Coeff and Actual Min Coeff:
0.00549998749999991

Figure 5.3: Output for First step of Reachability algorithm with the Vanderpol Model.

48

that of the monomial with the maximum/minimum coefficient interval or its overlaps, then it will

appear during our reachability algorithm. This untowardly results in either a gross conservative error

or an exception indicting that too many monomials were pruned out. This error becomes further

compounded if higher degree terms are wiped out by the zero factors in the computed generator or if

the wrapping error becomes worse.

One immediate thought could be adding templates which have non-axis-aligned template direc-

tions like [−1, 1]T . However, due to the ways higher degree terms can cancel each other out when

simplifying after the functional composition, the degree of the polynomial after the composition

could still be smaller than that of the maximum and minimum monomial and its overlaps.

To recapitulate, it appears that pre-computing the Bernstein coefficients and the subsequent

analysis on their outputted intervals can overly skew the effect of “non-relevant coefficients”. These

coefficients can only be pruned once the generator representation of the specific parallelotope is

computed and the exact degree of the composed polynomial is determined.

5.2.2 Contributions of Many Overlapping Cells

Another obstacle stems from the observation that parallelotopes which have great overlap with many

grid cells yield the full list of Bernstein coefficients. Hence, there is no speed-up gained in these

cases. Consider the output displayed in Figure 5.4 for step 4 of the reachable set computation. The

main point to take here lies within the printed values of returned set of monomials from the lookup

table:

Returned set of Maximum Monom from lookup_table:

[((0, 1), 2.48598940176842),

((1, 2), 2.13075300161303),

((2, 1), 2.49645813555339),

...

((3, 3), 1.77817608667862)]

From Step 4 onwards, the lookup table returns the full list of monomials of degree less than (3, 3) i.e

all the relevant monomials during the pre-computation stage. We tested this even for reachability

computations lasting more than five steps. The full set of Bernstein coefficients are always returned

49

Computing Step 4

Stats for Template Direction: [0. 1.]

Chosen Max Monom Deg: (3, 0)
Chosen Min Monom Deg: (0, 3)
...
Returned set of Maximum Monom from lookup_table:
[((0, 1), 2.48598940176842),
((1, 2), 2.13075300161303),
((2, 1), 2.49645813555339),
((3, 1), 2.50156197271691),
((0, 2), 2.12608267690468),
((2, 2), 2.13534845254406),
((1, 0), 2.85178155552809),
((3, 2), 2.13986902969777),
((1, 3), 1.77023872465550),
((1, 1), 2.49126727857056),
((0, 3), 1.76617595204093),
((2, 0), 2.85756781856273),
((3, 0), 2.86325491573606),
((2, 3), 1.77423876953473),
((3, 3), 1.77817608667862)]

Returned set of Minimum Monom from lookup_table:
[((0, 1), 2.48598940176842),
((3, 1), 2.50156197271691),
((2, 2), 2.13534845254406),
((1, 0), 2.85178155552809),
((3, 2), 2.13986902969777),
((1, 3), 1.77023872465550),
((0, 0), 2.84589612663217),
((0, 3), 1.76617595204093),
((3, 0), 2.86325491573606),
((2, 3), 1.77423876953473),
((3, 3), 1.77817608667862)]

Difference between Queried Max Coeff and Actual Max Coeff:
0.00568709717333471

Difference between Queried Min Coeff and Actual Min Coeff: -
0.719813449727491

Figure 5.4: Example of Wrapping Error Obstacle demonstrated for Step 4 for Vanderpol Model.

50

after a certain step. For the Vanderpol model initialized with our parameters, this point would be

around step 4 or 5.

As the wrapping error becomes worse, so does the utility of our lookup table. A guess is that as

the conservativeness of our reachable becomes greater, it overlaps with more cells of the domain.

This results in a cascading effect where the reachability algorithm is required to take into account

more monomials as it progresses.

We speculate that the utility of our pruning method hinges on the careful control of the reachable

set error. If the error becomes too great, we end of computing all of the coefficients, negating any

benefits of a speed-up.

51

CHAPTER 6

Conclusion

In this thesis, we covered a specific technique to perform reachability analysis over non-linear

dynamical systems through leveraging parallelotope bundles. A particular non-linear optimization

problem determines the offset of template directions required to express the reachable set. We pre-

sented the original algorithm utilizing static template directions. We then investigated two techniques

for generating templates dynamically and automatically: the first using linear approximation of the

dynamics, and the second using PCA. We demonstrated that these techniques improve the accuracy

of the reachable set of several benchmarks by an order of magnitude when compared to static or

random template directions. Finally, we experimented with potential applications of the Bernstein

expansion technique to real-time reachability. We found that several hurdles and barriers arise to

effectively utilizing the pruning method developed in the pre-processing phase. Several remarks on

ideas towards improvement of the methods we developed are listed below:

1. Koopman linearization techniques for computing alternative linear approximation template

directions with other optimization methods could yield interesting modifications to Algorithms

2.7 and 3.2 (Bak et al., 2021a).

2. The use of a massively-parallel implementation using HPC hardware, such as GPUs, for

optimizing over an extremely large number of parallelotopes and their template directions is

also an immediate extension. This is inspired by the approach behind the recent tool PIRK

(Devonport et al., 2020).

3. Simply taking the intervals which dominate all the other intervals may be too crude to properly

yield an effective speed-up. Are there any other methods of adding basis monomials to the

lookup table which take into account the degree discrepancies outlined in Section 5.2.1?

APPENDIX A

Additional Benchmark Model Definitions

A.1 Vanderpol Oscillator

The Vanderpol Oscillator is a classical two-dimensional non-linear dynamical system governed by

the following dynamics:
x′ = y

y′ = µ · (1− x2) · y − x
(A.1)

We set µ = 1 in our experiments. The dynamics were gathered from (Aachen, 2014).

A.2 Jet Engine

The Jet Engine model is specifically the Moore-Greitzer model. The dynamics are given as follows:

x′ = −y − 1.5 · x2 − 0.5 · x3 − 0.5

y′ = 3 · x− y
(A.2)

These dynamics were studied in (Aylward et al., 2008), and the dynamics were gathered from

(Aachen, 2014).

A.3 Coupled Vanderpol

This model couples two Vanderpol Oscillators together, resulting in an non-linear ODE of four

variables

x′1 = y1

y′1 = (1− x2
1) · y1 − x1 + (x2 − x1)

x′2 = y2

y′2 = (1− x2
2) · y2 − x2 + (x1 − x2)

(A.3)

This model was investigated in (Rand and Holmes, 1980), and the dynamics were gathered from

(Aachen, 2014)

A.4 Neuron Model

The FitzHugh-Nagumo Model describes the electrical activity of a neuron. The dynamics are given

by the two-dimensional non-linear ODE:

x′ = x− x3 − y + 7/8

y′ = 0.08 · (x+ 0.7− 0.8 · y)

(A.4)

The model was first studiend in (FitzHugh, 1961) and its reachability analysis using Bernstein

expansion is studied in (Dang and Testylier, 2012).

54

BIBLIOGRAPHY

Aachen, R. (2014). Benchmarks of continuous and hybrid systems.

Althoff, M. (2010). Reachability analysis and its application to the safety assessment of autonomous
cars. PhD thesis, Technische Universität München.

Althoff, M., Stursberg, O., and Buss, M. (2010). Computing reachable sets of hybrid systems using a
combination of zonotopes and polytopes. Nonlinear analysis: hybrid systems, 4(2):233–249.

Ansumali, S., Kaushal, S., Kumar, A., Prakash, M. K., and Vidyasagar, M. (2020). Modelling a
pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications
to sars-cov-2. Annual Reviews in Control.

Aylward, E. M., Parrilo, P. A., and Slotine, J.-J. E. (2008). Stability and robustness analysis of
nonlinear systems via contraction metrics and sos programming. Automatica, 44(8):2163–2170.

Bak, S. (2021). nnenum: Verification of relu neural networks with optimized abstraction refinement.
In NASA Formal Methods Symposium, pages 19–36. Springer.

Bak, S., Bogomolov, S., Duggirala, P. S., Gerlach, A. R., and Potomkin, K. (2021a). Reachability of
black-box nonlinear systems after Koopman operator linearization.

Bak, S. and Duggirala, P. S. (2017). Simulation-equivalent reachability of large linear systems with
inputs. In International Conference on Computer Aided Verification, pages 401–420. Springer.

Bak, S., Kim, E., and Duggirala, P. S. (2021b). Covid infection prediction using cps formal
verification methods.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

Chen, X. and Ábrahám, E. (2011). Choice of directions for the approximation of reachable sets
for hybrid systems. In International Conference on Computer Aided Systems Theory, pages
535–542. Springer.

Clarisó, R. and Cortadella, J. (2004). The octahedron abstract domain. In International Static
Analysis Symposium, pages 312–327. Springer.

Dang, T., Dreossi, T., and Piazza, C. (2014). Parameter synthesis using parallelotopic enclosure and
applications to epidemic models. In International Workshop on Hybrid Systems Biology, pages
67–82. Springer.

Dang, T. and Gawlitza, T. M. (2011). Template-based unbounded time verification of affine hybrid
automata. In Asian Symposium on Programming Languages and Systems, pages 34–49. Springer.

Dang, T. and Maler, O. (1998). Reachability analysis via face lifting. In International Workshop on
Hybrid Systems: Computation and Control, pages 96–109. Springer.

Dang, T. and Salinas, D. (2009). Image computation for polynomial dynamical systems using
the Bernstein expansion. In International Conference on Computer Aided Verification, pages
219–232. Springer.

55

Dang, T. and Testylier, R. (2012). Reachability analysis for polynomial dynamical systems using the
Bernstein expansion. Reliable Computing, 17(2):128–152.

Devonport, A., Khaled, M., Arcak, M., and Zamani, M. (2020). PIRK: Scalable interval reachability
analysis for high-dimensional nonlinear systems. In International Conference on Computer
Aided Verification, pages 556–568. Springer.

Dreossi, T. (2017). Sapo: Reachability computation and parameter synthesis of polynomial dynamical
systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation
and Control, pages 29–34.

Dreossi, T., Dang, T., and Piazza, C. (2016). Parallelotope bundles for polynomial reachability. In
Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control,
pages 297–306.

Dreossi, T., Dang, T., and Piazza, C. (2017). Reachability computation for polynomial dynamical
systems. Formal Methods in System Design, 50(1):1–38.

Duggirala, P. S. and Viswanathan, M. (2016). Parsimonious, simulation based verification of linear
systems. In International Conference on Computer Aided Verification, pages 477–494. Springer.

Fan, J., Huang, C., Chen, X., Li, W., and Zhu, Q. (2020). Reachnn*: A tool for reachability analysis
of neural-network controlled systems. In International Symposium on Automated Technology
for Verification and Analysis, pages 537–542. Springer.

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane.
Biophysical journal, 1(6):445–466.

Garloff, J. (2003). The Bernstein expansion and its applications. Journal of the American Romanian
Academy, 25:27.

Geretti, L., Althoff, M., Benet, L., Chapoutot, A., Collins, P., Duggirala, P. S., Forets, M., Kim, E.,
Linares, U., et al. (2021). Arch-comp21 category report: Continuous and hybrid systems with
nonlinear dynamics.

Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. In International
Workshop on Hybrid Systems: Computation and Control, pages 291–305. Springer.

Gronski, J., Sassi, M.-A. B., Becker, S., and Sankaranarayanan, S. (2019). Template polyhedra and
bilinear optimization. Formal Methods in System Design, 54(1):27–63.

Heidlauf, P., Collins, A., Bolender, M., and Bak, S. (2018). Verification challenges in f-16 ground
collision avoidance and other automated maneuvers. In ARCH@ ADHS, pages 208–217.

Kim, E., Bak, S., and Duggirala, P. S. (2021). Automatic dynamic parallelotope bundles for
reachability analysis of nonlinear systems. In International Conference on Formal Modeling
and Analysis of Timed Systems, pages 50–66. Springer.

Kim, E. and Duggirala, P. S. (2020). Kaa: A Python implementation of reachable set computation
using Bernstein polynomials. EPiC Series in Computing, 74:184–196.

Muñoz, C. and Narkawicz, A. (2013). Formalization of Bernstein polynomials and applications to
global optimization. Journal of Automated Reasoning, 51(2):151–196.

56

NASA (2017). Kodiak, a C++ library for rigorous branch and bound computation. https:
//github.com/nasa/Kodiak.

Nataraj, P. S. and Arounassalame, M. (2007). A new subdivision algorithm for the Bernstein
polynomial approach to global optimization. International journal of automation and computing,
4(4):342–352.

Nataray, P. and Kotecha, K. (2002). An algorithm for global optimization using the Taylor–Bernstein
form as inclusion function. Journal of Global Optimization, 24(4):417–436.

National Supermodel Committee (2020). Indian Supermodel for Covid-19 Pandemic.

Rand, R. and Holmes, P. (1980). Bifurcation of periodic motions in two weakly coupled van der pol
oscillators. International Journal of Non-Linear Mechanics, 15(4-5):387–399.

Sankaranarayanan, S., Dang, T., and Ivančić, F. (2008). Symbolic model checking of hybrid
systems using template polyhedra. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 188–202. Springer.

Sassi, M. A. B., Testylier, R., Dang, T., and Girard, A. (2012). Reachability analysis of polynomial
systems using linear programming relaxations. In International Symposium on Automated
Technology for Verification and Analysis, pages 137–151. Springer.

Seladji, Y. (2017). Finding relevant templates via the principal component analysis. In International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 483–499.
Springer.

Smith, A. P. (2009). Fast construction of constant bound functions for sparse polynomials. Journal
of Global Optimization, 43(2-3):445–458.

Stursberg, O. and Krogh, B. H. (2003). Efficient representation and computation of reachable sets
for hybrid systems. In International Workshop on Hybrid Systems: Computation and Control,
pages 482–497. Springer.

Tran, H.-D., Manzanas Lopez, D., Musau, P., Yang, X., Nguyen, L. V., Xiang, W., and Johnson, T. T.
(2019). Star-based reachability analysis of deep neural networks. In International symposium
on formal methods, pages 670–686. Springer.

Wangersky, P. J. (1978). Lotka-volterra population models. Annual Review of Ecology and Systemat-
ics, 9:189–218.

57

https://github.com/nasa/Kodiak
https://github.com/nasa/Kodiak

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Related Work

	Preliminaries
	Basic Definitions
	Parallelotope-based Reachability
	Parallelotopes
	Bernstein Polynomials
	The Static Algorithm

	Dynamic Paralleotope Bundles
	Drawbacks to the Static Algorithm
	Local Linear Approximations
	Principal Component Analysis
	The Dynamic Algorithm

	Evaluations
	Kaa
	Benchmarks
	COVID19 Supermodel
	Comparison of Template Generation Techniques
	Accuracy of Dynamic Strategies
	Performance under Increasing Initial Sets
	Performance against Random Static Templates

	Applications to Real-time Reachability
	Motivation and Algorithm
	Experimental Results
	Discrepancy of Degrees
	Contributions of Many Overlapping Cells

	Conclusion
	Additional Benchmark Model Definitions
	Vanderpol Oscillator
	Jet Engine
	Coupled Vanderpol
	Neuron Model

	BIBLIOGRAPHY

