
PixelFlow:  The Realization

ABSTRACT

PixelFlow is an architecture for high-speed, highly realistic image
generation, based on the techniques of object-parallelism and
image composition.  Its initial architecture was described in
[MOLN92].  After development by the original team of
researchers at the University of North Carolina, and co-
development with industry partners, Division Ltd. and Hewlett-
Packard, PixelFlow now is a much more capable system than
initially conceived and its hardware and software systems have
evolved considerably.  This paper describes the final realization
of PixelFlow, along with hardware and software enhancements
heretofore unpublished.

CR Categories and Subject Descriptors:  C.5.4 [Computer
System Implementation]: VLSI Systems; I.3.1 [Computer
Graphics]: Hardware Architecture; I.3.3 [Computer Graphics]:
Picture/Image Generation; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism.

Additional Key Words and Phrases:  object-parallel, rendering,
compositing, deferred shading, scalable.

1 INTRODUCTION

PixelFlow is an architecture for high-speed image generation that
was designed to be linearly scaleable to unprecedented levels of
performance and to implement realistic rendering techniques such
as user-programmable shading, texturing, antialiasing, and
shadows.  Achieving these goals required a new architecture that
was substantially different than the interleaved screen-subdivision
approach that is nearly universal in today’s commercial graphics
architectures (e.g. [E&S96;SGI97]).
_______________________
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PixelFlow uses an object-parallel approach called image-
composition to achieve its high speed.  Display primitives are
distributed over an array of identical renderers, each of which
computes a full-screen image of its fraction of the primitives.  A
dedicated, high-speed communication network called the Image-
Composition Network merges these images in real time, based on
visibility information, to produce an image of the entire scene
[MOLN92].

The PixelFlow architecture is extremely flexible, allowing
configurations from deskside systems, drawing tens of millions of
triangles per second, to multiple-rack systems, drawing hundreds
of millions of triangles per second.  Near-linear performance
increases are obtained by adding renderers.

1.1 System Overview

A PixelFlow system consists of one or more chassis, each
containing up to 9 Flow Units (the PixelFlow name for renderer).
Each Flow Unit consists of: a Geometry Processor Board (GP), a
conventional floating-point microprocessor with DRAM memory;
and a Rasterizer Board (RB), a SIMD array of 8,192 byte-serial
processing elements, each with 384 bytes of local memory.

A Flow Unit is a powerful graphics engine in itself, capable of
rendering up to 3 million antialiased polygons per second and
performing complex shading calculations (such as bump
mapping, shadows, and user-programmable shading) in real time.
Geometry Processor Boards provide the front-end floating-point
computation needed for transforming primitives and generating
rendering instructions for the Rasterizer Boards.  Rasterizer
Boards turn screen-space descriptions of primitives into pixel
values and perform sophisticated shading calculations.

The Image-Composition Network is implemented as a daisy-
chained connection between Rasterizer Boards of neighboring
Flow Units.  A second communication network, the Geometry
Network, is a packet-routing network which connects Geometry
Processor Boards.

Any subset of Flow Units can be provided with I/O or video
adapter daughter-cards that provide host-interface or video (frame
buffer or frame grabber) capabilities.  It is possible to build very
large systems with multiple host interfaces attached to a parallel
host, and multiple displays to support multiple-user applications.
Such a system also can be re-configured by software into several
smaller systems.  Figure 1 shows a typical two-chassis PixelFlow
system configuration.
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1.2 System Operation

Individual Flow Units can be designated, by software, as one of
three types:

• Renderers (not to be confused with the general term
renderer above) process a portion of the database to
generate regions of pixel data ready for shading.  The
Geometry Processor Board transforms primitives to
screen-space and sorts them into bins according to
screen region.  The Rasterizer Board rasterizes primi-
tives one region at a time.  After all renderers have proc-
essed a given region, the region is composited across the
Image-Composition Network and the composited pixel-
values are deposited onto one or more shaders.

• Shaders apply texture and lighting models to regions of
raw pixel data, producing RGB color values that are
forwarded to the frame buffer.

• Frame buffers send or receive video data via an
attached video adapter card.

To compute a frame, the GPs on each renderer first transform
their fraction of the primitives into screen coordinates and sort
them into bins corresponding to regions of the screen.  The
renderers then process the regions one at a time, rasterizing all of
the primitives that affect the current region before moving on to
the next.

Once a given region has been rasterized on all of the renderers,
the composition network merges the pixel data together and loads
the region of composited pixel data onto a shader. Regions are
assigned to shaders in round-robin fashion, with each shader
processing every nth region.  Shaders operate on entire regions in
parallel, to convert raw pixel attributes into final RGB values,
blend multiple samples together for antialiasing, and forward final
color values to the frame buffer for display.

1.3  Design Evolution

The PixelFlow architecture has evolved considerably since its
initial conception, described in [MOLN92].  PixelFlow was
initially developed at the University of North Carolina at Chapel
Hill as an NSF- and DARPA-sponsored research project. In 1994,
Division Ltd. of Bristol, UK acquired commercial rights to the
technology and established a laboratory in Chapel Hill to

complete development of the project.  In mid-1996, this
laboratory and rights to the PixelFlow technology were acquired
by Hewlett-Packard. The final design is significantly faster, more
complex, and technically more aggressive than originally
conceived.

The following sections describe the final PixelFlow architecture
in more detail. Special attention will be given to aspects of the
architecture that have not been described before.

2 ARCHITECTURAL FEATURES

PixelFlow was designed to demonstrate the advantages of image-
composition architectures, to provide a research platform for real-
time 3D graphics algorithms and applications, and to provide
workstation graphics capability with unprecedented levels of
performance and realism.  In this section we describe its major
architectural features and the rationale under which they were
chosen.

2.1  Image Composition Architecture

PixelFlow’s most characteristic feature is that it is an image-
composition architecture. Image-composition is an object-parallel
rendering approach in which the primitives in the scene are
distributed over a parallel array of renderers, each of which is
responsible for generating a full-screen image of its fraction of
the primitives (Figure 2).  To compute a frame, each renderer
computes a full-screen image of its fraction of the primitives.  It
then feeds color and visibility information for its pixels into a
local compositor (C), which also receives a stream of pixels from
the compositors (and renderers) upstream.  The compositor
selects the visible pixel from its two input ports and forwards it to
the compositors downstream.  The compositors together form an
Image-Composition Network, the output of which contains the
pixels of the final image.  The Image-Composition Network can
be built as a pipeline, as shown in Figure 2, or as a binary tree;
PixelFlow uses a pipeline, since it is easier to implement and the
additional latency is negligible.

The bandwidth in every link of the Image-Composition Network
is identical; it is determined by frame rate, screen size, and the
amount of data per pixel or sample, and is independent of the
number of polygons in the scene.  Thus the network (and system)
can be extended to incorporate an arbitrary number of renderers

Geometry  Network

Image Composi t ion
Network

PixelFlow
Chassis

DisplayHost

G P

R B

G P

R B

G P

R B

G P

R B

G P

R B

(up to 9
Flow Uni ts

per chassis)

PixelFlow
Chassis

io vid

G P

R B

G P

R B

G P

R B

G P

R B

G P

R B

Figure 1:  Typical PixelFlow System.



into the system.  This gives the architecture its unique and most
important property: linear scalability to arbitrarily high levels of
performance.

2.2 Supersampling Antialiasing with Z-buffer Visibility

PixelFlow performs antialiasing by supersampling.  Each renderer
computes its full-screen image with 4, 8, or more samples per
pixel.  Samples are computed in parallel at jittered, subpixel loca-
tions.  Up to eight samples per pixel are computed simultane-
ously, each with independent colors (or shading attributes) and z
values.  The compositors perform a simple z comparison for each
sample, forwarding the appropriate sample downstream.  After
composition, the samples are blended together to form the final
image.

Supersampling was chosen because it is general, the compositor
hardware is simple (therefore fast), and the number of samples
can be varied to trade speed for image quality.  It has two disad-
vantages:  first, the composition network must support the worst-
case bandwidth—that of every sample within a pixel hitting a
different surface—and this bandwidth is large; second, rendering
transparent surfaces requires screen-door or multipass algorithms
[MAMM89].

2.3 Logic-Enhanced Memory Rasterizer

The PixelFlow Rasterizer Board uses the logic-enhanced memory
approach used in our earlier Pixel-Planes designs [EYLE88,
FUCH89], in which a large SIMD array of pixel processors is
implemented using custom VLSI chips that integrate simple proc-
essing elements with high-speed, low-latency image memory.
This approach eliminates the traditional bandwidth bottleneck
between rasterizer and image memory, permitting more sophisti-
cated rasterization algorithms and higher polygon rates [POUL92,
TORB96].  PixelFlow’s enhanced memory chips have byte-wide
ALUs and operate at 100 MHz, enabling a 3 million triangle-per-
second rasterizer to be built on a single circuit board.  Building

custom rasterizer chips also allowed a low-cost implementation of
the Image-Composition Network (see below).

2.4 Region-Based Rendering

The logic-enhanced memory approach has one big disadvantage:
it is not feasible (today) to implement enough image memory on
custom chips to provide a full-screen image.  This means that a
full-screen image must be generated in multiple steps.

PixelFlow renderers operate by sequentially processing small
regions of the screen.  The region size is determined by the num-
ber of samples per pixel and ranges from 32x32 to 64x128 pixels.
After each renderer rasterizes a given region, the renderers scan
out that region's rasterized pixels over the Image-Composition
Network in synchrony with the other renderers.  This compositing
of regions is the “heartbeat” of the system.

Before rasterization can begin, the GP must sort primitives into
bins corresponding to the screen regions.  This extra step requires
memory on the GP and adds latency.  Also, some primitives,
particularly those of large screen extent, fall into more than one
region, increasing the effective polygon count by a factor equal to
the average number of regions per primitive.  This number can
range from 1.3 to 1.7 for typical datasets [MOLN94].  Region-
based rendering algorithms also may suffer from load imbalances
when primitives clump into regions; a particular danger is that
primitives may clump into different regions on different render-
ers, potentially starving the compositing network.  PixelFlow
mitigates these problems by providing buffering in the logic-
enhanced memory rasterizer for several regions of pixel data.

2.5 Deferred Shading

PixelFlow uses deferred shading, an approach that reduces the
calculations required for complex shading models by factoring
them out of the rasterization step [DEER88; ELLS91].  PixelFlow
rasterizers do not compute pixel colors directly; instead, they
compute geometric and intrinsic pixel attributes, such as surface-
normal vectors and surface color; these attributes, not pixel
colors, are composited.  The composited pixels (or samples),
containing these shading attributes, are deposited onto designated
renderer boards called shaders.  The shaders look up texture
values for the pixels and compute final pixel color values, based
on surface normal, light sources, etc.  Shading information is
shared among subpixel samples that hit the same surface, up to a
maximum of three surfaces per pixel.  For ultimate quality
rendering, every subpixel sample can be shaded independently.
After shading, regions of shaded pixels are forwarded to a frame
buffer for display.

The advantage of this approach is that a bounded number of
shading calculations are performed per pixel, no matter what the
depth complexity of the scene is or how many renderers are in the
system.  Thus, shading performance is decoupled from rasteriza-
tion performance:  the number of shaders required is determined
only by the resolution of the image, the number of surfaces
shaded per pixel, the complexity of the shading model, and the
frame rate.

PixelFlow’s SIMD rasterizer is an ideal processor for deferred
shading. Shading calculations can be performed for many pixels
simultaneously; if all pixels are shaded with the same algorithm,
the SIMD rasterizer achieves near 100% processor utilization.
This allows up to 800 billion byte-operations per second of
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Figure 2:  Object-parallel rendering by image composition.



shading performance on a single board.  The rasterizer’s texture
subsystem, using commodity SDRAM texture memory, supports
texturing, environment mapping, shadows, and so forth
[MOLN95].

Deferred shading requires higher bandwidth in the Image-
Composition Network, since pixel shading attributes require more
data than the three to four bytes required for RGB color values.
Transparent surfaces, including texture-modulated transparency,
are handled by sending transparent polygons to shaders and
accumulating transparent layers using Mammen’s algorithm
[MAMM89].  The performance impact is determined by the
number of transparent primitives and the number of transparency
layers.

2.6 Ultra-Fast Image-Composition Network

To support high-resolution displays, fast frame rates, and deferred
shading, the Image-Composition Network must provide
enormous bandwidth—tens of Gbytes/second.  We accomplish
this in a cost-effective way by integrating the compositors onto
the logic-enhanced memory chips that implement the SIMD
rasterizer array.  The network is formed by daisy-chaining
connections between the logic-enhanced memories on
neighboring boards.  Hence the network consists entirely of
point-to-point communication between identical custom chips on
neighboring boards, so state-of-the-art techniques for high-speed,
low-power interconnect can be employed to provide the necessary
bandwidth.

The Image-Composition Network on PixelFlow is 256 wires wide
and runs at 200 MHz, with data traveling in both directions on the
same wire at the same time.  The total bandwidth, therefore, is 2 •
200 MHz • 256 wires = 100 Gbit/second. This is sufficient to
render 1280x1024-pixel images with sophisticated shading and 4
samples per pixel at greater than 60 frames per second.

2.7 System Configurability

Because renderers, shaders, and frame buffer boards all share the
same underlying hardware (with the exception of I/O and video
daughter-cards), applications can tune the number of renderers
and shaders to achieve optimum speed, based on the number of
primitives and the complexity of the shading.  Also, a large
machine can be partitioned into smaller machines to support
multiple users, or as a single, large machine when ultimate
performance is desired.

3 HARDWARE COMPONENTS

PixelFlow is a modular graphics system, composed of one or
more chassis, each containing up to 9 Flow Units (the maximum
configuration is 256 Flow Units or more than 28 chassis!).
Figure 3 shows a one-chassis PixelFlow configuration.

The system is built around a horizontal midplane.  Geometry
Processor Boards plug into the underside of the midplane.
Rasterizer Boards plug into the top of the midplane. The
midplane contains the daisy-chain wiring for the Geometry and
Image-Composition Networks, as well as clock and power distri-
bution.  Figure 4 shows the components and interconnections of a
Flow Unit.

3.1  Geometry Processor

The Geometry Processor (GP) is a fast floating-point processor
that may be configured with one or two CPUs and up to 256
Mbytes of memory.

CPUs.  The CPUs are Hewlett-Packard PA-RISC PA-8000
modules. In a dual processor GP, the two processors are cache
coherent.  The PA-8000 runs at 180 MHz, issuing a peak of two
floating point multiply-accumulates  and two integer ops per
cycle.  The processor modules include large instruction and data
caches.

Memory.  GP memory consists of 64 to 512 Mbytes of SDRAM
memory, serving both as main memory for the GP and as a large
FIFO queue for buffering commands for the rasterizer.

RHInO.   A custom ASIC, the RHInO (Runway Host and I/O)
connects the processors with memory, the Geometry Network,
and the Rasterizer Board.  Its primary function is to service mem-
ory requests from the two processors and its various I/O ports.  It
also contains two DMA engines, one for transmitting rendering
commands from SDRAM memory to the Rasterizer Board, and
one for sending and receiving data from the Geometry Network.

Geometry Network.  The Geometry Network is a high-speed
packet-routing network that connects the GPs to each other.  This
is particularly useful for connecting the host to Flow Units that do
include an I/O daughter-card.  It is implemented using a bit-slice
pair of Geometry Network Interface (GeNIe) ASICs; they
physically reside on the Rasterizer Board.

The GeNIe provides three ports onto the Geometry Network for
each Flow Unit.  One port goes to the GP itself (via the RHInO);
one port goes to the optional I/O adapter; a third goes to the Inter-
TASIC Ring on the Rasterizer Board for loading textures and
reading frame-buffer contents.  Each port supports I/O traffic of
up to 240 Mbytes/second. The Geometry Network supports
broadcasts to groups of receivers. The overall Geometry Network
bandwidth is 800 Mbytes/sec in each direction.  Non-overlapping
transfers may occur simultaneously.
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3.2 SIMD Pixel Processor Array

The heart of the Rasterizer Board is a SIMD array of 8,192
processing elements (PEs).  This array is mapped to screen
regions of different sizes, depending on the number of samples
per pixel, as follows:

Samples per Pixel Region Size (pixels)
1 128 x 64
4 32 x 64
8 32 x 32

The PE array is divided into four modules, each tightly coupled to
a texture/video subsystem.

The SIMD array and texture/video subsystem operate under the

control of a pair of Image-Generation Controller chips (IGCs),
which perform cycle-by-cycle sequencing of the SIMD array and
provide data for the EMCs’ linear expression evaluator.

The PE array is implemented on 32 logic-enhanced memory chips
(EMCs), each containing 256 PEs. Figure 5 shows a block
diagram of an EMC.

Each PE consists of an arithmetic/logical unit (ALU) and 384
bytes of local memory.  This includes 256 bytes of main memory,
and four 32-byte partitions associated with two I/O ports, the
Local Port and the Image Composition port.  A linear expression
evaluator computes values of the bilinear expression Ax+By+C in
parallel for every PE; the pair (x,y) is the address of each PE on a
subpixel resolution grid, and A, B, and C are user-specified as part
of the SIMD instruction stream.  The ALU performs arithmetic
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and logical operations on local memory and on the local value of
the bilinear expression.

Figure 6 shows a functional diagram of one PE.  The major
components are described in the following sections.

ALU.   The ALU implements an 8-bit add and a full range of
bitwise logical functions.  There are three 8-bit registers:  the R,
S, and M registers.  The R and S registers can be loaded with the
core result.  The R register can be fed back to the core, and either
register can be written to memory.  The M register is loaded with
a byte read from memory; it also can be loaded with the R or S
register value.  The R and S registers can be combined into a
single 16-bit accumulator, to accelerate multiplies.  A carry
register is provided for multi-byte computations.  Each PE
includes an enable register.  PEs may be disabled, by clearing this
register, on the basis of computation results; memory writes do
not occur at PEs that are disabled.

Linear Expression Evaluator.  The linear expression evaluator
operates byte-serially to provide each processor with one byte of
the bilinear expression on every clock cycle; this can be thought
of as an immediate operand.  The result for each set of
coefficients generally must be preceded by two guard bytes, since
A and B are multiplied by 14-bit numbers.

The PEs are assigned x,y addresses on a subpixel grid with
resolution of 1/8th pixel.  The PEs are grouped into sets of 1, 4 or
8, each group corresponding to a pixel.  The PEs in each group
are assigned x,y subpixel addresses in a 2-pixel-wide box about
the pixel center; the pattern of subpixel addresses is the same for
each group, and this pattern defines the antialiasing kernel.

Inter-PE Communication.  The PEs on each EMC are connected
by a shift path that allows each ALU to use the R register of
either of its neighbors as an operand.  When antialiasing, the 4 or
8 samples for a single pixel are mapped to contiguous PEs; the
shift path is used to combine these samples into a single PE,
where they can be filtered into an aggregate display value.  This is
usually done on a shader, after composition.

Local Memory.  An 8-bit wide memory data bus connects the M,
R, and S registers to the 384 bytes of local memory; a byte of data

may be read from or written to memory on each clock cycle.  The
384 bytes of local memory for each PE are arranged as:

• 256 bytes of “main” memory
• 32 bytes of Local Port input buffer
• 32 bytes of Local Port output buffer
• 32 bytes of Image-Composition Network left-to-right

transfer buffer
• 32 bytes of Image-Composition Network right-to-left

transfer buffer

The four 32-byte partitions of memory are used for I/O
operations, using the two communication ports described below.
These partitions are part of the same address space as the 256
bytes of main memory, and all 384 bytes can be accessed by the
ALU.  While communication port operations are in progress, the
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ALU cannot access these addresses; this lockout is accomplished
using semaphores in the control processors.  The ALU may
continue to access the main memory and any of the 32-byte
buffers not involved in I/O operations; this allows I/O to occur
simultaneously with normal pixel computations.

Image-Composition Port.  The Image-Composition Port consists
of 8 left pins and 8 right pins per EMC.  The left pins are
connected to the right pins of the corresponding EMC on the
adjacent board, forming a 256-bit wide daisy-chained point-to-
point connection along the midplane.  These pins operate at
200 MHz (double the system clock rate), with simultaneous bi-
directional data flow (each pin has an input data stream, and a
simultaneous output data stream).  The Image-Composition
Network consists of two pathways superimposed onto this bi-
directional interconnect: on the left-to-right pathway, each PE
synchronously receives pixel data from the board to the left,
combines this data with the data in the 32-byte left-to-right
transfer buffer, and forwards the result to the board to the right;
similarly, the right-to-left pathway combines data from right to
left, using the right-to-left transfer buffer.  The two pathways can
be formed into a loop on a set of adjacent boards; in this way,
large systems can be configured as multiple small systems, each
with its own independent Image-Composition Network.

The Image-Composition Network operates on one screen region
of pixel data at a time.  Its primary function is the real-time
compositing operation required to combine the partial images
from the multiple renderers.  The basic composite operation is a z-
compare (up to 8 bytes) between the incoming pixel data and the
pixel data in the local transfer buffer; the composited pixel (or
sample), with the smaller z value, is forwarded. More generally,
the network is used for rapidly moving pixel data, including
writing data back into the transfer buffer.  For each region
transfer, a compositor mode is specified for each direction; the
forwarded pixel is (1) the composited pixel, (2) the incoming
pixel, or (3) the local pixel, and the pixel written back into the
transfer buffer is (1) nothing, (2) the incoming pixel, or (3) the
composited pixel. Thus, there are 9 modes; the four used in the
basic rendering algorithm are shown in Figure 7.

Load  upstream pixels 
into  memory.

Unload  local pixels 
downstream.

Forward  upstream 
pixels downstream.

Composite  local pixels  
with upstream pixels.  

transfer buffer transfer buffer

transfer buffer

Figure 7:  Compositor modes.

Composite mode is used by renderer boards as regions are
composited together to from a final pre-shading image.  Load
mode is used to deposit this composited image into a shader.
Unload mode is used, to dump final shaded pixels out of the
shader (to be received by the frame buffer using load mode).
Forward mode allows data to pass through any boards not
participating in a given transfer operation.

Local Port.  The Local Port consist of 4 bi-directional pins per
EMC.  Data in the 32-byte Local Port output buffer is output
nibble-serially on these pins.  The input data stream from the pins
is written into the Local Port input buffer.  The Local Port is
connected to the texture/video subsystem.  Typically, the output
buffer is loaded with texture-memory addresses; these are output
to the texture/video subsystem, which looks up the texels in
texture maps, and returns texel data to the input buffer.

The local input port and local output port operate independently,
although they share the same communications substrate.  Each
port can access all PEs, or a subset of the PEs defined by loading
a memory-mapped mark register.  A content-dependent decoder
gives the local port access to only the marked PEs.  This
substantially reduces texture-lookup time when only a subset of
pixels in a region needs texturing.

3.3 Texture / Video Subsystem

The texture/video subsystem consists of 8 texture-datapath ASICs
(TASICs) and 64 to 256 Mbytes of SDRAM memory.  The
TASIC chips provide the interface between the Local Ports of the
EMCs and texture/image memory; they transfer addresses
computed in the PE array to the SDRAMs and transfer texture-
lookup data back to the PE array.  The SDRAM memory is used
as a texture store on shader boards and as a frame store on frame-
buffer boards.  To provide sufficient bandwidth for Mip-map
texture lookups, texture memory is replicated on 4 separate
modules.  Each module consists of 8 EMCs, one copy of the
texture memory (16 to 64 Mbytes), and 2 TASIC chips.

Each copy of the texture memory is divided into eight banks. The
texture memory is designed to simultaneously read eight texels
when each of the eight texels comes from a different bank.
Prefiltered (Mip-map) texture maps can be interleaved across the
banks so that the eight texels required for one pixel are stored in
the eight separate banks.

To read from texture memory, the participating PEs each write 8
addresses into their Local Port output buffers.  The texture read
operation takes this set of eight addresses from each PE in turn,
applying the addresses to the eight banks of memory and
returning eight 4-byte results to the PE’s Local Port input buffer.

The time required for the texture read operation is 0.9 µsec +
0.64 µsec • the number of PEs participating in the worst-case
EMC (that is, the EMC with the most PEs marked). For full-
screen texture operations, all 32 EMCs will have all 256 PEs
marked, so the time is 165 µsec.  Pixels are interleaved across the
EMCs so that the pixels of a small screen area will be evenly
distributed across the EMCs.  A 30% speedup is available by
replicating textures within each module, halving the effective
texture store.

Texture memory writes proceed similarly to reads, except that the
texture memory addresses can either come from the PEs or can be
generated locally on the TASICs.

Generalized table-lookup operations are supported, allowing
functions such as bump mapping, environment mapping, and
image warping.  The shader can be loaded with an image, from
which it computes a Mip-map that can then be loaded into texture
memory.

Inter-TASIC Ring . For texture reads, each module needs
independent access to its local copy of texture data; for texture



writes, each module needs write access to all four copies of the
texture data.  The Inter-TASIC Ring provides each module’s PEs
with read and write access to the texture memory on all four
modules.  This enables a 1-to-4 write mode for efficiently writing
texture data to all four modules at once.

The Inter-TASIC Ring also connects to the GeNIe chips, allowing
the rasterizer to send and receive texel or pixel data over the
Geometry Network.  This is useful for dynamically loading
textures.  More details on the texture/video subsystem can be
found in [MOLN95].

3.4 Rasterizer Control

The rasterizer is controlled by two Image Generation Controller
ASICs (IGCs).  The IGCs parse the instruction stream from the
Geometry Processor board and issue micro-instructions to the
SIMD PE array and texture/video subsystem.

EIGC .  One IGC, denoted the EIGC, controls the array of PEs on
the EMCs.  It provides the SIMD micro-instruction to the PEs.
This micro-instruction includes control fields for each component
of the ALU, the address for local PE memory, and the ABC
coefficient set for the linear expression evaluator. The EIGC
accepts the coefficients as 32-bit or 64-bit integers, or single- or
double-precision floats; it converts these coefficients into byte-
serial fixed-point form required by the linear expression
evaluator.

The EIGC also controls image composition operations.  A
ready/go token chain attaches to the EIGC on each Rasterizer
Board.  For each of the two image-composition pathways, the
ready signal propagates upstream (e.g. from right to left, for the
left-to-right pathway); once this ready signal reaches the first
board in the chain, that board initiates the go signal, which
propagates downstream.   As each EIGC in the chain receives the
go signal, it initiates the transfer operation on the EMCs on that
rasterizer.

TIGC.   The other IGC, denoted the TIGC, provides micro-
instructions to the array of TASICs.  These instructions control
texture memory reads and writes and operations over the Inter-
TASIC Ring.

Instruction Stream.  The EIGC and TIGC receive a single
instruction stream from the GP, via a DMA controller in the
RHInO chip.  The IGCs independently parse this stream; they
contain a set of semaphores which arbitrate between EIGC and
TIGC instructions.  Each IGC also contains two input FIFOs;
another set of semaphores arbitrates between instruction streams
in the two FIFOs.  This allows the EIGC to have one instruction
stream for rasterizing primitives on the PE array and a separate
instruction stream for image-composition operations; these two
instruction streams execute independently, which is essential for
load-balancing.

3.5 Daughter Cards

The basic GP/RB Flow Unit described above can function either
as a renderer or as a shader.  A Flow Unit can be customized to
perform additional system functions by adding one of several
types of daughter cards.

Frame Buffer.  To use a Flow Unit as a frame buffer, a video
daughter card is added.  The eight TASICs on a rasterizer board

can provide a stream of up to 400 million 32-bit pixels per second
from the texture/image memory store.  This pixel rate supports
very-high resolution displays.  Alternatively, the TASIC video
port can support up to 8 independent video channels, so multi-
channel (stereo, etc.) frame buffers are possible as well.

Frame Grabber.  A frame-grabber daughter card allows a stream
of video to be acquired by a Rasterizer.  It can be stored in video
memory, transferred to the PEs for pixel-level processing,
transferred to the GP over the Inter-TASIC Ring, or transferred to
other boards over the Image-Composition Network or the
Geometry Network.

Host Interface.  A Flow Unit can be provided with a link to a
host computer by adding a n I/O daughter card.  Multiple host
interfaces are permitted in a system, connecting either to
independent hosts, or to a parallel host computer.

3.6 Technology Issues

The PixelFlow system incorporates five custom ASIC designs:
IGC, EMC, TASIC, GeNIe, and RHInO.  All chips were designed
using scaleable design rules, with lambda = 0.35µm, tuned to
provide maximum density on Hewlett-Packard’s process, a 3-
metal n-well CMOS process with 0.6µm channel length.  Critical
circuit designs, such as the memories and high-speed inter-
connect pads, were done using full-custom, mask-level layout;
ordinary logic design was done using full-custom and standard-
cell approaches.  Figure 8 summarizes the five custom chips.

Transistors Die Size (mm) Package

RHInO 1.10 million 15.5 x 14.2 504-pin CPGA
GeNIe 1.36 million 11.3 x 11.3 352-pin BGA
EMC 3.10 million 14.6 x 11.0 208-pin MQUAD
IGC 1.36 million 11.0 x 11.0 352-pin BGA
TASIC 0.63 million 11.0 x 11.0 352-pin BGA

Figure 8:  PixelFlow custom chips.

Implementation of these five ASIC designs, and system support
for the devices,  required us to employ a number of innovative
technological solutions.  We briefly describe these here.

1-Transistor Dynamic Memory.  A major challenge in the EMC
design was to build a dense DRAM memory on a high-speed
logic IC process.  DRAM processes use special features such as
trench capacitors to increase memory density and reliability.  Don
Speck designed a fast, low-power 1-transistor DRAM memory,
which can be implemented on a logic process, for Caltech’s
MOSAIC processor [SPEC91].  We adapted this design for use
on the EMC.

In our approach, the 384 bytes of PE memory are divided into 8
bit-slices, and each bit-slice is divided into twelve chunks.  Each
chunk contains 32 storage cells, each consisting of an access
transistor and a MOS capacitor.  Bit-lines only span a single
chunk.  A simple interface circuit connects bit-lines within a
chunk to a global memory data bus.  This allows the bit-lines to
run at very high speed, since the bit-lines are loaded with only a
small fraction of the storage cells.  It also saves power, since only
one chunk is active on any given cycle.  The design of the data-
bus proved critical, however, requiring differential signaling with
low voltage-swings to achieve the necessary speed without
consuming excessive power.



High-Speed Simultaneous Bi-Directional Signaling.  In order
to provide the enormous bandwidth required of the Image-
Composition Network with reasonable cost in chip pinout,
backplane connections, and power, a high-speed/low-power
interconnect was needed.  The solution took the form of a high-
speed, simultaneous bi-directional signaling pad design.  These
pads transmit data from board to board across the midplane both
directions on the same wire at once—and at 200 MHz (double the
rasterizer clock speed of 100 MHz). This design was used not
only in the Image-Composition Network, but also in the
connections from the EMCs to the TASICs, in the Inter-Ring, and
in the Geometry Network.

The design of these bi-directional pads was based on the work of
Dennison et al. [DENN93], which uses current-mode signaling
and on-chip termination.  In our approach each pad includes a
transmitter consisting of a single-ended current source; each of
the two chips, at each end of the signal line, injects a fixed current
into the line to send a ‘1’ data bit, or zero current  to send a ‘0’
data bit.  The voltage across each chip’s on-chip termination
resistor takes on one of three values, according to whether
neither, one, or both of the chips are injecting current.  Each chip
compares this voltage to a reference voltage level, determined by
whether it is sending a ‘0’ or a ‘1’.  The comparator result is the
data bit being sent by the chip at the opposite end of the signal
line.

Clock Distribution.  The simultaneous bi-directional signaling
pads only have 5 nsec to transmit signals between boards. This
necessitates a low-skew clocking scheme, both within a single
board, and between neighboring boards.

Low-skew clocking within a board was accomplished by
extending Chi’s salphasic clocking methodology [CHI94] (used
in one dimension on the backplane of Pixel-Planes 5) to two
dimensions.  The central idea of salphasic clocking is to establish
a standing wave across transmission lines (or clock planes) that
span the system.  Each device in the system needs only to detect
the zero crossing of this standing wave, rather than receiving a
traveling clock edge, as in conventional clocking.  Standing
waves have the property that every point along the transmission
medium has the same phase, so very low-skew clock distribution
is possible—without having to match clock trace lengths and
clock buffer delays.

The PixelFlow Rasterizer Board has a differential pair of
salphasic clock planes.  Each of the custom ASICs has two clock
input pins, which receive the differential signal from the clock
planes.  An on-chip delay-locked loop circuit generates an on-
chip clock with edges aligned to the zero-crossings of the
differential clock;  a single-phase clocking scheme is used inside
the custom chips.

A PixelFlow system can include hundreds of Flow Units,
presenting a daunting task for backplane clock distribution.  Since
the Image-Composition Network and Geometry Network connect
only neighboring boards, clock skew need be controlled only
locally; this leads naturally to our approach, in which each board
centers its clock phase between that of its two neighbors
[PRAT95].  Each board’s clock planes are driven by a voltage-
controlled crystal oscillator, which is phase-locked midway
between its two neighbors, and with a weak pull towards the
center of its operating range.   This scheme requires no system-
wide clock reference and no active parts on the backplane.

Packaging and Power.  PixelFlow’s unconventional mid-plane
design was chosen because this arrangement allows very short
signal paths between chips on one Rasterizer Board and those on
the neighboring Rasterizer Board, while simultaneously allowing
short signal paths between speed-critical chips on the GP and
Rasterizer.  Minimizing trace lengths for the high-speed
interconnect also required a compact board layout.   We used
aggressive high-density package designs, such as ball-grid array
(BGA) and metal quad flat-pak (MQUAD) packages; parts were
mounted on both sides of the circuit board.

Power is distributed throughout the system mid-plane at 48 volts
DC.  “Point-of-load” DC-to-DC converters on each board convert
this to the levels needed on the board. This power distribution
scheme ensures that all the custom ASICs receive supply voltages
within 100 mV of their nominal 3.3V level.

4 SOFTWARE COMPONENTS

The application programmer’s interface to PixelFlow is an
OpenGL [OPEN92] library with extensions to support the
architecture of the machine and an enhanced lighting and shading
capability.

As a research project, we've also developed a shading language,
PfMan, modeled on the RenderMan shading language
[HANR90], for coding the user-programmable portions of the
pipeline (shading, lighting and even new primitives). In this
section, we describe the programmer’s view of PixelFlow as well
as some of the internal software.

4.1  PixelFlow OpenGL

Three major motivations and constraints drove the design of our
OpenGL implementation.  First was the desire at UNC to
demonstrate programmability in the hardware pipeline [LAST95].
Although OpenGL provides a fairly rich model for shading and
lighting, that model is fixed.  We needed to add library calls to
interface to the new programmable shading, lighting, and
primitives.  Second, the region-based rendering and deferred
shading characteristics of the PixelFlow architecture constrained
us to a more frame oriented design than most OpenGL
implementations.  Finally, we wished to provide support for the
future research use of a parallel host machine with multiple
processors feeding the graphics pipeline simultaneously.

Support for programmability includes library routines for loading
user-coded shading and lighting functions.  As described in the
next section, a programmer can write high-level language
procedures for shading and lighting, compile them using the
PfMan compiler, and store the result on disk.  He can then,
through OpenGL extensions, instruct the system to load and link
the code on the shading node (at the moment we’re statically
linking the code, but expect to dynamically load by the end of the
year).  We provide other OpenGL extensions to set the values of
user-defined shading parameters that can change on a primitive
by primitive basis.  Examples include not only standard
parameters, such as surface normal and texture coordinates, but
also arbitrary others, such as noise frequency, etc.

The constraints of region-based rendering and deferred shading
mandated rendering based on frames (we use the term “frame” in
a fairly general sense). Before primitives are transformed on
renderers, all global parameters (such as viewing transformations



and the state necessary for shading) must be specified.  We
delimit the end of this setup stage with the call glStartGeometry().
Since, in PixelFlow, all of the primitives must be sorted based on
their screen-space location before rasterization, we also need a
way for the user to inform the system that no more primitives are
on the way.  We use the function glEndFrame() as a delimiter.
The OpenGL Architectural Review Board may set a standard to
support tiled architectures, therefore the names of the delimiting
functions may change (currently proposed names are
glBeginScene and glEndScene).

PixelFlow OpenGL is implemented on the client/server model, as
are most OpenGL systems.  Small subroutines on the host
workstation package tokens representing OpenGL calls and send
them, via the Geometry Network, to the appropriate PixelFlow
nodes.  Some commands, such as those specifying the frustum
and projection, are broadcast to all renderers, while others, such
as primitives bracketed by glBegin() and glEnd() calls are
distributed round-robin to single renderers.  Shader-specific
commands, such as those that load a new shading function, are
only sent to shaders.

In order to enable full performance rendering, regardless of the
workstation to PixelFlow bandwidth, display lists are stored on
the GPs. The two GPs on each renderer function as independent
OpenGL servers for most of the frame, but the two streams of
rasterization commands are merged as they are sent to the IGCs.

4.3 Rendering Control

Rendering control coordinates and synchronizes the actions of the
multiple Flow Units.  Initially, rendering control designates each
Flow Unit as either a renderer, shader, or frame buffer.

• On renderers, rendering control transforms and clips
primitives and then generates bins of IGC instructions
corresponding to each screen region.  The instructions
for primitives whose bounding box crosses a region
boundary are copied to each affected bin.  This process
is repeated for every primitive assigned to that renderer.

• On shaders, rendering control generates IGC
instructions to texture, light, and shade regions of
composited pixels.

• On frame buffers, rendering control generates
instructions to store pixel values in texture/image
memory and to scan pixel values out via the video
daughter-card.  Frame buffers may also perform post-
processing on image data.

Once instructions are generated, rendering recipes coordinate and
synchronize the actions of each Flow Unit. They control when
each Flow Unit perform such tasks as shading, antialiasing, and
blending of samples.  They also orchestrate transfers over the
Image-Composition Network.  Since all Flow Units must act
together to set the compositors properly and to send or receive the
correct amount of data, these transfers form the “heartbeat” of the
system.

4.3  Programmability

Currently, in our experimental shading language, we can write
PfMan procedures to program three stages of the pipeline:
shading, lighting and the rendering of primitives.  We expect
eventually to experiment with user programmability at the
atmospheric stage (to allow user-specified fog, for example) and

at the frame buffer (for image operations, such as warping).

User programmable surface shaders and lights are similar to those
supported by the RenderMan shading language.  We’ve added
support for fixed-point arithmetic to increase performance and
have worked to optimize the execution by eliminating as much
redundant computation as we can.  A major performance
improvement comes from running all of the lighting code at once,
for all of the pixels, regardless of the surface shader at a particular
pixel.  This technique makes the best use of the SIMD nature of
the PE array.

A feature that is rarely supported, even in software renderers, is
the ability for the user to add geometric primitives to the system.
Using PfMan, a user can add primitives of two different types:
those that call rendering code for other primitives, and those that
directly issue instructions to the IGC.  The former type of
primitive is useful when the user wants to package standard
primitives in an economical way, for example height fields.
Primitives that directly render can add basic functionality, such as
true spheres [FUCH85].

4.4 Multipass algorithms

Some shading effects, such as shadows and reflections, may need
multiple passes to complete.  We treat these as multiple frames
and will provide host libraries to insulate the programmer from
the complexity.  A typical case is that of a shadow-casting light.
We must first render a shadow (depth) map from the viewpoint of
the light [WILL78].  This is the first frame of the process and is
particularly simple since we only need the z values at each pixel
of the shadow map.  Using the Image Composition Network, we
load the depth map into the texture memory of all of the shaders
and execute the second frame, which is the rendering of the actual
scene.

5   PERFORMANCE

5.1  Performance Model

System performance is determined by:  (1) the time required by
the renderers to transform and rasterize the polygons in the screen
regions,  (2) the time required by the shaders to shade and texture
the screen regions, and (3) the time required by the Image-
Composition Network to composite the screen regions.  System
performance may be limited by any of these effects, depending
upon various factors described below.

• Rasterization.  The time required to transform and rasterize
each screen region is determined by the number of polygons
in the region and the complexity of the rendering algorithm.
Rasterizers are capable of processing 2.8 million Gouraud-
shaded triangles per second or 1.4 million textured, Phong-
shaded triangles per second.  By adding additional renderers,
the number of primitives that must be transformed and
rasterized by each renderer is reduced; this gives the
architecture its appealing characteristic of linear scalability.

• Shading.  The time required to shade each region is
determined by the complexity of the shading and texturing
algorithm.  A given number of shaders imposes a maximum
frame rate.  Higher frame rates can be achieved by increasing
the number of shaders, thereby reducing the number of
regions that must be processed by each shader.  Shading time
generally is limited by the time required to perform texture



lookups.  Each shader performs 50 million full (8-texel) Mip-
Map texture lookups per second.

• Compositing.  The time required to composite each region is
determined solely by the number of bytes of pixel attributes
to be composited.  For a given screen size, number of
antialiasing samples, and number of bytes of pixel attributes,
image-composition bandwidth places a hard limit on the
frame rate.1 The network requires 1.28 * N µsec to composite
a screen region (N is the number of bytes of pixel data per
PE).

The interaction of these factors is shown in Figure 9.
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Figure 9:  Theoretical performance curves.

This figure shows that, for a given size data base and rendering
algorithm, system performance scales linearly with the number of
renderers until a knee is reached, where compositing and/or
shading time dominates rasterization.  For more complex data
bases, this knee is reached at a higher number of renderers.
Below the knee, adding renderers increases polygon rate; this is
the property of linear scalability characteristic of image
composition architectures.  Above the knee, frame rate is limited
by shader and/or Image-Composition Network performance.

Load imbalances. When performance is determined by
composition and shading time, performance is quite predictable.
However, when performance is determined by rasterization time,
two effects can reduce system performance.  First, primitives may
fall into more than one screen region, so the effective number of
primitives is increased (by approximately 30% to 70% for typical
scenes [MOLN94]).  Second, primitives may not be evenly
distributed across the regions, so some regions can be rasterized
in very little time, while other regions require significantly more
time to rasterize than is taken to composite and shade.  This effect
is particularly egregious when the screen distribution of
primitives varies from renderer to renderer, since renderers will
then take turns being the bottleneck.

                                                                
1 This limit can be circumvented by configuring the machine as a
number of smaller machines, each responsible for a subset of the
regions of the screen.  However, each smaller machine must
transform the entire database or use a hierarchical culling scheme.

We mitigate these load-imbalance effects by providing several
regions of buffering between rasterization and compositing.
Simulations on test scenes indicate that this is adequate if the
primitives in the scenes are distributed round-robin across the
renderers.

5.2  Current Status

At the time this of this writing, small systems containing three to
five Flow Units are running in our laboratory. All hardware has
been demonstrated to run at full design speed.

The major components of system software are running and we
have generated a number of test images.  The software is still
being optimized, so we do not yet have empirical data for GP or
overall performance.  Preliminary performance data should be
available when this paper is presented.

6 SUMMARY

PixelFlow is one of the first graphics architectures to use real-
time image composition with multi-primitive renderers.  Its
combination of multi-million-triangle-per-second renderers,
deferred shaders, and high-performance compositing network
give it linearly scaleable performance up to 100 million polygons
per second or more.

Virtually all of the components of PixelFlow are programmable:
its Geometry Processors are conventional microprocessors; its
Rasterizers are programmable SIMD computing surfaces; its
Image-Composition Network is a general datapath for moving
and compositing pixel data.  In addition to standard rendering
algorithms, such as Gouraud- and Phong-shading of polygonal
primitives, PixelFlow can render primitives such as spheres,
quadrics, and volume data with high-quality shading methods,
such as local light sources, procedural and image-based texturing,
and shadow and environment mapping.  Figure 10 shows a
number of sample images rendered on PixelFlow.

A PixelFlow system can be configured in a variety of ways.
Hosted by a single workstation, it can render retained-mode
datasets.  Coupled to a parallel supercomputer, it can serve as a
visualization subsystem for immediate-mode rendering.  Using
PixelFlow silicon, a 2-3 million-triangle-per-second rasterizer can
be built on a single board.
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a)  Depth-map shadows with three lightsources. b)  Reflection-mapped sphere over chess board.

c)  Bump-mapped sphere with Phong shading. d)  Scene with texturing and transparent layers.

e)  Solid-textured sphere. f)  “Evening Station” (model by John Fujii).

Eyles et. al., Figure 10:   Sample images rendered on PixelFlow.


