PIXELFLOW ™ RASTERIZER
FUNCTIONAL DESCRIPTION

John Eyles
Steven Molnar

Department of Computer Science
University of North Carolina at Chapel Hill

Rev. 7.0
November 20, 1997

— CONFIDENTIAL —
Do not distribute outside UNC-CH CS Dept.

8Rasterizer p. ii

Copyright © 1996 by John Eyles and Steven Molnar

PixelFlow™ is a registered trademark of the University of North Carolina.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. iii

TABLE OF CONTENTS

— CONFIDENTIAL —

| INTRODUCTION 1
I RASTERIZER HARDWARE OVERVIEW 2
II.1 Rasterizer Input Interface 2
[1.2 Image Generation Controllers 3
1.3 EMC Array 5
1.4 TASIC Array 19
I1.5 Texture/Video Memory 25
1.6 Video Interface 25
1l GENERATING RASTERIZER COMMAND INPUT 27
[11.1 Generating Commands with Inline C++ Functions 28
Error Checking 29
Need checking 29
Alignment checking 30
Argument checking 30
TFIFO Commands 31
RT Controller Commands 31
[11.2 Generating Commands withpcodes.tMacros 31
IV EIGC COMMANDS 32
IV.1 Commands for the SIMD Processor Array 33
Specifying Memory Segments 33
Specifying Tree Results 34
Command Prefixes 36
Command Suffixes 36
Commands to Modify the Enable Register 38
Commands to Store the Enable Register 39
Arithmetic and Logical Commands 39
Advanced Arithmetic Commands 41
Enable Stack Commands 43
Global Commands 44
ALU Register Save/Restore 44
Special-Purpose Commands 45
Inter-Pixel Commands 46
IV.2 Commands to Configure the Linear Expression Evaluator 48
IVV.3 Commands to Configure the Image-Composition Port 50
IV.4 Commands to Configure the Local Port 53
IV.5 Miscellaneous EMC Sequencer Commands 55
Miscellaneous Commands 55
Commands to Initialize the EIGC Sequencer 56
IV.6 Commands for the Rasterizer Glue Chip 57
PixelFlow System Documentation Rasterizer

Rev. 7.0 jge/sem

8Rasterizer p. iv

— CONFIDENTIAL —

IV.7 Test Commands 57
TIGC COMMANDS 58
V.1 External Memory Organization 59
V.2 Configuration Commands 64
Commands to Configure the Address Generator Output 64
Commands to Select the Xfer Mode 65
Commands to Set thHdCnt andMSel Registers 66
Command to Preload the ACT 67
Commands to Initialize the SDRAMs Memory System 67
Command to Refresh Memory 68
V.3 Commands for Reading and Writing External Memory 69
Block Read Commands 69
Block Write Commands 71
Scatter Read Commands 73
Scatter Write Commands (currently unimplemented) 75
V.4 Commands to Communicate with the GP 77
Commands for synchronization with the GP 77
Commands for setting GNI registers 78
GP read/write commands 78
V.5 Video Control Commands 80
Commands to Set the Video Base and Field Registers 82
Commands to Operate the Video Controller 82
V.6 Video Control Examples 83
Asynchronous Two-Buffer Frame Buffering 83
Synchronous Two-Buffer Frame Buffering 85
Three-Buffer Frame Buffering 86
One-Shot Frame Grabbing 88
Asynchronous Free-Running Frame Grabbing 89
Synchronous Free-Running Frame Grabbing 90
V.7 Miscellaneous TIGC Sequencer Commands 91
Miscellaneous Commands 91
Commands to Initialize the TIGC Sequencer 91
VI RT CONTROLLER COMMANDS AND SYNCHRONIZATION 92
VI.1 Semaphore Commands 92
VI.3 IC Controller Commands 94
V1.4 Rasterization Control Algorithm 96
V1.4 Shading Control Algorithm 97
APPENDIX A — IGC COMMAND EXECUTION TIMES 99
A.1 EMC Command Execution Times 99
A.2 TIGC Command Execution Times 104
PixelFlow System Documentation Rasterizer

Rev. 7.0 jge/sem

8Rasterizer p. 1

I INTRODUCTION

PixelFlow™ is a special-purpose computarchitecturedesigned for high-speed, high-
quality imagegeneration. The central part of eacPRixelFlow circuit board is the
Rasterizer It consists of an two Image Generation Controller chips (IGCs), an array of 32
Enhanced MemonChips (EMCs), anarray of 8 TextureASICs (TASICs),and 32
synchronous DRAM (SDRAM) memories, as shown in Figure 1.

IGC
Commands

GPITASIC
Interface

EMC Control TASIC Control
IGC IGC

EMC Control TASIC
and tree ABC Control
32 EMCs Hle» s | Texture/
D-[(128)(64 TASICs Frame-
<P [H pixel region) Buffer

Video
interface

to/from video
DACs/ADCs

Image-Composition
Network

Figure 1: Block diagram of the PixelFlow rasterizer.

The EMCs contain an array of 8K (8192) processing elements (Bash PEconsists of

a byte-wide ALU and84 bytes of memorygperating att00 MHz. The PEsoperate in

Single-Instruction/MultipleData (SIMD) fashion. Each PEhas anx,y address and is
connected to a distributed LineBxpressionEvaluator (LEE)which suppliesthe local

value of the bi-linear expressiond-y) = Ax + By + C byte-serially at 100 MHz.

The 8K PEs inthe Rasterizer can be mappewdto a region ofthe display screen (the
rasterizerregion) in several different ways:

1) 128 x 64 pixel region, with 1 PE per pixel
2) 64 x 32 pixel region, with 4 PEs per pixel

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 2

3) 32 x 32 pixel region, with 8 PEs per pixel

For option 1, each PBsy address ishe screemposition ofthe pixelwith which that PE

is associated. For option 2, thePEsare divided intogroups of 4,and eachgroup is
assigned to a pixel; the 4 PEs in each group are assigned to four samples in an anti-aliasing
kernel. Since thex,y addressesre integers,pixel centers are defined t® on an 8x8
pixletgrid, where FX, y) is evaluated for pixlet,y values. Thusthe region i512 x 256

pixlets in size, and pixels are referenced to multiples of 8 on this pixlet grid. The 4 samples
can be placed in a 16 x 16 pixtdx with origin aftthe pixel referenceoint. Option 3 is

similar to option 2, except the region is 256 x 256 pixlets in size, and there are 8 samples in
the anti-aliasing kernel.

In all 3 cases, the PEs operate on the W(data from theLEE and pixel-memory, storing
their results back into pixel-memory.

The TASICs are CMOS datapatthips, whichconnect the EMCs to the Glbus (via the
GNI chip—described elsewhere), axternal SDRAM memory (for texture andimage
storage), and optionally, to video circuitry (on frame-buffer and frame-grabber boards).

The IGCs interpret instructions from the GP that are queued in their input FIFOs. Each is a
microcoded sequencer which executes high-level instructimrtte EMCs andlrASICs,
controlling their cycle-by-cycle operation.

Section Il describeshe rasterizer's hardware components. Sections Il through VI
describe its programming interface.

I RASTERIZER HARDWARE OVERVIEW

1.1 Rasterizer Input Interface

Before rasterization of a frame chagin,the GeometryProcessor (GP) orachsystem
board generates rendering commands and stores thentacaltsiemory. The GPwrites
these commands to the rasterizer's 32-bit input interfacegaamhdcommand is loaded into
one of the IGCs.

EachIGC canprocess commands peak rates ofl00 Mword/secondEach IGC has
programmable almost-full flager its RFIFO andTFIFO, whichare asserted when the
FIFO can accepbnly alimited number of additional commands; theléggs are or'ed
together and go back to the GP.

Iwe sometimes refer to the PEs as pixel processorshéng is a one-to-oneorrespondencbetween PEs
and pixels only for the 128x64 case; sometimes, in fact, the PEs may contain data totally unrelated to pixel
values.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 3

1.2 Image Generation Controllers

Eachimage Generation Controlle(IGC) is a custom chip with a sequencer and microcode
store which controlthe EMCs (in the case of tH&MC Control IGC, or EIGC) or the
TASICs (in the case of the TASIC Conti@C, or TIGC); the EIGC includes aerializer

to convert integer or floating-point input coefficients into fiked-point, byte-serial form
required by theeaMCs. Thetwo IGCscan be thought of as a sindtagical entity which
processes commands from the rasterizer input interface, controls and setheidd€s
and TASICs, and synchronizé®e rasterizewith the image-compositionetwork. A set

of semaphores interlocks operatiortled Sequencers dhetwo IGCs, and processing of
RFIFO and TFIFO commands. Figure 2 shows a block diagram of the IGCs.

r- - - - - - _—_ — — — = = 1
| EIGC IC Controller bothtzr
oards
R FIFO
| A 1 A 4 |
| 5| Stream | | RT Sequencer |] » to
| Parser Controller N | EMCs
A A
| T FIFO -1 I
PaN
input 32 - - - - - - - - - - —m 4 = = = = = -
Stream — — — — — — — — — — o—) e — — — — —
I_TIGC 1
| R FIFO I
| REEZRL |
Stream RT
|| L Sequencer to
| Parser Controller g TASICs
! T FIFO) |
[-~ [

Figure 2: Block diagram of the IGCs.

Stream Parser. IGC Commands consist of an I-word opcoded optional additional
arguments, depending on the purpose of the instruction:

* |-word. Mandatory. Containghe instruction opcode and parametéos the
microcode routine. The I-word is presentewvery command and is tliest word
in thecommand.The I-word alsospecifies which FIFO and which Sequencer the
command is for.

* P-word. Optional. Contains additional parameters for the microcode routine.

* A, B, and C coefficients. Optional. Operands fothe linearexpression
evaluator. C coefficient also used in some initialization commands.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 4

The I-word and P-word are eactB82-bit quantities. The A, B, andC coefficients may be
either32- or 64-bit integers dfoating-pointnumbers.The RFIFOscontain 256-bit wide
slots foreach command; th€FIFOs contain 64-bit wideslots (TFIFO commandsannot
use the A, B, and C operands). The physical ingatface to theGCs is 32-bitswide; a
stream parserparses the input stream (rejecting commands for the l&i@rand building
complete commands, which are loaded intlad in the specifiedFIFO. The FIFOs, RT
controllers, and Sequencerdiandle each comand assagle unit, irrespective of its
original format. The formatsfor IGC commands are described in maietail in Sections
IV through VI below.

RFIFO and TFIFO. The rasterizer'sask consists of two parts: (figsterization—the
calculation(or shading) opixel values,and (2) compositor setup—copyipixel data to

the transfer buffer section dEMC pixel memory and controlling the comp03|mng|c
Unfortunately,the two parts must be performed as asynchromposessessince region
transfers can occur at unpredictable times (whenever all system boards are ready to transfer
the next region).

To be able to execute thesssks asynchronouslyncoming IGC commands must be
buffered into two streams: tiRFIFO buffers rendering commands, and T#&FO buffers
transfer commands. Semaphores, descii@ow, synchronizethe operation of the two
FIFOs.

The FIFOs are wide enough to hold an entire commarmachentry. Abit in thel-word

of each command determinesether the command is to be loaded into RFO or
TFIFO. The RFIFO canhold up to 128 commands atige TFIFO can hold up to 512
commands. Hardware keepack of the number of commandwred inthe FIFOs and
asserts the status register®RFullH or STFullH if either FIFO reaches a programmable
high-water mark. Ifthe high-water mark is close to tiFO size,then theFIFO can
inadvertently be overflowed because there is a several instruction pipeline between the IGC
inputs and thé&ull flags.

RT Controller. EachIGC contains arRT Controllerwhich reads commands from the

R- and T-FIFOs and writethem to theSequencerThe RT Controller includesour
semaphore counters; twaan block theRFIFO, and two can block theTFIFO. Each
semaphore blocks its FIFO if its value is zero and a P command is in the FIFO's read latch.
One of the RFIFO-blocking semapho beV'ed bythe appropriatd FIFO command

on the samdGC, and one of theRFIFO-blocking semaphoresan beV'ed by the
appropriateRFIFO command on the othdGC; similarly, one ofthe TFIFO-blocking
semaphores can V'ed by the appropriate RFIFO command on the same IGC, and one of the
TFIFO-blocking semaphores can be V'ed by the appropriate TFIFO commainel ather

IGC. There is also a "preference" registdnich determines which dhe two FIFOs on

each IGC is the preferred ondor executing commands; the preferrédFO takes
precedence unless it is blocked, even if it is empty.

IC Controller. EachIGC also contains an IC Controller, which controlsnage
Composition port operation. However, only the IC ControlletrEIGC is usedEach
FIFO canalso be blocked by a P-like commawtich waitsuntil the IC Controller no
longer has a pending composition cycle.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 5

These semaphores and their control commands are described in Section VI.

IGC Sequencers. EachlGC contains a sequencerThe EIGC Sequencegenerates
micro-instructions for the pixel-ALUs, addresses into pixel-memory AB@ coefficients
for the linearexpressiorevaluator; commands to t8#GC areused torasterizepolygons
(on Renderer boards) and to perform shadagulations(on Shader boards)The TIGC
Sequencer controls the TASICs and attached memory; commands to tharél@&ed for
moving data between the pixel-memory on the EM&&l external texture/frame-buffer
memory, or between pixel-memory on the EMCs and the geometry processor bus.

The Sequencergach contain local microcodmemory. Abit in the I-word of each
command indicates which sequencer is to execute the commandtwohe alsospecifies
the starting microcode address for the command. Each sequencer can conditianalty
both on internal conditionésuch asthe value ofloop counters) anéxternal conditions
(three condition code inpufer eachsequencer).The sequencers have a one-leg#ck;
they canstore a single microcode retuaddressallowing onelevel of procedure calls.
They have several external contmitputs which allowthem to perform miscellaneous
control functions on the rasterizer board.

There is a delay of approximately 20 cycles betweertirte aSequenceissues amicro-
instruction and whethe micro-instruction is executed within the EMCST#SICs. The
external control outputs are subject to a somewhat smaller latd@imey programmer need
not normally be concerned with these latenatgsept insome situations described in the
command descriptions and examples in the remaining sections.

Sequencer commands and their formats are described in detail in Sections IV and V.

1.3 EMC Array

The array of 32 PixelFlodEMCs implements a 2-dimensional SIMidocessom@rray that
covers a 128x64-, 64x32-, or 32x32 - pixel region of the screen, as described dhve.
logical array can bémoved" to process any region tife display screen; the region is
normally aligned to region boundaries, butah be positioned arbitrarily.

Each PE is provided with itswn 8-bit ALU, an output of the linear-expression evaluator
tree (the LEE), 256 bytes @dcal memory, two 32-bytéransferbuffers and two 32-byte
local-port buffers Figure 3 shows a logical diagram of an EMC.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 6

ALU Pixel
A,B,C Micro- Memory
Data input instruction Address
Local Data __ 4-bit slice
1/0O Control of Local Port
[|

-_—
E » - 256 bytes —m= :32~ :32= :32= :32=
Linear 3 _ o 5 5

- [2 = — +—
Expression HH < g Pixel s % SE[E5 |55
Evaluator (H'Q & Main % @|ralg® (R @
(outputs|H 8 Memor Ss(83|1ALg |z
o

Ax+By+C) © ~ y S 2 g 2 E) % g @
=K - O = ©
— ¢ = [

]

[
. Pixel

PixelFlow EMC Compositor

\ \
8-bit slice of Image
Composition Network

Figure 3: Logical diagram of a PixelFlow EMC.

PE ALUs. EachPE'sALU is ageneral-purpose 8-bit processor; it includeseaable
register which allows operations to be performed on a subskeé BEs. The PE can use

tree results or local memory as operands and can write results back to local memory. It can
also transfer data between memory, the carry register, ati®tbeffers. Figure $hows

a logical diagram of the ALU.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 7

LEE result (Ax + By + C)

]
R Register R Register Y
of neighbor of neighbor Q
[%2)
2 le
i
\ \ 4
y y =
R Rup T Rdn M
Input Mux
AND
P Q
\ ne
N S Enable
ALU Core o3 and —
L ®) Logic
Cout Sum z ©
Shifter |
v] 1 v
—Dcryl > RRegister S Register {—
— \use
SF ?_

Memory Bus

Figure 4: Logical diagram of EMC PE ALU.

The 256 PEsare divided into anelsof 32 PEs each. Somlgnited communication
among the PEs in a panel is possible, via the ALU pathways.

Linear-expression evaluator (LEE). The linear-expression evaluator evaluates
bilinear expression®x + By + C for each PE of the array parallel. A, B, andC are
coefficients loaded from the IGC and ¥) represent the PEsy address. Many graphics
calculations can be cast into the form of bilineapressions, such #ise edge, depth, and
color calculations required to render Gouraud-shaded triangles.

The IGC controlsthe operation of th&MC array. IGC instructionsind coefficients are
serialized and broadcast &l of the EMCs in parallel. TheSIMD array of PEs execute

these instructions in lock-steplhe enableegisters ineach PE areised tocontrol which

subset of the PEs are active at any given time.

Pixel Memory. Each PE isprovided with 256+4*32 bytes dbcal memory. The
memory is divided into 5 partitions: a 256-byt&in partition, which is used for most
computation, and four 32-byte partitions useddwternal communicationTwo of these,
the localport buffers, are connected to the logabrt. The localport is connected to the
TASICs, sothat data can be exchanged between the logHer andattached external
memory. The otherghe transfer buffers (ormage-compostiotuffers)are connected to

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 8

the image-composition port. Data that is ready to be composited is placed into this area.

Address Range Length (bytes) Partition
0-255 256 Main memory
256— 287 32 Left-to-Right Transfer Buffer
288 — 319 32 Right-to-Left Transfer Buffer
320-381 62 Unmapped
382 1 Local Port In Mark Register
383 1 Local Port Out Mark Register
384 — 415 32 Local Port Input Buffer
416 — 447 32 Local Port Output Buffer
448- 511 64 Base Address Offset Area

Table 1: EMC Pixel Memory Address Map.

Table 1showsthe memory magor pixel memory. Addresses 382 and 38R 1-bit
read/write registers used for the enable flags for local port operation; this is handled within
the local port control instructions, and these addresses should not be accessed directly.

Addresses 448-514re not physically implementedlhis portion ofthe addressspace is
used for base address registers, described below.

Normally, all 384 bytes of pixel memory can beaccessed. @ However, when
communication-port operations are performed, thaifer data temporarily isinavailable.

For exampleafter pixel data to be composited is copied intotthasfer buffers and the
composition operation is initiated, memory in the transfer buffers cannot be accessed by the
ALU until the composition operation is completeSimilarly, to perform a local-port
operation,data is moved into thiecal outputbuffer, the local-port operation is initiated,

and data may be unload&édm the localinput buffer; duringthe localport operation, the

local buffer beingused must not be accessedtlyy ALU until the operation isomplete
(although the other local buffer can be accessed by the ALU if it is not involved locdhe

port operation). If any one of the four communications buffers is accessed while its port is
in operationunpredicatableesults will occurithe write or read may or may nbappen,

but theport operation will not bealisturbed. This occurs the addressbeing read or
written isanywherean the 32-byte address spacetlté activeport, even if it is not one of

the addresses actually being used by the port operation.

All pixel memory is dynamic and so must be periodicadlfreshed. This refresh is
performed opportunistically by th&lGC Sequencer. Only under very unusual
circumstancegmassquantities of memory-intensileMC Sequencer instructionshay it

be necessary texplicitly refreshEMC pixel memory. Thiscan bedone by interspersing
refresh commands.The localand transfer buffer portions gdixel memory are not
accessible under IGC control when port operations are in progress, so untatchedy
be corrupted; therefore, unused portions ofitical and transfer buffers must not be used
for data storage. For example, if composited piaedsto bel92 bits in size, so only the
low 24 bytes of a transfer buffer are needbd, remaining &ytes should not be used for

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 9

general storage.

Communication Ports. The image-compositioport andlocal port allow pixeldata to

be transferred serially to/frothe EMCs to other EMC8or compositing) orto/from the
TASICs (to perform texture lookups or pixel-data writes to texture or video memory). Data
from each PE ipresented serially &achport. The number obytes transferred to/from
each PEand their location in the communicatitmffer are designated by configuration
commands described in Section bélow. The image-compositioport is an 8-bit port
which runs at 200 MHz. The localport is a 4-bit port whichruns at 200 MHzwith
simultaneous bi-directional traffic.

Global enable. Each EMC has an outputhich representthe logical-OR of the enable
registers of all PEs. These outputs are wire-anded together to fogioliheenablesignal
(EOrH), the logical-OR of the enable registers for the entire SIMD arEyrH is fed into
an external condition-code input of the EMC sequencer. CommandsEdaequencer
can test the status BOr, and based on the result, can conditionally execute. stEtes of
EOr can be communicated to the GP using a special commangahsuntil EOr is valid
(must waitfor last commands to be executed by the EMCs EB@dto becomevalid).
Depending on the state BOr, it asserts one of the two EMC sequencer extemguts to
the GPstatus register.The GPstatus register contains a stickyt for each of these
signals. The GP can determine the stati&fby waiting for one of these bits to bet,
then clearingt. Notethat the EMCsequencer may execute commands after theE@st-
instruction.

Panel organization of an EMC. The 256 PEs on an EMC are arranged pa8elsof

32 PEs each. For some screen organizations, the paegiaireclp, sothat thePEs are
effectively arranged as 4 panels of BEs each. Notthat no communication ipossible
between the lower and upper 32 PEs in these 6pdPEls,since they are separate panels
hardware-wise. Thisrganization is mostly transparent to trser, but theuser must be
aware of panels in severaistances, so paneklre discussed inthe PE organization
information given below.

PE Organization within a Region. The 256 PEs oreach of the 32 EMCs in a
rasterizer are mapped to the display screen in different patterns for different tasks. Figures
5 A-C show the three configurationgl, 4 and 8 samples per pixefpr rendering
displayable images arfeigures 5 D-Fshow the three configuration®r renderingtexture

maps. Note that the EMCs are interleaved in botlx #vely dimensions.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 10

N N
o o < N~ — —
I 11 1 1 I Il
x xX X > x x
y=0| 0| 8(16[24] 0| 8 [16|24 0] 8|16/24]
ololofo]o|o]o]o olofofo
191725l 1|9 (1725 1[9 (1725
olololo]ololo]o ololofo

0 1 * 31
= [T TBR3RY 75[23et 752331
Y="lolololololololo olololo
y=s | 0] 8[16[24] 08 [16[24 0| 81624
11111 1]1]2 11]1]1
191725l 1|9 (17|25 1[9 (1725
A EE R 11]1]1

0 1 ** 31
y=15 | 7 FB[23RY 7[5 [23RL 752331
AR FRENENE 101

[) [) [J o

[) [) [) o

[) [) o

y=s6 | 0] 8 16[24 0] & 16[24 0| 81624
71717 77| 77| 7 2171715
(91725l 1|9 (17|25 1[9[1725
71717l 7l71 71717 7171717

0 1 * 31
y=63 | 7 |23 7[5 [23RL 752331
ydrdird W FARa AW 7171717
- 128 -

pixels

_ EMC number (0-31)
n Panel number (0-7)
O =PE number (0-31)

Figure 5A: Screen-space organization of EMCs for a single-sampled
128x64 pixel region - for display.

In the single-sampled organization of Figure 5A, a given panel on a EMénrepresents

every fourth pixel on a given scanlin€&our panelspne fromeach of 4 differenEMCs,

pixels

PixelFlow System Documentation
— CONFIDENTIAL —

Rasterizer
Rev. 7.0 jge/sem

8Rasterizer p. 11

represent an entire scanline.

o [92]
o ™ < N~ O ©
1 U 1 U U U
x x x x X x
y=0]018[16[24] 0 81624 081624 A
0]0|/0J0J0]0]|0]0O 1{1]1)1
1{9]17)25)1 | 9 [17]25 119117125
0olojojojoljojoilo 1/1111)11
7115123131 7 [15]23]131 7 115(23(31
y="1olololololololo 2lalalg
y=8 0[8]16/124]0| 8 |16/24 0] 8|16/24]
21212)12)2[2|2]2 31333
1{9]17)25)1 | 9 [17]25 119117125
2121212)2(212]2 313[3(3
=~ i o o o j
3 V4 31 32
7 [15[2331} 7 [15]2331 7I5233Y pixels
y=151212120212121212 3
[] [] @ ®
[[[{
[[[[J
y=24 |0 [8 [16[241 0 | 8 [16{24 0] 81624
6]/6|6|6]6[6|6]6 717177
1{9]17)25)1 | 9 [17]25 119117125
6161616J6[6[616 171717
71151231314 7 [15]23]131 7 115(23(31
y=31 7171717 v
—t} 64 -
pixels
_ EMC number (0-31)
n Panel number (0-7)
5 = PE number (0-31)
Figure 5B: Screen-space organization of EMCs for a 4 sample-per-pixel
64x32 pixel region - for display.
PixelFlow System Documentation Rasterizer

— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 12

In the 4-sample per pixel organizationkifjure 5B,the PEs on arEMC arearranged so
that theeven-numbered panels cover the left-half of the region andddenumbered
panels cover the right-half of the region. Four neighboring PEspamed represent the 4
samples of a pixel, so each panel contains 16 pixels.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 13

Il I I I I I
x xX X x x x
y=0]018 [16{24] 0 8 |16]2 ol8ie24] A
ofolo]|o]ofo]o]o 1]1f1]1
1917251 1|9 |17[25 1[9[17]25
olololo]Jofo]o]lo 111{1[1
> | 2 4
7 1512330 7 [15]23[31 7 [15]23[31
Y="lolololololololo 1111111
y=8 |0 8[16{24] O | 8 |16[24f 0] 8(16[24
21212(212]2]2]2 3|3|3]3
1917251 1|9 |17[25 1[9[17]25
2|212[2]2]|2]2]2 3131313
Q| 8 24
7 15 31 32
7 [15[23[31] 7 [15[23[31] 752331 pixels
y=1515(o]o[2]2[2]|2| 2 3
[] [] [)
° ° °
[] [] [)
y=24 1018 [16[24] 0| 8 |16]24] 0] 8(16[24
6|l6|6|6]l6|6]|6]6 7171717
1917251 1|9 |17[25 1[9[17]25
6le6l6l6]l6l6]l6]6 7171717
7| £ :
7 1512330 7 [15]23[31 7 [15]23[31
y=31 7171717 v
- 32 -
pixels

_ EMC number (0-31)
n Panel number (0-7)

0
7 = PE number (0-31)

Figure 5C: Screen-space organization of EMCs for an 8 sample-per-pixel
32x32 pixel region - for display.

In the 8-sample per pixel organization of Figure 5C, the PEs @Mahalsoare arranged
so that theeven-numbered panels cover the left-half of a region andddenumbered
panels cover the right-half ofragion. Eight neighboring®Es on ganel represent the 8

Rasterizer
Rev. 7.0 jge/sem

PixelFlow System Documentation
— CONFIDENTIAL —

8Rasterizer p. 14

samples of a pixel, so each panel represents 8 pixels.

The primary difference between te@andard rendering configurations ahd texture map
configurations ighatfor renderingtexturemaps, 4different panels of onEMC must be
clustered into x2 grid tofacilitate writing to texture memorythis has to do with the
order in which PEs from a given EMC are accessed - see the section on the TASICs).

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 15

o N~
o ~ 9 3 N
I I I 1 I 1
x X X > x x
y=0|0[0]|8|8[16[6[2424f 0 [0[8 |8 [16[16[24]2 0|0(8[8[16[16|24[24 A
01010101C21__C21__Cl_(_‘l E of1fo]1]o|1|0]1
0 |08 |8[16[16[24paAl C&I[E43 |14 6[2 ven 0 [0[8]8 1616244
2(312(3]2(3]2(3]2(3]2]|3]|2]3]|2]3 2(31213]|2(3]2]3
o|o[8|8]i6lr6|24f24l0 [0]8 81616242:] ofol8 81616242;]
o|1|of1]o|1]|o|1]ChL]|O 0~.|0 of1]of1]of1]0]1
0 [0[8]8]16[16[24]2 C3)_§3=_1(36_§ Odd 0 [0[88][16[16|24]2
2(3[2]3]2|3[2|3]12]3[2[3]2]|3|2]3 2(3[213]2]3[2]3
1[1fo[9]r7|a7|255) 1 [1]9 [9|17|17|25[25 1|19]9[17|17|25[5
of1]o]1]of1]o]1]CcHL|CHL|CHL|CHL of1fo]1]o|1|0]1
119 917[17]25[25] 1 L__sza_T 7523 Even 119 [9(17[17]|25]25
2(312(3]2(3]2(3]2(3]2]|3]|2]3]|2]3 2(31213|2(3]2]3
1[1]9|9r7|a7]25l25] 1 [1]9 [9[17|17[25]25 1[1]9[9]17[17]|25[25
01010101c1__03_03‘.__03‘_ Odd of1]of1]of1]0]1
119 [9]17[17[25[25) 11 [9 V[T 7[2:5 119 [9](17[17]|25[]25
2(3]2]3]2]3]|2]3]2]3]2]3]|2]|3(2]3 213(2]3[2]3]2]3
7 |7 [15p5 232331317|7 15|15 23|2331|31 7 |7 [15p5(23[23(31[31
01010101C21_Cl__CI__Cl E of1]of1]of1]0]12 64
7 [7 11505[23R3[313Y 747 |1 £5[2 <3341 ven 7 [7[15115[23[23[31[31] pixels
2(3]2]3]2]3]|2]3]2]|3]2]3]2]3[2]3 2(31213|2(3]2]3
7 [7 l15p5]23[23(|31[31] 7 [7 [15 15 232331|31 7 [7 11515(23[23]31[31
o|1|o|1]0|1]|0|1]ChL|OA.|0O~.|0O~ of1]of1]of1]0]1
o1 |7 [7 L5 5]23R3[31RT 737_E 5‘73§§31 Odd 7 |7 [15[15|23|23|31[31
y=2t1243]2(3]23[2[3]2]3[2]3]2]3]|2]3 2(3]213]2]3]2(3
—so[0]o]8|8]16[16[24[24] 0 [08 |8 |16]L6[242 0 (o8 |8]16|L6[24]2
y 454545454254254345 41|5|4|5(4]|5|4 |5
0 [0[8[8[16[L6[2aal C&I <314 6]2 Even 0 [0[8[8[16[16[24P2
6|7]|6|7]|6]|7]|6|7]l6]|7]6]7]|6]7]|6]|7 6|l7|6|7|6|7]6]|7
CSE SRR R e B ANAHENREE
5 5 5 5
0 [0[8]8]16[16|24]2 c33__83='ﬂ 52:3 Odd 0 [0[88][16[16[242
6l7]l6|7]l6|7]|6|7]l6]|7]6]7]|6]7]|6]7 6|l7le6|7]|6]|7|6]|7
0 2 e o o 30
7 |7 [15p5 232331317|7 15|15 23|2331|31 7 |7 [15p5(23[23(31[31]
415|454 |5(a|5lamm|a 5|43]|45 4|5]4|5(4|5]4]5
ez |7 [7 L5R5[23R3[31R1 73"E3;'ﬁ3;'ﬁ _ Odd 7 |7 [15[15[23|23|31[31
=316 l7l6|7l6]7l6|7l6l7l6]7l6]7]6]7 6l7lel7l6l7l6]7 v
128
e . e
pixels
_ EMC number (0-31)
n Panel number (0-7)
O =PE number (0-31)
PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 16

Figure 5D: Screen-space organization of EMCs for a single-sampled
128x64 pixel region - for texture maps.

In the single-sampled organization Eijure 5D,the top half of the region is covered by
panels 0-3 ofll EMCs while the bottom half is covered by pangl3. The EMCs are
interleaved as before, except now the panels are interleaxeshdy as well: 2interleaved
panels from each of the (interleaved) EMCs form a single scan-line.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 17

o ~ ﬂ 8 %

L Lod L 4 y
y=o|0[0]8[8]16[i6[2424 0 [0 [8 |8 [16[i6[24]2 0 |o[8[8[i6[i6[24]2 A
0|1|0|1]j0]1]0]|1J0f1jO0J1]|O|1|Of1 Oj1|0f1f0f1]0]1
0108 |8]16]16|24/2440 [0 |8 | 8 |16[16(24(2 0]10|8 |8|16]16|24|2
213121312(312131213[2(31]2]3]2]3 2131231213123
1111919 (17[27(25(2501 |19 |9 |17]|17]25)25 11119]9(1717]25]25
ol1]lof1]o]1]o]a]ol1fo]1fof1]of1 of1]of1]of1]o]1
1(1]19]9(1727(25(2501 |19 |9 |17]17]|25)2 1111919(17)17]25]25
2131213[213]2(3]213]2[3[2]3]2]3 o o0 o 21312[3[213]2]3
- - }

717 |11505(23[23|31|3] 7 | 7 A5[5]23)23|31[31 717 [1505(23J23|31[31
ol1]lof1]o]1]o]a]o|1fo]1fof1]of1 of1]of1]of1]o]1

y=15 717 |11505(23[23|31|131] 7 | 7 (A5[L5]23)23|31[31 717 [1505(23J23|31[31
213121312 13121312 13121312131213 2131213121312 13
_1sl0[0[8]8[16[6[24]2 0 |o[8[8[i6[i6]24]2 32
y 4(5]|4|5(4|5]4]5 4(514|5(45]4]5 _
010|8|8]16]16|24(2 0]10(8|8|16]16|24|2 p|Xe|
617161716 [7]1617 6l7|l6|7[617]617
111]19]9(1727|25[25 11119]9(1717]25]25
415141514 15]41]5 415(415]1415]4 |5
111]19]9(17[17|252 1111919(17)17]25]25
6l7l6]7[617[6]17 o o o o0 o 6l7l6l7[617]617
- @
717 |11505(23[23|31}3] 717 [1505(23J23|31[31
4|5]4]5(4[5]4]5 4|5)4|5(4[5]4]5
y=31 7 |17 |11505(23[23|31}31] 717 [1505(23J23|31[31
6lrzlelrzielr7i617 elrzlelrzielrzlel7 v
64
g . e
pixels
— EMC number (0-31)
n Panel number (0-7)
9 = PE number (0-31)

Figure 5E: Screen-space organization of EMCs for a 4 sample-per-pixel
64x32 pixel region- for texture maps.

The 4 sample-per-pixel organization &figure 5E issimilar to the single sample
configuration, except now 4 adjacent PEs within a panel form one sample for a pixel.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 18

o N~ o ﬂ g (T)'
L L & L 4 {
y=o [0 [0 8 T8]1e[6[244 0 [oT8 T8 refi6[24]2 0 [o]8 [8[1se[L6[24]2 I\
0|1|0|1]j0]1]0]|1J0f1jO0J1]|O|1|Of1 Oj1|0f1f0f1]0]1
0108 |8]16]16|24/2440 [0 |8 | 8 |16[16(24(2 0]10(8 |8|16]16|24|2
213121312(312131213[2(31]2]3]2]3 2131231213123
1111919 (17[27(25(2501 |19 |9 |17]|17]25)25 11119]9(1717]25]25
ol1]lof1]o]1]o]a]ol1fo]1fof1]of1 of1]of1]of1]o]1
1(1]19]9(1727(25(2501 |19 |9 |17]17]|25)2 1111919(17)17]25]25
21312(3[213]2[3]21312[3[213]12]3] @ e e |21312[3[2]3]2]3
9 8 24
717 |11505(23[23|31|3] 7 | 7 A5[5]23)23|31[31 717 [1505(23J23|31[31
ol1]lof1]o]1]o]a]o|1fo]1fof1]of1 of1]of1]of1]o]1
y=15 717 |11505(23[23|31|131] 7 | 7 [A5[5]23)23|31[31 717 [1505(23J23|31[31
213121312 13121312 13121312131213 2131213121312 13
_s[0 o8]8i66[24)2 o [o]8 8 1e[Le[24]2 32
y 4(5(4|5|a[5]4](5 4(5|a[5|a5]4]5 _
010|8|8]16]16|24(2 0]10(8|8|16]16|24|2 pD(elS
617161716 [7]1617 6l7|l6|7[617]617
111]19]9(1727|25[25 11119]9(1717]25]25
415141514 15]41]5 415(415]1415]4 |5
111]19]9(17[17|252 1111919(17)17]25]25
6l7l6]7[617[6]17 o o o o o o |s6l7lel7[6l7]6]7
7 3
717 |11505(23[23|31}31] 717 [1505(23J23|31[31
4151415]415]4]5 415(415]1415]4 |5
y=31 7 |17 |11505(23[23|31}31] 717 [1505(23J23|31[31
6lrzlelrzielr7i617 elrzlelrzielrzlel7 v
32
g . e
pixels
_ EMC number (0-31)
n Panel number (0-7)
9 = PE number (0-31)

Figure 5F: Screen-space organization of EMCs for an 8 sample-per-pixel
32x32 pixel region- for texture maps.

Again, the 8 sample-per-pixel organization &fgure 5E issimilar to the 4 sample
configuration, except now 8 adjacent PEs within a panel form one sample for a pixel.

EMCs are grouped intomhodules containing 8 chips each; modules 0-3 contains EMCs 0-

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 19

7, 8-15, 16-23, and 24-31, respectively. Because of the EMC arrangement within each 4 x
8 block of pixels seen in Figures 5A-then means that each moduépresentshe pixels
on every 4'th column in the region.

1.4 TASIC Array

The array of 8Texture ASICSor TASICS implement a data-parallel communication
interface between pixel memory in the EMCs, the Geometry Network Interface (GNI) chip,
texture/videomemory, andptional video circuitry. They perfortine buffering anddata
conversion required to read and wiS8BRAM memories and contain internal counters to
refresh a video display or read video data from a frame grabber.

Although there aréwo physicalTASIC chips pemodule,thetwo functiontogether as a
singlelogical TASIC. Each physical TASIC represents one bit-slice of tihe even bits

of all external datapaths connect to one physical TASIC anadbebits ofall external
datapaths connect to the other. The 8 physical (4 logical) TASICs are divided among the 4
modules, so that each moduensists ofeight EMCs andwo TASICs. Figure &hows

the EMCs and TASICs one module and the various data connections to/from the TASICs.

Inter-moduie ks (o) (ight) One of four modules

Figure 6: Interconnection between components in a module (one of four
modules).

The TASICs of one module connectthe localports ofthe module'seight EMCs in bit-
slice fashion. They alsconnect to theorresponding TASICs dhe other modules via a
bit-sliced 16-bit ring network composedIlater-module TASIC Links This ring network
providescommunication between modules and @Ml, allowing pixeldata to beshared
between modules, and allowing the GP to participate in pixel calculations or to pigeess
memory for diagnostic purposes.

Both the EMC-to-TASIC connections and Inter-Module TASIC links opera2®@tMHz,
bidirectionally.

The TASICs of each modulalso contain a 32-bit bidirectionaiterface to optional video
circuitry. This port, which also is bit-sliced by 2, is clocked with an external ¢hatkcan
run up to 100 MHz. The port is used to send pixels fad M memory to videdACs

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 20

(when refreshing a screen) orread pixels from vide&DCs (on aframe grabber)nto
texture/video memory.

Figure 7 shows &lock diagram of a physical TASIEhip. Internally, it is composed of
three dual-portedRAMs, several configurable datapaths, and a number of control and
address registers and counters. One dual-ported RAM b&fH#RAM memoryaddresses
(the Address Corner Turnesr ACT); one buffers SDRAM data (thgata Corner Turneror
DCT); the third buffers video data to/from the videport (theVideo FIFO or VFIFO).
Cycle-by-cycle operation of the TASICs is controlled by TheC Sequencer, which also
controls the EMCs' local ports (since these interface directly to the TASICs).

SCIkH SCIkL MemAddrH[7:0][6:0] TCK TDI TMS TRST TDO
8x7
| Clk Genl | Memory Address Port | | JTAG Port |
‘ 8x7 8x7 ‘ ‘ *
Clk AuxAddrSliceHf[6:0 Address 5 3 z
i) Generator £ 5 3
8x2 | 8 Address g
LPDatH[7:0][1:0] < % Corner |
| § | eommaee gl Turner 1
] 8 (64X32X4) VRdDataHfv 16
o | 2a6 Video 1250] £ |7 VDatH[15:0]
| S InDatalA BJHf 6 g
8 2 [z0[30] EIFO 1_}_ >
LinkDatRH[7:0] =g/ H E1 Data (128x64x4) o | & |—— VOEH
LinkEnRH <— S (| 'c —<ARtlide Corner g - | > g VENH
8 |ofl© Turner E lag—— VCIkH
LinkDatLH[7:0] < S 216 00| (64x32x4) 3 . - e \/CIKL
LinKENLH =t—m = 32 e . 8 =
ataHf Ts5. T IEXE kS 3
[7:0](3:0 883t aEdd 3 £
E g o w33 5 E
200 MHz (bidi) B4 1 B o B f* f? f{ f f +
| Mem Ctl Portl | Memory Data Port | | Control Port

PR T b TTRFT

MemClkH MemCtlL MemClk MemDatH[7:0][3:0] FlipH ResetH TInstrX TAddrX TMemCtIX
[1:0][2:0] [3:0] InH [12:0] [3:0] [3:0]

Figure 7: Block diagram of Texture ASIC (TASIC). Each physical TASIC
(pictured here) represents one of the two bit-slices in a logical TASIC. 1

Throughoutthe remainder of theocument, unless otherwise indicated, wi# refer to
logical TASICs (both bit slices), not physical TASICs.

Address Corner Turner. The Address Corner TurnefACT) is a dual-ported memory
that “corner-turns” seriabddresses arriving frotme EMCs orGNI and buffersthem up

1 Two revisions of the TASIChave been fabricated®ev1.0 and Rev2.0. Rev2.0 is almostlentical
functionally to Rev1.0, but has twextra signal pins (shown imgray), a moregeneralSDRAM clock
generator,and differentsemantics for ltolCommPorttransfers (sedelow). A completelist of the
differences between revs can be found inRbxelFlow TASIC Functional Description

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 21

into the parallel formatequired at theéddress Port. It ifsomposed of a 32x64x8ual-

ported memory, as shown in Figure 8. Addréswfrom the eight EMCs in the module
stream into this memory from the left. The eight addresses from a single EMC are read out
from below. Separate write and read pointers keep tracklwdre inthe ACT addresses

are currently being written or re&d.

Each cell contains eight bits

S <« 16-bit
EMC 0 B,I row address
l«— 16-bit
EMC 1 —b column address
EMC 2 =
. _ Address Corner
o
£ emcz—>3 Turner
%] [}
A (32x64x8 dual-
o [
5 £ ported SRAM)
< Emcs —»
EMC 6 —
EMC 7 —»
Output multiplexer
HI maskable output reg | LO maskable output reg

SRR ERERE

Addressesto: Mem Mem Mem Mem Mem Mem Mem Mem
7 6 5 4 3 2 1 0

Figure 8: Address Corner Turner.

The ACT can beonfigured to mask outputs the low or high sets of four SDRAMs.
Commands to configure the ACT are described in Section V.2.

Data Corner Turner. The Data Corner Turner(DCT) is similar to theACT, except it
buffers data rather than addresses@rtransferdata inboth directions, fronEMCs (or
GNI) to SDRAMS, or vice versa. Like the ACT, it is composed of a 32x@4ed-ported
memory, as shown in Figure 9Vhen writing textures t&DRAM memory, itreceives
data from eight EMCs from the left. The eight data values from a 4 areread out
from below. Separate write and read pointers keep traakhefe inthe DCT datasalues
are currently being written or read.

IAccess patterns for these pointers and detailed timing for the ACT and DCT can be founBiietRw
TASIC Functional Description

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 22

. «— 1-byte data
EMC 0 —77™]]
] < 2-byte data
|
EMC 17— l (_4—byte data
EMC 2 —™]
Data Corner
g EMC3T™ 8 Turner
S emca — 8 (32x64x8 dual-
g = orted SRAM
EMC 5 —»|
EMC 6 —™
EMC 7 —™]
1/0 selector

veb bbb b

Data to/from: Mem Mem Mem Mem Mem Mem Mem Mem
7 6 5 4 3 2 1 0

Figure 9: Data Corner Turner.

The DCT can be configured to send data in either direction and to traitiséerl, 2, or 4
byte data types. There are no commands to deexipigcitly; ratherDCT configuration is
done at the beginning of data transfer commands (described in Section V.3).

Configurable Datapath. The datapath between the EMC port, iter-module TASIC
links, and theACT/DCT is configurable to allow data to keansferred in a variety of
directions, both between the modules (and GNI) of a rasterizer and within a given TASIC.

Options for transferring data between modules @hd) usingthe inter-moduldinks are
shown in Figure 10:

EMCs SDRAMSs EMCs SDRAMs EMCs SDRAMs EMCs SDRAMs
@ Esrc =] @ E o E E o E g
3 3 B =1 3
EH g :H H ¢ H H
(a) Writeltol (b) WriteltoN (c) WriteNtoN (d) ReadNtoN
GNI SDRAMs GNI SDRAMs GNI SDRAMs
Dﬁ 04—
dst Dﬁ | src ﬂ
[m] [n]
(e) WriteGNItol (f) WriteGNItoN (g) ReadltoGNI

Figure 10: Options for transferring data between modules (and GNI).

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 23

Data can be sent point-to-point fraite EMCs of one module to the SDRAMs of another
module. It can be broadcasttte SDRAMS of allmodules. Itcan be written irparallel
for each of themodules. Similarlygdata can baent point-to-point fronthe GNI to one

module’s SDRAMs or broadcast to everjodules’ SDRAMSs.

Readsan bedone in

parallel for all modules, or read data from one module can be sent to the GNI.

Possible datapath configurations within a TASIC are shown in Figure 11.:

Link Link A » Link Link Link
Port hd ® AcCT Port ¢ ¢ ACT Port ¢ ¢ ACT Port L b ® AcT Port ° ¢ ACT
p A TN D
EMC
Ee o e DCT FAES e DCT e o2 DCT Port @ ® DcT Tort e bCT
(a) Write ACT (b) Write ACT (c) Write DCT (d) Write DCT (e) GNI'to DCT
(NtoN) (1tol and 1toN) (NtoN) (1tol and 1toN)
Link Link A Link Link Link D
° ® ACT L) o ACT Ly
Port Port e ¢ ACT Port Port ® ® ACT Port ® ® ACT
’* . ™ Y
EMC EMC
por @@ DCT Epr\gﬁ oq> o DCT pon €= ¢ DCT Ex)fl . e DCT Eyofl . e DCT
(f) Write ACT (NtoN) (g) Write ACT (h) Read DCT (i) DCT to GNI () DCT to ACT
/ Read DCT (1tol or 1toN) / (for testing)
Read DCT
Figure 11: TASIC internal datapath options.

Portions of the datapath configuration argone implicitty as part of datatransfer
commands. Explicit setup commandare used to perfornother parts of configuration.
These commands are described in Section V.2.

Internal Address Generator. Under some circumstances, such as many texture writes
and transfers of texelata to/from theGNl, it is impractical toprovide memoryaddresses
from the EMCs. To supporthesekinds of operationsthe TASIC contains an internal
address generator. It has three main parts:

1) A set of eight immediate address registers.

2) A 32-bit presettable up-counter followed by a programmable crossbar.

3) Multiplexing circuitry at the memorgddress outputthat can selecand combine
addresses from different sources.

The immediateaddress registere 16-bitregistersthat can beset to arbitrary values via
the TIGC. The value in a particular registan besent directly taall eight TIGC address
outputs or it can be xor’'ed with other address sources.

A 32-bit presettable up-counter followed by a crossbavalable toprovide incrementing
addresses.The crossbar allows allows address bits to be interchangetiirgo general
addressing patterns are available.

Multiplexing circuitry at the memorgddress outputselects among the differepbssible

Rasterizer
Rev. 7.0 jge/sem

PixelFlow System Documentation
— CONFIDENTIAL —

8Rasterizer p. 24

address sourcesSome address sourcean bexor'ed together asvell, providing even
more flexibility when generatingaddresses. Commands to configureéhe address
generation logic are described in Section V.2.

Video FIFO and Video Port. On videoboards (frame-buffer oframe-grabber
boards), SDRAM memory isused to store pixelsnaking it unnecessary to provide
additional frame-buffer memorfor this purpose. Access toSDRAM memory istime-
shared on videdoards between video reads/writes and normal texture/backing-store
accesses.

Since the videgort runs asynchronously wittespect to theest of the system, some
buffering is needed between the SDRAMs and the et This buffering is provided
by theVideo FIFO (VFIFO), another dual-portechemory. It is a 256x32x8 memory,
which can load (or store) eight pixels simultaneously fronthe SDRAMs while
asynchronouslyransmitting(or receiving) a stream of pixels ovtdre videoport (Figure
12). The TIGC controls the loading and unloading of pixels fleenSDRAMend of the
VFIFO, while an external video controller controls the other end via the videéd port.

Data to/from: Mem Mem Mem Mem Mem Mem Mem Mem
7 6 5 4 3 2 1 0

LI LT

Selection Logic bits of
1 pixel

Each cell
contains
8 bits

Pixel Selection Logic

tsz

32-bit wide pixel data
to/from Video Port

Figure 12: Video FIFO.

1The memory access pattern and detailed timing info for the VFIFO céoube in the PixelFlow TASIC
Functional Description

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 25

In addition to buffering pixels, the TASICs also have internal address registéeefiing
track of pixel row/columraddresses fathe startingscanline of up to eight independent
video fields, plus counters fothe address othe currentscanline and pixel. It also
contains registers which spectitye order fieldsare to bedisplayed, santerleaved and/or
stereo displaysan berefreshed continuously without intervention the GP. Special
TIGC Sequencer instructiongppdate thesaddress address afidld registers. These are
used to swap buffers when double-buffering and to synchronizep@rtion with video
scanout when desired.

Commands to configure and oper#ite VFIFO andvideo Port are described in Section
V.5.

1.5 Texture/Video Memory

As describedabove, two TASICs irrach module connect to eight 2-M x(B5 megabit)
synchronous DRAM (SDRAM) memories,t@al of 32 SDRAMchips per systerboard.
These memories are used to store image-based textures, pntefigexel communication
for image-warping operations, serve laacking storefor memory-intensive rendering
algorithms, and store video frames in frame-buffer or frame-grabber boards.

The 8 SDRAMSs in a module are arranged as shown in Figure 6 aBagle. SDRAM chip
contains 4K x 512 bytes dftorage. The chips are controlled globally by th&IGC
Sequencer (all eight do a memory operation at the same timeddngisses foeachbank
areindependent.The totalstorage per module is IBytes. Each SDRAM carmead or
write data to/from aandom location in memory at a pealte of 100 Mbytes/sec, so the
raw memory bandwidth per module is 8 « 100 MBytes/sec =N#B@e/sec (the attainable
memory bandwidth for four-byte reads/writes is approximately 580 MBytes/sec).

Addresses fotexture reads/writesan comerom one of threesources: 1komputed on

EMCs and sent over local-port TASICs, 2) sent to TASICs ovgeometrynetwork, 3)
generated on the TASICs themselves using a simple 32-bit presettable counter followed by
a crossbar that allows permutations of address bits within the 32-bit word.

The external memories on bdtie shader and videboardsare dynamic memories—they
'forget’ data that isstored withinthem if they arenot refreshed periodically. Refreshing
consists of visiting everyow in the memory array of every memory chip at least every 8
msec. This is done by a TIG8equencer microcode subroutitiat performs refresh
cycles. Calls to this subroutirsee iInTIGC sequencemicrocode routines sthatrefresh

cycles are guaranteed to occur sufficiemdfien. SectionV.2 describes this refreshing
method in more detail, and special precautions that must be taken when loading microcode.

1.6 Video Interface

The optional video controller multiplexes pixel data to/fromfthe modules and converts
between digitabnd analogormats. Itcontains itsown pixel clock and counterfor the
number of pixels in a scanline, the number of scanlines in a fieldharfields in arame

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 26

(we define a frame as one or more fields that are displayed consecutively without requiring
intervention by the GP). The video controller may contain an auxiliary frame buffer (for X
overlays, for example) whose output is merged with the video signal from PixelFlow.

The basic strategy is tmake the video controller the master atif video processing and
makeTIGC andTASIC videoports synchronize to it. This allovexternal gen-locking
and prevents TIGC failures (hanging, for example) from disrupting all video.

The pixels in ascanline are interleavedver the modules, sahat every 4(contiguous)
pixels on a horizontal scdime comefrom different modules. The SDRAMs provide
storage for 4Kx4K32-bit pixels, sufficient to double-buffer imagder any display up to
4Kx2K pixels. The videoport can be clocked at up th0O0 MHz. By multiplexing the
outputs of the four modules together, as shown in Figj8rehe overall pixel rate can be

as high as 4 « 100 Mpixels/sec = 400 Mpixels/sec, sufficient to update a 2K x 2K monitor
at 60 Hz. Portions ainemory not needefbr storingimages carstore texeldor image-
based texturing or other data as in any other system board.

32 bits @ 90 MHz

Module 0 | TASIC Analog
DO 32 bits @ video out
TASIC > | 360 MHz (360 MHz)
Module 1 |01 3 360 MHz
|02 7 [7 RAMDAC % 2k x 2k
Module 2 TASIC D3 < X3 Monitor
(for RGB)
Module 3 | TASIC

-~——— Logical TASIC for one module
(both bit-slices)

Figure 13: Video connections for a 2K x 2K-pixel frame-buffer board.

The TIGC Sequencer polls @deo request input and reads or writes batches of pixels
from/to SDRAM memorywhen indicated. Video pixels arebuffered inthe TASICs’
internal VFIFO, whichcanstore up to 4096 pixels (enough for two stiags of a 2K x

2K display. The video controllehandshakes witthe TIGC sequencer sthat the video
buffer is always partially full when scan lines may be requested.

Figure 14 showsthe connections between a sample video controller rasterizer.
TASStrobeand TASStrobeDetommunicatestatus information fronthe TIGC to the GP
(TASStrobeDebutputsare delayed by the trdatency). GPStrobecommunicatestatus
information from the GP to the TIGC. One of eigiternalstatus bits isnultiplexed onto
GPStrobeunder control offASMuxSelgenerated by th€IGC. VidReqconveys video
requests to the TIGCVidStatindicates the type of request (0x0 = unused, 0x1 = new line,
0x2 = new field, 0x3 = new frame)/idClk is the videcsubsystentlock (independent of
the normal rasterizarlock). VidEnis the pixel read/write enabfer the TASICs’ video
port. VidRstresets and initializes the video controller. Nibk this is only oneexample
implementation of a videmterface. Theencodings of video status amge of TIGC

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 27

ExtOP signalsare programmable—the videsmntroller, rasterizer gluehip, and TIGC
video microcode just have to agree.

t to GP bus

TASStrobe<1:O>-
TASStrobeDel<1:0> VidRst
o GP status/ LAl
TASMuxSeI<a'O: control PLD .
GPStrobe i
21213 j P
i External
VidAck .
P Video Synch
TIGC .
VidReq Controller (optional)

VidClk VidEn

TASIC

Af [Y)

TASIC

Figure 14: Video control interface (example).

The counters and finite-state machines in\titeeo Controller orchestrate video operation.
Each time anew scanline, new field, or neframe isneededthe video controlleasserts
VidReq The TIGC polls th&idReginput and reads the requéygpe fromVidStatvia the

GP status register usificASMuxSelo select theppropriate statusits. When theTIGC

has recognized a request, it asseitB\ck which cleard/idRegandVidStatuntil the next

video request. The GPstatus registePLD monitorsVidAckto ensurethat theTIGC is
responding to video requests. If WadAck occurs during a specifieiime interval, it can

be inferred that the TIGC is operating incorrectly or is hung, necessitating a GP interrupt to
reset the video subsystem.

The TIGC usesVidStat information to synchronize fields and frames wilie video
controller and to ensure that each frame is displayed at least once.

The video interface is left unconnected on non-video boards.

1 GENERATING RASTERIZER COMMAND INPUT

When generating Rasterizer command input, the two IGCs are though of as dogingle
entity. IGC commands consist of three types:

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 28

* EIGC commands. These perform computations on t8&8VID array of pixel
ALUs on the EMCs, and do setup for the two I/O port operations.

 TIGC commands. These control the TASICs, tHeMC local port, and external
DRAM memory.

 RT Controller commands. These control the operation of tlsemaphores
which interlock the FIFOs and Sequencers, andperation of the Image
Composition Controller. They pass through the input FIFOs anidtareepted by
the RT Controller, but they are not executed by either Sequencer.

The commands of each type are defined in header fite®t>_opcodes.h and
<root>_commands.h. For EIGC commands, <root> = "EMC"; for
TIGCcommandssroot> = "TAS". For RT Controller commands<root> = "EMC" or
"TAS", depending upon which semaphore is being controlled.

The opcoddor each command is defined by a matr&root>_<cmdname> in the
header file<root>_opcodes.h SomeEMC and TIGC sequencer commangsjuire a
supplementary opcode, which is defined by an additional macro
P_<root>_<cmdname> also inthe headefile<root>_opcodes.h EIGC commands
may also includeeither one or three coefficients (eithjast C, or A, B, andC); TIGC
commands may include a single coefficie@).(The opcode and supplementapcodes
are each 32-bit quantities; the coefficients raagh be eitheB2-bit (oneword) or 64-bit
(two word) quantities.

The<root>_commands.header file contain€++ function definitionsthat generate entire
IGC commands.The use ofthese commands is described in fibkowing section. The
<root>_opcodes.hand<root>_commands.theader files are generated by tigelFlow
IGC microcode assembler from microcodeurce (written bythe hardware designers)
contained in the file<root>.ucode The assemblealso generates files containing
microcode: EMC_ucode.h contains microcodefor the IGC sequencer, and
TAS_<type>_ucode.bhontains microcodéor the TIGC sequencer (<type> refers to the
particular video-port configuration on a given board, since TIGC microcode differs slightly
depending on whether a board is a frame-buffer, frame-grabtoey, The microcode for
the respective sequencer is declared as an initialized staticiasigned EMC_ucode[]

or unsigned TAS_<type>_ucode[] Portions ofthese files ar generated thand,
which specify the RT Controller commands.

[11.1 Generating Commands with Inline C++ Functions

To generate IGC commands from withirCa+ programthe userneed not be concerned
with the exact formatting of commands. The header {itest>_commands.tprovide an
easy way ofgenerating commandéhput. For each commandroot>_<cmdname>
described in the following sections,oot> commands.ltontains a C++ function:

void <root>_<cmdname>§tream args,...)

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 29

These functionsre normally declared as inlifanctions, sothere is no procedure-call
overhead fotheir execution. These functiorgenerateall the instructionwords for the
command.

Thefirst argument toeach of thesdéunctions, stream is a reference to an element of a
special C++ class called IGCStream, defined in the header fildGCStream.h
IGCStream contains routines famanaginglGC command inpubuffers2 The stream
argument must be defined prior talling IGC commandfunctions. When an IGC
command function is called, writes data to thestream, appending it tthe current
commandbuffer. When a buffer is filled, handlers withitGCStream automatically
processthe filled buffer andallocate anew one. This makes it possible tase 1GC
commands without worrying about block boundarig8CStream is implemented sthat
inline functions handl&ll routine operations. The only time aprocedurecall is needed is
when a buffeffills and must be flushed (IGCStreampatterned aftetJnix stdio in this
respect).

The remaining arguments #achlGC command are command-specific. They may be
addresses intpixel memory, operand length€, or ABC coefficients, or other quantities
as described in the command synopses below.

Error Checking

The IGC command functions af@Cstream provide several types of erronecking and
exceptionhandling, whichcan be disabledndercertain circumstances to increageeed.
The three types of checking are:

1) Need checking (buffer-spacechecking). Ensuringthatcommands do not
append data past the end of the current command buffer.

2) Alignment checking. Ensuringthat double-wordcoefficients are aligned to
even-word boundaries in the command buffer.

3) Argument checking. Ensuringthat commandunctionsare calledwith valid
arguments.

All of these types of checking are performed by defalitey can be disabled at compile-
time by defining an appropriate symbol (described below) wideafine statement, prior
to including the IGC command-function header file(s).

Need checking

Need checking or buffer-spachecking, preventsommand functions from appending

data past the end of the current command buffer. They do this by comparing the number of
words to be written with the number of free words left in the buffer. If there is not enough
space, the flush and alloc handlers are called to create new space.

Performing "need" checking withimach command functioensureshat buffer overflows

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 30

will never occur, but performs checks very frequently (every 1 — 5 words, on average). In
some cases, it may be desirableléfeat need checking within commadinehctions and to
perform it for blocks of commands at a time. Nebdcking is disabled by inserting the

line ‘#define IGCNOCHKNEED ' prior to includingthe IGC command-function
header file(s). In this case, the cdbat calls thdGC command functions must contain a
statement of théorm s->needwds) before thelGC command functionsre called.
Heresis a pointer to the current IGC streaandnwds is the number ofvords that will

be appended by all of the IGC commands to be called before themeaedstatement.

As an aid in determiningwds the header filecroot>_commands.hdefines macros for
the number of words in each command. These have the form:

<root>_<cmdname>_<suffix>_len

For examplethe macrdor the number ofwords inthe EMC_TreeEqZero command
with ABC floating-point coefficients is:

#define EMC_TreeEqZero_Lf len 4

If alignment checkingsee below) is enabled, commands with doutgefficients may
actually require one additional word, if a no-op needs to be added. The need checking code
does this automatically.

Alignment checking

Alignment checkingensuresthat the coefficients ofcommands with double-word
coefficients are aligned to even-word boundaries in the command buffer. This may or may
not be necessarydepending on the operand alignment requirements of the graphics
processor antiGC input structure. Ifalignment checking is enablgdefault), atest is

made within every IGC command functionwhich uses double-woraoefficients to
determine the alignment of the curréntffer address. Ilthe address is odd-wordligned

and the command has a two word opcode (I amebRIs), or ifthe address is even-word
aligned and the commarhs a one-word opcodien a specialignore” instruction is
placed in the buffer ahead of the currgrgtruction, toalign it the coefficients to an even-
word boundary; this dummy instruction is ignored by the Stream Parsers.

Alignment checking igdisabled by inserting théne #define IGCNOCHKALIGN '
prior to includingthe IGC command-function headéte(s). In this casethe commands
are placed in théuffer withoutalignmentrestrictions, and na@lummy instructions are
added.

Argument checking

Argument checking performs range checking on the arguments to IGC command functions.
It ensuresthat pixel addresses and lengtrere valid according to the command

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 31

specification, but increases the run-time cost for executing each command.

Argument checking can be disabled by inserting the #define IGCNOCHKARGS''
prior to including the IGC command-function header file(s). Ehiinates the run-time
cost of argumenthecking, butcan cause unpredictable operation of i€ (including
hanging) if command functiorare calledwith invalid arguments. Wanticipate enabling
argument checking during code development, and disabling it for production code.

TFIFO Commands

So far we have assumétht commands are directed to tR&IFO, the FIFO for normal
rendering commandsMost commands caalso be directed tthe TFIFO, the FIFO for
commands which moveéata into the image-compositidsuffers andinitialize image-
composition operationsThese commands are generatedfinyctions with a special T_
prefix, or having theform T_<root>_<cmdname>Etream args,...) These
commands aresed inthe system softwaréhat operates the image-compositiaetwork.
Not every commandhas a corresponding version withTa prefix (particularly those
which use thecoefficient argumenté, B, andC, which cannot be stored the TFIFO).
The command descriptions belamdicatewhich commands havé _ versions and which
do not; in particular, none of the commands which uséiribar expressiorevaluator have
aT_ version, and some others also do not, as noted.

RT Controller Commands

RT Controller commands must be directed to the correct FIFO on the correct IGC, for the P
or V function they are to perform. These are described below in Section VI.

1.2 Generating Commands with opcodes.hMacros

The functions in<root>_commands.happend commandiords to an IGC stream. For

some purposes, such as assembly language programs, these functions cannot be used. The
<root>_commands.hfunctions are built on top of a set of macros defined in
<root>_opcodes.h These macros defintbe commanapcodesand can baised in C or

C++ programs to generate IG@@mmandwords explicitly (providing more flexibility), or

in assembly language programs, where there is no alternative.

For a given command<root>_<cmdname> defined in <root>_commands.h
<root>_opcodes.hcontains a macro definition: |_<root>_<cmdname>(args,...)
This macro generates the opcode @rord for the command. Some commands require a
supplementary opcode or Word. Forthese there is an additional maatefinition,
<root>_ P_<cmdname>(args,...,)which generates this supplemerdptode. The |
word is alwayshe first word of a command.The Pword, if necessary, ithe second
word. The opcode(s) may be followed ®ypr ABC coefficients. The | wordontains bit
fields which indicate the format of the remainder of the command.

Generating the commamwords usingthese macros is accomplisheding the following

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 32

steps:

1) Generate the main (I word) opcode, by evaluating the appropriate macro of the form
|_<root>_<cmdname>()

2) If the command is intended for the TFIFO, set bit 30 TtBdbit) of theopcode.
Note that some commandagcluding those whiclusethe treecoefficients, cannot
be sent to the TFIFO.

3) Check bit 28 of thepcode,(the Long bit), or alternatively, check to see if the
macro P_<root>_<cmdname>()is defined in<root>_commands.hy if so,
evaluateP_<root>_<cmdname>() to generate the supplementary opcode.

4) Add the coefficients if required; first check bit 27 (tbeefbit) of the lopcode, to
see if the instructiomsescoefficients; ifso, check bit 26 (theLinear bit), to see
whether oneQ) or three A, B, andC) coefficients are required, bit Z&he Double
bit) to see if the coefficients are 32- or 64-bit, and bit 24 Ftbat bit) to see if the
coefficients are integer or floating-poitiitpally, addthe coefficientavords. Note
that some commands use the C coefficient wag that is invisible to theiser, so
the above opcodéits must be checked even tlie command is not an LEE
command.

It is important that the commandords beordered as described aboveword, P-word,
A-Isw, A-msw, B-Isw, B-msw, C-Isw, C-mgthe ordering othetwo words for64-bit
A, B, and C is reversed the "endian"bit in the InterfaceControl Register is set , see
EMC_IFSpec instruction below).

Some of the RT Controller commands require padding motlop instructions in order to
function correctly; these are inserted within the infimections itommands.h, but must
be explicitly inserted when using tbpcodes.imacros.

More details on the meaning of the bits of the I-word and P-word opeodésund in the
IGC documentation.

IV EIGC COMMANDS

Commands for the EMC Sequencer can be divided into several categories:

1) Commands for the SIMD processor array

2) Commands for configuring the linear expression evaluator (LEE)
3) Commands for configuring the image-composition port

4) Commands for configuring the local port

5) Miscellaneous EIGC Sequencer commands

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 33

These are described in the following sections.

IV.1 Commands for the SIMD Processor Array

These commands are executed in parallel on the SIMD array of PEs: eaenfétEs the
same operation at the satmae. Each can writgesults only into itown pixel memory.
PEscan communicatsvith their two neighbors within a panelja a simple inter-ALU
path. Each PE ALU contains a number of registers, of wh&following are visible to
the programmer (also see Figure 4 in Section I):

 Enable Register. Allows conditional writes into pixel-memory. Most
instructions whiclgenerate arithmetic/logicabsults write those results infoxel
memory only aenabledPEs (those PEs where the Enable register contains a '1").

» Carry Register. A one-bit register used for passing resbksweencommands.
It is notlike the Carry register in a conventionalLU, since itdoes notreliably
contain overflow information fromarithmetic instructions and it need not be
explicitly cleared before operations such as addition. In the instruction descriptions,
the'C' column indicates the effect on tlkarry register: afX' indicates that the
instruction corrupts the Carry register, and' éndicates thathe instruction leaves
a well-defined result in th€arry register (but only aEnabledPEs). A few
instructionsaffect theCarry atall PEs (regardless of Enableand these are
explicitly mentioned.

S Register. An 8-bit registerused foraccumulating intermediatesults(mainly
in more complex arithmetic calculations likdivision). In the instruction
descriptions, the 'Solumn indicates the effect on the S register:’Xanindicates
that theinstruction corruptshe Sregister, and a/' indicates that the instruction
leaves a well-defined result in the S register. The S register is affected at all PEs.

All PEs execute the same instruction on eagitle, but memory writegor arithmetic
operations are conditioned by each PE's Enable register (this is indicakessipgnbol O’

in the commanagynopses below). A PE who&mable registehasbeen cleared can be
thought of aglisabledor "turned off." For example, the standard polygdgorithm scan-
converts a polygon by disabling pixels outsitte polygon before loading color
information to shade the polygon.

Specifying Memory Segments

The instruction set fothe SIMD array ofPEsresembleghat of a simplanicroprocessor.
Operands may include: arbitrary lengtlgned or unsigned integers pixel-memory;
constant or linear expressions from the LEE; the Enable register, the Carry register, and the
S register. Since many instructions invisibly corruthte Carry and Segistersthey may

be used only wherexplicitly statedfor calculationswhich require more than one
instruction.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 34

Integers defined in pixel-memory have their least significant byte at ltdve@rst address.
Memory segments are identified with the notatimem(isb: len]. For example, &2-bit
(4-byte) integer in the memory segment at bytes 24 through 27 (with LSByte 2dpyste
denotedmem[24: 4]. Contents of memory segmemisly represeninsigned otwo's-
complement signed integers. Hoanyinstructions,the computation is the same whether
the contents of the memory segment are treateiigasd or unsigned; for others it does
matter, and these are noted. Each memory segmentienwsiolly within one ofthe five
partitions of pixel-memory (maimemory,the two local port buffers, and thetwo image-
composition portouffers). Maximum length of memongegments is 8 bytes for most
instructions; it is greater thanf8r a few instructionsiotedbelow. Minimum length is 1
unless otherwise specified.

A few instructions operate on individual bits within pixel memory. Bits identified with
the notatiormembit[byte : bit], wherebyte indicates the byte arult is between 0 and
7, with O indicating the least significant bit and 7 indicating the most significant bit.

A section of the pixel memory address space, addresses 448-511, is reserved for use by the
pixel-memoryaddress base register. This registdoasledusingthe EMC_PMABase
command, described below. Any address in the range 448-511 has 448 subtracted from it,
and then is added to the base register contents.

Specifying Tree Results

The LEE can baised inseveral differentnodes. Inconstantmode theLEE result is just
F(x, y) = C; inlinear mode, the LEE result is ¥(y) = Ax + By + C. Thex,y values are
in pixlets. Thus, fothe multiple-sample-per-pixel screen organizatiosed for sample-
parallelrendering (Figure$B-5C), the A,B,C coefficients computed in terms of pixels
must be converted to pixlet dimensions before baseg as instructioarguments; this is
done by multiplying the coefficient values by the pixel dimension in pixlets, normally 8.

The coefficientdor the LEEexpressioncan be: 32- and 64-bit signed integers, single-
precision (32-bit)IEEE floating-point numbers, and double-precision (64-bit)}eEE
floating-point numbers. For linear mode, coefficients akmo be32- or 64-bitfixed-point
numbers. There is a separate comméod each of these 10 combinations of coefficient
type and tree mode, all having the same base command name but with a different two-letter
suffix.2 The LEE result is treated the same in ezmde,and is simply denoted deee in

the command set description, but its actual form is specified by the user according to which
specific command is invoked. The tree result is compigtedomefixed number of bytes
specified as an argument to the instruction; it is identMgti the notationtree[len],
wherelenis the number of bytes. If the tree result is less thabytes in magnitude, it is
sign-extended tten bytes; if it is greater thalen bytes in magnitudehe upper bytes are

Lit is also possible to specify distinbaseaddressefor the differenttypes ofoperands; contadyles for
details. The pixel-memory address refresh counteratsm beunderprogram controlandretains itsvalue
between instructions; contact Eyles for details.

2 The fixed-point types are not yet implemented for most of the instructions. See Eyles if they are needed.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 35

discardedMaximum valuefor the len argumentfor commands which usthe LEE is 8;
minimum value fotenis 11

The LEE performs only fixed-point calculations. If thEE coefficients ardloating-point,
they are converted within tH&C. Forconstani.EE mode instructions,the number of
fraction bytes used in the fixed-point representation is 0. For linear LEE imgidéctions,
the number of fraction bytes is user-specified, as the arguRietd the instruction, in the
range 1 - 3the maximum value of Brovidesthe greatesprecision,while smaller values
allow faster instruction execution, but with sorness of precisiondepending on the
magnitude of the coefficient. If the LEE coefficients are fixed-point, the number of fraction
bytes is user-specified the range 1 - 3, but the fixed-point numbeassumed tdave
one additional fraction bytdor example if the FB argument is &nd the instructiomises
32-bit fixed-point coefficients, thetme coefficients arassumed to be dhe form 16.16
(16 integerbits, 16fractionalbits). This extra fraction byte is ignorefdr the A and B
coefficients, but forthe C coefficient it isused to add precision tcalculations with
subpixel offsets, as described below.

The LEEresult, Fk, y) = Ax + By + C, is computed fronthe integer or fixed-point
coefficients. For contant mode instructions and/or instructions with integer coefficients, the
coefficients are truncated to integers and an exact calculapenfamed. Fofinear mode
instructions with floating- or fixed-poindatatypes,the A and B coefficients have FB
fraction bytes, and the C coefficient has FB+1 fraction bytesAx + By + C calculation

is exact toFB+1 fraction bytes. This extra byte otalculation isfree, and adds precision

for situations where the subpixel offset is non-zero. Fin#ily,LEEresult is truncated to

an integer; this trunction is always downward,negative values are truncataaiay from

zero. After truncation,the len least significanbytes of thisinteger areused in the
instruction agree[len].

Several types of error can be introduced in this processhander must béamiliar with
them. Floating-point coefficients with magnitude smaller th&s @ill be converted to O,
as expected, since the fixed-point equivaiet denormalized numbers aso converted
to 0. Floating-point exceptiormich agnfinities andNaN's are converted to 0 asell.
When the magnitude of the LEE result is too large to be representelkivipyde integer,
the upper bytes of the LEE result will be discarded and the sigerefien] will generally
be incorrect; in theextreme, very largdEE results computedusing floating-point
coefficients will degenerate to zenhenall the significant bits ofthe mantissa are shifted
8*len bits tothe left of the radix poinaind thelen least significanbytesare zero. The
truncations can have more subtle effectswadl. For examplethe linear expression
x+y+1.99 will evaluate to the integer '1' at pixeD, y=0, whilex+y-1.99 will evaluate to
the integer-2'. Coefficient truncation camlso givesuprising results; for example, the
linear expression 04 + y + O will evaluate to the integer O &10, y=0, since 0.1
truncates to the fixed-point numbé&553/216, sothe LEE result at pixel(10,0) is
65530/216,and this is truncated to 0. Gme otherhand,-0.1x + y + O evaluates to the
integer -1 ai-10, y=0. Since theLEE supports anaximum screen-size dfék x 16k

11t is possible to provide LEE commands that allow tree results up to 16 bytes in length, axpense.
Contact Eyles for details.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 36

pixlets, two fractional bytes of precision givesnaximumerror in Ax + By + C equal to

2140 716 4 ol4, 716 4 216 = 71 this is less than the guantitization error introduced when
the LEE result is truncated to an integer.

The LEE result can be viewed asiammediateoperand. Some instructions whigquire
only a single byte of data do not uke LEE. Their single-byte operand is identified with
the notationbyte data. These instructionsre useful becausd _ forms are defined
(unlike instructions whichuse the LEE, which cannot be placed in th&FIFO), and
because they conserve command words.

Command Prefixes

For most of the commands describedelow, two functions are defined in
EMC_commands,tcorresponding tdhe ordinary (RFIFO) and TFIFO versions of the
command. For example, the command den8tetEnab() in the instructiordescriptions
has two functions defined:

EMC_SetEnab ()
T _EMC_SetEnab ()

Each functiorsimply places the opcoder SetEnabin thelGC stream indicated bip'
(the argumentp' is omitted from the commanddescriptions to save space)Were
SetEnab an instruction which requirébe double IPopcode the P-word ofthe opcode
would be placed in the stream next. The macreMC_SetEnab (p) setsthe TCmait
of the opcode so that the command is placed into the TFIFO, rather than the RFIFO.

Command Suffixes

Commands which uséhe LEE have names withthe suffix _Mt in the instruction
descriptions. This suffix is expanded to produden distinct functions in
EMC_commands,ltorresponding to thdifferent LEE M odes anctoefficienttypes: M '

can be either 'S', for constant mode, or ‘L', for linear madean be ', 'l,’ ', 'd"\p"',

or 'q', for 32-bit integer, 64-bit integer, 32-bit float, 64-bit float, 32-bit fixed-point, and
64-bit fixed-point,respectively (but Sp and _Sq are notdefined). For example, the
command denotetMemPlusTree(dst,src,len[,A,B],C)in the instructiondescriptions
has ten inline functions defined BMC_commands.h:

EMC_MemPlusTree_Si (p,DST,SRC,LEN,C)

4 Since 64-bit integerare not supported orplatforms on which the simulator @irrently implemented,
the _SI form of the macro is actualyEMC_MEMplusTREE_SI(p,DST,SRC,LEN,Clo,Chi),
whereClo andChi are the low-order and high-order 32-bits of thedgfficient respectively. Similarly,
the _LI form is EMC_MEMplusTREE_SI(p,DST,SRC,LEN,Alo,Ahi,Blo,Bhi,Clo,Chi),
and the _Lqg form is
EMC_MEMplusTREE_SI(p,DST,SRC,LEN,FB,Alo,Ahi,Blo,Bhi,Clo,Chi)

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 37

EMC_MemPlusTree_SI| (p,DST,SRC,LEN,C)
EMC_MemPlusTree_Sf (p,DST,SRC,LEN,C)
EMC_MemPlusTree_Sd (p,DST,SRC,LEN,C)
EMC_MemPlusTree_Li (p,DST,SRC,LEN,A,B,C)
EMC_MemPlusTree_LI (p,DST,SRC,LEN,A,B,C)
EMC_MemPlusTree_Lf (p,DST,SRC,LEN,FB,A,B,C)
EMC_MemPlusTree_Ld (p,DST,SRC,LEN,FB,A,B,C)
EMC_MemPlusTree Lp (p,DST,SRC,LEN,FB,A,B,C)
EMC_MemPlusTree_Lg (p,DST,SRC,LEN,FB,A,B,C)

Note that the argument lists are slightly differtortthe differentfunctions.The _S types
have onlythe C coefficientwhereaghe L types have A, B, and C coefficientsl the
_L types, except Li and_LI, have an additiondtB argument to specify the number of
fractional bytes of precisioiB can be in the range 1 to 3.

Commands which usthe LEEcoefficients cannot be directed to theélFO (the TFIFO
word is wide enough for onlthe | and P opcodeiords). Hence no commands of the
form T_EMC_<cmdname>_<Mt>() are defined. A fewpther commandssethe LEE
coefficientsfor specialpurposes rather thanfor LEE operation; these also do nlaave
TFIFO forms, as specified in the comments or notes associated with the command.

Commands fotthe SIMD array can be divided into several categoriesmmands to
modify the Enableregister, commands to stotke Enableregister, arithmetic/logical
commands, commands fa@dvanced arithmetioperations,global commands,special-
purpose commands, inter-pixelcommands, and miscellaneous commands.

Unpredictable behavior may occurillegal arguments argiven. Argument checking can
be invoked at some cost in performance (see Section Il above).

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 38

Commands to Modify the Enable Register

These commandalter thecontents of the Enableegister. Remember thamost of the
arithmetic/logicalcommands, to be describdaklow, affect only pixels whose Enable

register is set.

Command: Synopsis: S C Note
ClrEnab 0 = 0
SetEnab 0 = 1
Enablnv 0 = lenabe
SetEnabPixel *y) = thisispixel(xy) 25,29
EnabPixel x,y) &&= thisispixel(xy) 25,29
MemIintoEnab (byte, bit) = menbit[byte:bi]
CrylntoEnab 0 = cany
BitTstHi (src, bytedata) &&= (memi[src:1] &bytedata)=bytedata
BitTstLo (src, bytedata) &&= (~mensrc:1] &bytedata)=bytedata
TreeEqZero_Mt (en[AB]JO &&= (treelen] =0)
TreeGEZero_Mt (en]AB]JO &&= (treeflen]>=0)
TreeLTZero_Mt (en[AB]JO &&= (treeflen]<0)
SNETree_Mt [AB]O &&= (S _register!=tree(1))
Mesh_Mt (bits,[AB]O &&= ((treefflen] %2'bits)=0) X 19
MemEqgByte (src,byte_data) &&= (mem[src:]=hyte_data)
MemEgZero (src,len) &&= (mem[src:len] =0)
MemEqOnes (src,len) &= (mem[src:len]| =-~0)
MemNEZero (src,len) &&= (memi[src:len]!=0)
MemNEOnes (src,len) &= (mem[src:len]'=~0)
MemEgMem (src0, srcllen) &&= (mem[srcO: len]=mem(srcl:len])
MemNEMem (src0,srcllen) &= (mem[srcO: len] '=mem[srcl:len]) X
MemGEMem (src0,srcllen) &&= (mem[srcO: len]>=mem(srcl:len]) X1
MemGTMem (src0,srcl len) &= (mem[srcO: len] > mem[srcl:len]) X 1
Mem2GEMem?2 (src0,srcllen) &&= (mem[srcO: len]>=mem(srcl:len]) X| 2
Mem2GTMem2 (src0,srcl, len) &= (mem[srcO: len] > mem[srcl:len]) X| 2
MemEqTree_Mt (src,len[AB]JO &&= (memisrc:len] =treeflen])
MemNETree_Mt (src,len[ABJO &&= (memisrc:len] I=treeflen]) X
MemLETree_Mt (src,len[AB]JO &&= (memi[src: len] <=treeflen]) X| 3
MemLTTree_Mt (src,len[ABJO &= (mem][src:len] <tregflen]) X| 3
MemGETree_Mt (src,len[AB]JO &&= (memi[src: len]>=treeflen]) X| 3
MemGTTree_Mt (src,len[ABJO &&= (memi[src:len] >treeflen]) X| 3
EnabOrEgMem (byte,bit) = membi[byte:bi]
EnabXorEqMem (byte,bit) ~M= - menbit[byte: bif] X
EnabAndEqCry 0 &&= cany

PixelFlow System Documentation Rasterizer

— CONFIDENTIAL —

Rev. 7.0 jge/sem

8Rasterizer p. 39

Commands to Store the Enable Register

These commands store the Enable register into memory or the Carry register. Unlike most
memory writes and Carry register loads, these writes occur regardless of the contents of the
Enable register.

Command: Synopsis: S C | Note:
EnablintoCry 0 cany = enabe v
EnabintoMem (byte,bit) menbit[byte:bf] = enabe

MemOrEgEnab (byte,bit) menbitlbyte:bt] ||= enabe

MemAndEgEnab (byte,bit) menbit[byte:bf] &&= enable

Arithmetic and Logical Commands

These commands operate signedLEE results and signed or unsigned integerpixel
memory.

Commandsnay have up to possiblepixel-memory operandsithe destination operand
dst and a source operarsigc, or two source operandsicOandsrcl Unless otherwise
noted, the destination and source operands need not be distirtigyoutust nopartially
overlap; that is, if they overlap at atheir LSBs must align. Unless otherwise notdst
andsrcOmust have the samength,dlen. Thesourcesrcl may have a differeriength,
slen. The following default rules apply to commands which have sepatatgth
arguments:

dlen == slen : overflow and underflow are discarded

dlen > slen : carry/borrow is rippled throughll bytes of destinationsrc
may be considered unsigned or signed, as noted

dlen < slen : higher order bytes of src are ignored

As describedabove,minimum and maximumvalues forthe len, dlen and slenarguments

are 1 and 8, respective(ynless otherwise noted)Segment lengths must be contained
within one of the partitions of pixel memory (the 256-byte main partition, or one of the 32-
byte communication-buffer partitions).

Writing of the result of these commands is conditioned by the Enable retiiatés; no
result is written to memorynlessthe Enable register contains gor to the instruction

(this isindicated by the[T" symbol inthe instructionrsynopsis). Forcommands which
have a defined effect on the Carry register, it is correct onlirfiabledpixels, although it

may be affected atll pixels. Forcommands whiclaffect the Sregister, it isaffected
regardless of the Enable register setting.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 40

Command: Synopsis: S C |Note:
LoadPixel (x,y, dst, len, value) atpixel(x,y) 24,25

mem{dst: len] O vaue
Cear (st,len) mem|[dst: len] 0o
Set (ast, len) mem[dst: len] 0 -0
BitCr (dst, byte_data) mem[dst: 1] &0 ~byte data
BitSet (st, byte_data) mem[dst:1] |0 byte data
BitxXor (dst, byte_data) mem[dst: 1] O byte data
BytelntoMem (dst, byte_data) memdst:1] O byte data
TreelntoMem Mt (st lenJAB]O) mem([dst: len] 0 treeflen]
TreeQnpintoMem Mt |dst,denslen[AB]C) |mem[dst:den] U tree[slen] X |17
TreelntoS (AB) S register = treefl} Vv
MemintoS (src) S register = memlsrc:1] v
Copy (dst, src, len) memi[dst: len)] O mem[src:len] 12,21
Swap (srcO,srcd, len) mem[srcO:len] <> mem|[srcl:len)| 18,23
Inc (dst, src, len) memi[dst: len] O mem[src:len+1 v |22
Dec (dst, src, len) mem|[dst: len] O mem[src:len-1
Merge (dst, src, mesk) menqdst:1] 0 (memdst1] &~mesk) 20

| (memsrc:1] & mask)

LSL (dst, src, len) mem[dst: len) O mem[src:len] <1 Vv |5
LSL4 (st, src, len) mem[dst: len)] O mem[src:len] <4 X 5
LSR (dst, src, len) mem[dst: len) O mem[src:len]>>1 Vv |5
LSR4 (st, src, len) mem[dst: len)] O mem[src:len]>>4 X 5
ASR (dst, src, len) mem[dst: len] O mem[src:len] >> 1 (signed) X| V|6
ASR4 (dst, src, len) mem[dst: len)] O mem[src:len] >>4 (signed) X | X |6
ROL (dst, src, len) mem[dst: len) O memi[src:len] << 1w/ cany v |4
ROR (st, src, len) mem[dst: len] O memi[src:len] >> 1w/ cany v |4
Invert (dst, src, len) mem[dst: len) O ~mem[src:len| X
Negate (st, src, len) mem[dst: len)] O -memi[src:len| X |2
AbsVal (dst, src, len) mem([dst:len] O |mem[src:len] | X| X |2
MemPlusMem (Ost,src0,srcl, den,slen) mem[dst:den] 0 memisrcO: dien]+mem]srcLsken) v [1,7,2
MemGCinpPlusMem (dst, src0, srcl, den, slen) |mem[dst: dien] O mem[srcO: der]+mem[srcl:sken| v 14,7152
MemMvinusMem (dst, src0, srcl, den, slen) |memi(dst: dien] O mem[srcO: der] - mem[srcL:slen| X |47
MemGimpMinusMem (dst, src0, srcl, den, slen) |mem[dst: dien] O mem[srcO: der - mem[srcl:sken| X |4,727
MemPlusMem2 (dst, src0, srcl, den, slen) |mem(dst: dien] O mem[srcO.den]+mem[srcl:slen] | X | X |28
Mem2QmpPlusMem? (dst, src0, srcl, den, slen) |mem[dst: dien] O mem[srcOden]+mem[srcl:slen] | X | X |2,816
MemvinusMem?2 (dst, src0, srcl, den, slen) |mem(dst: dien] O mem[srcO: der]-memsrcLslen] X| X128
MemAndvViem (dst, src0, srcl, len) mem([dst:len] O memsrcOlen] &mem(srcl:len]
MemOrViem (dst, src0, srcl, len) mem(dst:len] O memsrcCilen] | mem[srcl:len]
MemXorVem (dst, src0, srcl, len) mem([dst:len] O memsrcOlen] “mem[srcl:len]
MemPlusTree Mt (dst,src, len[ABJO mem(dst:len] O memi[src:len +treeflen] X
PixelFlow System Documentation Rasterizer

— CONFIDENTIAL —

Rev. 7.0 jge/sem

8Rasterizer p. 41

TreeMinusMem M (dst, src, len[ABJO mem(dst:len] O treeflen] - mem(src:len] X
MemAndTree Mt (dst,src, len,[AB)JO mem[dst: len] O memi[src:len &treeflen]
MemOrTree_Mt (dst, src,len,[AB]JO mem(dst:len] O memi[src:len] | treeflen]
MemXorTree_ Mt (dst,src, len,[AB)JO mem[dst: len] O memisrc:len " treeflen]
Mn (dst, src0, srcl, len) mem([dst:len] O MN(mensrcOlen], mensrcLlen]) X |1
Mn2 (dst, src0, srcl, len) mem[dst: len] 0 MN(mensrcOlen], mensrcLlen]) X |2
Max (dst, src0, srcl, len) mem(dst:len] O MAX(mensrcOlen], memsrcLilen] X |1
Mex2 (dst, src0, srcl, len) mem[dst: len] 0O MAX(mensrcOlen], mensrcLilen] X |2
OvFix (ast,len) if cany)

memdst:len] O -~0
GQy 0 cary 0o v
QylintoMem (oyte,bit) membit[oyte:bf] O cany
MemintoQy (byte,bit) cany O membit[oyte: bif] v

Advanced Arithmetic Commands

These commandsupportadvanced arithmetioperations such asultiplication, division,
and square roots.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 42

Command: Synopsis: S C |Note:

Sload (oyte_data) S register = byte data v

WiiteS (st mem[dst: 1] O S regster

MulUUn (dst,srcO,srcl,dien,slen) | mem[dst: dien] O mem[srcO: 1]*mem(srcl:sken)| X 1,911

MulUSn (dst,src0,srel,den,slen) | mem[dst: dien] O mem[srcO:1]*memfsrcl:sken] | X | X |9, 14

MISSn (dst,srcO,srcl,deen,slen) | mem[dst: dien] U mem[srcO:1)*memfsrclislen] | X | X |9, 14

SqRoot (dst,src) mem[dst: 1] O square root(mem[src:2]) X | X 1,23, 25

RootStepl (ast, src, len, bit) cany U mendstlen] >= Vv |1, 23,28

mensrc:len] | (L<<bit)

RootStep2 (dst, src, len, bit) if (cany) X 11,23,
mem{dst: len] - O mensrc: len] | (L<<bi) 25,28
mem(src: len] |0 1<<(oit+1)

Dvide (dst, src0, srcl, len) mem[dst+1:lent1] U mem[srcO: len]/mem(srcl:1] X | X 1,7

mem[dst: 1] O remainder

DivStepl (dst, src, dien, sken) cany O memdst: dien] >=mensrc: sken] Vv |1, 23, 26

DvStep2 (st, src, len, aux, bit) S register = cany v | X|1,23

if (cany)
memidst:len] -0 memisrc:len]
mem[aux:1] |0 1<<bi

InvSgStep (dst, src, dien, sken) if (S_register & 1) X11,7,23
mem[dst:den] + 0T mem[src:sken|

DivAddSub (dst,src0,srcl,den,slen) | mem[dst: dien] U mem(srcO:dlen] +- mem[srcl.: sler] X 11,7

DivShitt (ast,src, len) cany O (memdst+den-1:1] >>7)&1) v oY o[1,7

S register 0 (S_register<<1)|cany
memidst: 1] U mem[src:1]
mem([dst:len] <01
CampFix (ast, len, keft) o
ByteToShort (st,src) mem[dst: 2] O mem[src:1]<<4 X

Some of these instructionsethe S register taccumulateresults ofcomplex arithmetic
operations, such as dividdbat require more thaone instruction to implementSLoad
andWriteS areused forinitializing and writing aresult. Care must be taken to avoid
mistakenly corrupting the S register. Similarly, the Carry regestealso be used tpass
information between instructions, so care must be taken not to corrupt its value.

TheMul**n instructions perform various flavors of 1-byte by N-byte multiplication. The
first U or S indicates that thd-byte operand i®nsigned orSigned, respectively; the
secondJ or Sindicates thathe N-byte operand i&Jnsigned orSigned. Tomultiply two
N-byte unsigned numbersyiulUU is called N times(using add instructions and
temporarybuffers to formthe final product). Tomultiply two N-byte signedchumbers,
MulUS is used N-1times andMulSS is usedonce (to multiply the MSByte of one
operand times the otheperand). The dst andsrcO operands must not overlapadt dst
andsrcl may not partially overlap, arsicOandsrcl may overlap in any way.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 43

SqgRootfinds the 8-bit square root of1&-bit integer. RootSteplandRootStep2are
designed to be used in square root routines for longer operands.

Divide divides an N-byte unsignadteger by a 1-byteinsigned integer. It assumibst
the quotient will fit inN-1 bytes (no overflow). Itan beused alone, or t@et an
approximate quotient to begin an iterative algorithm.

DivStepl andDivStep?2 arefor acompare-then-subtract division algorithivStepl
will zero-extenddstif necessaryDivStep2 need not ddhis, since the test iDivStepl
will pass only if the higher-order bytes st were zero.InvSqStep is meant to facilitate
an inverse square root algorithm.

DivAddSub and DivShift are for a subtract-then-correct division algorithm.
DivAddSub adds if the LSB of the 8gister and th€arry registeareboth 0 oninput,

or subtracts ifthe LSB of the S register and th€arry registerare both 1 oninput.
DivShift copies the byte at addresg into the LSByte ofdst, andthershifts dst left one

bit; the original MSB ofistis inverted and put into the Carry register; also, the S regsiter is
shifted left one bit and the new Carry put into its LSB.

Enable Stack Commands

It is useful tomaintain a “stack” of Enableegistervalues. There is no hardwarEnable

stack; but it is possible to use a single byte of pixel memory as a 25&daklestack, if

it is assumed thagach timethis stack is “pushedthat fewer pixels will beenabled. Thus

the value in each pixel’'s stack counter says how many times the stack must be “popped” for
this pixel to be EnabledThe following instructionsare used formanipulating thisEnable

stack:

Command: Synopsis: S C |Note:
ResetEnab (addr) enable = 1
mem[addr: 1] = 0x00
PushEnab (addr) if (enable)
memladdr:1] = mem[addr:1]+1
PopEnab (aodr) enable = (mem[addr:1]!=0x00)
mem[addr: 1] O mem[addr:1]-1
enable = lenabe
RestoreEnab (a0dr) enable = (mem[addr: 1]=0x00)
XorEnab (addr) enable = ('enable) & (mem[addr: 1]=0x00)
BreakEnab (addr,n) if(n>0)
memladdr:l] O n-1
enam =

These compute global maxima and minima @egnabled

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 44

Global Commands

These commandsse the global-OR signal to perform global computations; these are
computations that are performed over all pixels in the rasterizer region, rather than locally at
each individual pixel.

Command: Synopsis: S C | Note:
GMax (dst, src, len) mem[dst: len] O MAX{mem([src:len] } X | v|1,23
GMin (st, src, len) mem[dst: len)] O MN{mem|[src:len] } X | v|1,23

These compute globahaximaand minima over all enabled pixels in th&IMD array.
EMC_GMax computes maximum value ohemisrc:len] over all enabled pixels
(treating it as arunsignedvalue) and writes thisnaximum intomem[dst:len] for all
Enabledpixels. EMC_GMin (not yet implemented) behavesmilarly. The Enable
register is not disturbed. Operands may not overlap at all. On exit, Carry=1 at pixels which
had themaximum valugCarry=0 at other pixels); Carry is not disturbed at pixels which
were not Enabled.

ALU Register Save/Restore
These commands are used to save the ALU state to pixel-memory, and restore it.

Command: Synopsis: S C |Note:
ALUSave (dst) | Save ALU state into mem][dst:6] X1 X

| (destroys ALU state)
ALURStr (dst} | Restore ALU state from mem][dst:6] vV

EMC_ALUSave andEMC_ALURstr must be used in sequencescammands in the
TFIFO. This is analogous to saving and restoring procesisoe in an interrupt service
routine. A sequence of TFIFO commamday be thought of as an interrdpt the EMC
sequencer, and iguaranteed to be executednitguously, withoutbeing interrupted by
RFIFO commands, provideithere is no commanahich can block theTFIFO. The
beginning of such a sequence mastude anEMC_ALUSave command, to save the
states of the pixel-ALUs irsome dedicated 6-bytearea of pixel-memory. Saved
information includes the S register contents, toedCarry andEnableregisters (M and R
registers andALU condition codesare also saved, but these are invisible to theser
anyhow). Jusbefore a sequence of TFIFO commarm@ds be interrupted bRFIFO
commands (the TFIFO is blocked byéaitXfer or aT_EMC_P* command) , an
EMC_ALURstr command is used to restdree ALU state. TFIFGnterrupt sequences
are described in detail in Section VI.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 45

Special-Purpose Commands

These commands support special tasks for Rendering.

Command: Synopsis: S C |Note:
Sample (basexreg, xsub, yreg
ysub)
FEdge_Mt (en,[AB]O) enable = [1
cany O |treeflen] <0)
MEdge Mt (en[ABJO enadbe |&8= |canybar
cany O |reeflen) <0)
ZCmp_Mt (src,len[ABJO enable &&= |canybar 3
cany O Jmem[src: len] >=treeflen])
FLoad_Mt (dst,len,[AB]O enable = |cany v
mem[dst:len1] | U len-1bytes of treeflen]
Sregsiter U [MSByteoftreellen]
MLoad_Mt (dst,len[AB]O mem{dst-1:1] 0 [S_regster v
mem[dst:lenl] | O len+-1bytes of treeflen]
Sregsiter O |MSByteoftreeflen]
MLoadl_Mt (dst[AB]O mem{dst-1:1] 0 [S_regster v
Sregsiter O 1
LLoad_Mt (dst,len,[A, B]O mem{dst-1:1] O |S_regster X
mem[dst: len] O [len]
ThIStep_Mt (dst, len,[A,B]]O) memdstlen] 0] v
enable &&= |(S _register!=0x00)
S _register =[S register-1
TbIEntry_Mt (dst, src, den, slen[AB]JO)| if (mem[src: slen] ==tree(slen] 13
mem|[dst: dien] = tree[slen+dien] >>8*slen

EMC_Sample is used inapplicationsfor which multiple samples of an anti-aliasing
kernel reside in pixel-memory simultaneously. It chartbespixel-memoryaddress base
register and and region/subpixebffset, thereby combining thefunctions of
EMC_PMABase andEMC_Offset, which are described ithe following sectionsjnto

a single command, to save execution cycles and input bandwidth.

EMC_[FM]Edge, EMC_ZCmp and EMC_[FML]Load are hand-tuned commands

for drawing convex polygons very rapidlyThese commands save cycles by pipelining
micro-operations betweetommands, and shouldlow the rasterizer tprocess up to 3
million triangles per second. EMC_FEdge and EMC_MEdge behave similarly to
EMC_TreeGEZero, except thatEMC_FEdge sets the Enable registemprior to
evaluating the sign of thieEE result(so it's used fothefirst edge of a convex polygon)

and the sign-bit of the current instruction's LEE result is saved in the Carry register and the
Enable register is updated at the beginning offétlewing instruction. EMC_ZCmp
behavedike EMC_MemGETree and is used fothe Zcomparison, but it also updates

Rasterizer
Rev. 7.0 jge/sem

PixelFlow System Documentation
— CONFIDENTIAL —

8Rasterizer p. 46

the Enable registebased onthe sign-bit contained irthe Carry register forthe last
EMC_MEdge instruction. EMC_FLoad, EMC_MLoad andEMC_LLoad behave

like EMC_TreelntoMem and areused forloading the color and Buffers, except they
leave the last byte of the LEE result in the S register and it is written into pixel memory at
the beginning of thdollowing instruction. Sincéghe commandsise the S andCarry
registers to passformation betweemommandsthey should becalled in thefollowing
sequence; any intervening commands must not disturb the S and Carry registers:

EMC_FEdge
EMC_MEdge (one or more)
EMC_ZCmp

EMC_FLoad

EMC_MLoad (zero or more)
EMC_LLoad

The pixel memoryoperands fothe sequence oEMC_[FML]Load commands must
form an ascending sequence of contiguous addresspseah memoryaddress space.
Minimum value of thden argumentfor all these commands is 2, except it is still 1 for
EMC_LLoad. Talk to Eylesfor more details and assistance in changing or augmenting
this set of commands.

EMC_TblIStep andEMC_TbIEntry are used for broadcasting lookuables to the
SIMD array. EMC_TbIStep is muchfaster,but lessgeneral; tause it,the tablekey is

loaded into the S Register (usiByIC_MemintoS), and then the tablentries aresent in

order usingeMC_TbIStep_Sior EMC_TblStep_SI. This requires that there beable

entry for all possible values ahe key, that they besent inorder,andthat thekey be no
more than 8 bitsEMC_TbIEntry is slower but much more genersince itsends a key
value and an entry value each time it is called.

Inter-Pixel Commands

These commands allow communication among th®Bg in a panelThe relative screen
positions of the PEs in a given panel depend upon the rasterizer configuragbowasin
Figures 5A-C. Nacommunication between different panelpassible,except indirectly
by use of the communications ports.

Command: Synopsis: S C | Note:
PixSwap{1,2,3,...,7} |(src0,srcl, len) see below 21
PixCopyDn{1,2,4,8} |(dst, src, len) see below 21
PixCopyUp{1,2,4,8} |(dst, Src, len) see below 21

The various versions &@MC_PixSwapN areused toexchangeoperands between PEs
within a panel. The PEs to be swapped must N positions apaetoperands must occur
in pairs, each pairconsisting on arcO-operand and arcl-operand. AsrcOoperand is
mem|[srcO:len] at a PE for whichthe Carry register is set; a&rcl-operand is

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 47

mem|[srcl:len] at a PE for which the Enable register is set; talSEs for whicheither
the Carry or the Enable register is set aaffected. Eachsrcl-operand muste N PE
positions higher than its correspondsrg0-operand. Different pairs of operancinspan
overlapping ranges of PEs; howeverthié end-points othe ranges touchthatis, if any
srcOoperands andsrcl-operandslie in the same PE, then mem[srcO:len] and
mem(srcl:len] must not overlap all (normally srcO and srcl may be identical), else
unpredictable results will occur. The argumentcan lie in the range 1 - 32. The contents
of the Enable and Carry registers are not affected.

Additional functionality is available upon request.

EMC_PixCopyDnN copy operands from PEs to other PEs wlaoh N positions lower
in thepanel.EMC_PixCopyUpN copy operands from PEs tdher PEs whichare N
positions higher irthe panelSrcoperandsneed not be markefeg. with the Carry or
Enableregister).Dst operandsare markedwith the Enable register; in othevords, as
usual,only EnabledPEsareaffected. Any datashifted in fromthe end of a panel is all
0's. For example, ifall PEsare Enabled anEMC_PixCopyDn4 is executedthen
mem[dst:len] at PE[i] gets the value @hem][src:len] from PE[i+4], fori=0 - 27, and
PEs 28 - 31 get 0's written intmem[dst:len].

Notes:
1) The contents of the memory segment(s) are assumed to represent unsigned integers.

2) The contents of the memory segment(s) are assumed to represent two's-complement signed integers.

3) The contents of the memory segmenassumed to represent an unsigimgdger,and anunsigned
comparison is performed.

4) Rotate through carry (carry is shifted into MSB or LSB, LSB or MSB is shifted into carry).
5) Logical shift (zero is shifted into MSB or LSB, LSB or MSB is shifted into carry).
6) Arithmetic shift right (MSB is sign-extended). For EMC_ASR, LSB is shifted into carry.

7) The contents of therc memory segment isssumed to represent an unsignaeger; it is zero-
extended ifdlen> slen

8) The contents of the&rc memory segment is assumed to represent a signed integer; it is sign-extended if

dlen> slen
9) Arguments must obeglen> slen

10) Membit[byte:bit] is written for all pixels, regardless of the value of Er@able register.Dst and
src may point to the same memory location.

11) Product is zero-extendediien> slen+ 1.
12) Thedstandsrc memory segments may overlap in any way.

13) Does lookupand write for a table entry in onenstruction. If theslen LSBytes oftree match
mem[src : slen], then the nextlen bytes oftree arewritten into memJ[dst : dlen]. Only
affects enabled pixels, and the Enable register is not disturbed. Not allowed in TFIFO.

14) Product is sign-extendeddfen> slen+ 1.
15) The resultis clamped to all 1's if overflow occurs. There is a penalty in execution time.

16) The result isclamped tothe maximumrespresentablpositive value if overflow occurs, to the
mimimum respresentable negative value if underflow occurs. There is a penalty in execution time.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 48

17) Memidst:dlen] is clamped to all 1's ifree[slen]is largerthan 2**dlen -1, to O if it is negative.
Requiresslen>dlen

18) The contents of the two memory segments are interchanged. No temporary register is required.

19) Clears Enable unlebits LSBs of tree result are Olsen is implicitly bits/8 + 1. Range fomits is
1-63.

20) Bits indstare replaced by corresponding bits frera Maskdefines which bits are replaced.
21) Maximum value fotenis 32.

22) Carry is set if overflow occurred.

23) The memory operands may not overlap in any way.

24) The operation occurs only at pixel (x,y) and only if its Enable is set. Ranmis 1 - 4. Value
must be a 32-bit integer and only tka least significant bytes are used. Enable is not disturbed.

25) NoT_ version(for the TFIFO) of thiscommandexists. (This applies bglefault toall commands
with the Mt suffix).

26) The contents of thdst memory segment iassumed to represent an unsigigeéger. Arguments
must obeyslen>=dlen dlenis zero-extended 8len> dlen

27) The resultis clamped to O if underflow occurs. There is a penalty in execution time.
28) Range fobit is 0 - 7 for EMC_RootStepl and 0 - 6 for EMC_RootStep2.
29) Pixel(x,y) is defined within context of how the tree is configured.

IV.2 Commands to Configure the Linear Expression Evaluator

When the linear modeersion of anLEE instruction isused,the treeresulttree[len] is
computed a$(x,y) = Ax + By + C foreachprocessor inthe SIMD array. In order to
processhe entire displagcreen, it is necessary ftaove the rasterizer region to different
portions of the screen. In order to sample geometry at sub-pixel offsetstifaliasing (if
anti-aliasing is done using multiple passes), it is necessary to thiseggion by fractions
of a pixel.

These functions are accomplished using the instruction:

9]

Command: Synopsis: S Note:

EMC_Offset (xreg,xsub,yreg,ysub | // Set rasterizer region to position given
i by xreg, yreg with subpixel offset given

1l by xsub, ysub (in 64'ths of a pixel)

Xregandyregspecify the region-offset (the upper left-hand corner of the rasterizer region);
values must lie in the range 0 - 16383 (values need not be multiples of the rasterizer region
size, but normally they would be)Xsub andysub specify thesub-pixel offset, ir64'ths

of a pixel; values mudte in therange-127 to 127 (so offset is ithe range -1 an@3/64

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 49

pixels to +1 and 63/64 pixels). For example, to positi@nrasterizer at pixél12, 128,
with sub-pixel offset -0.5, 1.625, the command:

EMC_Offset(p, 512, -32, 128, 104)
would be used.

Note that thesecommandsjike all tree commands, darithmetic onpixlet values, as
opposed teixel values. Thus, fothe multi-sample-per-pixel organizatio(fSigures 5B-
5C) used forsample-parallel rasterization, it must be remembénat a pixelequals 8
pixlets (in lineardimension), sahe arguments to EMC_Offsatust be 8-timeghe pixel
values intended. Also, for sample-parallel rasterization,thesub and ysub arguments
normally would be set to 0.

The region- andub-pixel offset valueaffect linear modd_EE instructions only; this is
because the A and B coefficients are effectively zero for constant mode instructions, and the
offset is accomplished by adding multiples of the A and B coefficients to the C coefficient.

SinceEMC sequencer commands which dise LEEcannot be placed into thE-IFO, it
makes nosense to reconfigureghe LEE within the TFIFO. Consequently, no
T _EMC_Offset command is defined.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 50

Since the LEE includes logic on both the EMCs and®@te, the EMCportion of the LEE
must also be configured. Thiseed normally be done only at system application
initialization time. The EMC portion of theLEE is configured using a set dpecial
commands foloading theLEE configuration registers othe EMCs; these commands
specify the pixels within the rasterizer regifam which each EMC isresponsible. The
details for doing this are found in the EMC documentation and an IGC library function will
be supplied. This syntax of these commands is givenfbleommpleteness; they are not
intended to be used by most users of this document:

Command: Synopsis: S C |Note:
EMC Cfginit (numemmcs) /I Initialize the EMC ID registers (for numemcs)
EMC Regload (Chip, reg, value) /I Load specified register on specified EMC
EMC RegloadsO | (Istchip, reg, value, n) /I Load register reg on a sequence of n
/l EMCs starting with EMC # 1stchip;
/I load register with value.
EMC Regloadsl | (Istchip,reg, 1stvalue,n) | // Load register reg on a sequence of n
/I EMCs starting with EMC # 1stchip;
// load register with sequence of values
/I starting with 1stvalue.
EMC Regloads? | (chip, Istreg,value,n1,N\2) | // Load n1 + n2 registers on specified EMC
/I Loads n1 registers, starting with 1streg, with
/I value, then loads next n2 registers
/I with value + 1.
EMC GReglLoad (reg, value) /I Load register reg with value, on all EMCs.
IV.3 Commands to Configure the Image-Composition Port
The following commands are used to configure the image-composition port:
Command: Synopsis: S C |Note:
EMC RevCopy (dst, src, len) /I Copy mem[src:len] to mem][dst:len] 23
1l while reversing the byte-order.
EMC_ICEnds (eftend, rightend) /I Specify if this is either end of machine
/i or in the middle
/I also initializes pixel offset/stride to 0
EMC ICnit (eftend, rightend) /l same as EMC_ICEnds
EMC ICPort (rmode, r2mode, nbytes,zbytes) | // Initialize both IC paths, as shown.
/I Total number of bytes per pixel = nbytes,
Il z-bytes per pixel = zbytes
EMC L 2Rinit (mode,nbytes, zbytes, offset,stride) | // Set IC L2R port as specified
/I Total number of bytes per pixel = nbytes,
I/l z-bytes per pixel = zbytes
PixelFlow System Documentation Rasterizer

— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 51

EMC IR2LInit (mode,nbytes, zbytes, offset,stride) | // Set IC R2L port as specified
/I Total number of bytes per pixel = nbytes,
I/l z-bytes per pixel = zbytes

The image compostion network consists of tmidirectionalpathways the "left-to-right”

(L2R) path and the "right-to-left" (R2L) path, implemented on a single physical clzagy

of simultaneous bi-directionalignals. The two virtual uni-directionalpaths on a set of
adjacent boards can be closed into a loop by specifying the leftmost and rightmost board in
the set. This is done usiEdMC_ICENds; leftendis set to 1 if this rasterizer is the left-end

of theloop, andrightendis set to 1 if this rasterizer the right-end of the loop; both
arguments are set to 0 otherwise. EBBMHC _ICEnds command must baccompanied by
anEMC_Alive command withthe same argumenfsee SectiofVl). These commands

are normallyissued once, ahachine initializatiortime, butthe more twisted programmer

can imagine reconfiguring the Image Composition network topology within an application.
Also, at board reset, the "alive" and "ends" registers are all cleared (equivalent to issuing an
EMC_Dead andEMC_ICENnds(0,0) command).

Prior to each transfer operation, the image-composition port is initialized, and its operating
mode specified, usingMC_ICPort, EMC_L2RInit , andEMC_R2LInit commands.
EMC_ICPort initializes both the L2R and R2L paths; if more flexibility iseeded,
EMC_L2RInit andEMC_R2LInit are used to initialize the two paths separately.

For EMC_ICPort, EMC_L2RInit, and EMC_R2LInit , nbytes specifies thetotal
number of bytes per PE to be transferrealid range is 1 t82. Zbytesspecifies the
number of bytes ithe Z-buffer (used inthe compositing calculation, see belowlytes
should be 0 imodedoes not specify a compositiogeration (sebelow), otherwise, the
valid range is 1 - 8 foEMC_{L2R,R2L}Init, or 3 - 6 forEMC_ICPort; also,zbytes
must be less than or equalroytes

The argumentd2rrmode and r2lmode for EMC_ICPort, or the argumenimode for
EMC_{L2R,R2L}Init, specify the moddor the transfer ineach direction (theodes
marked with * duplicate function of other codes, and are used only for testing):

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 52

Mode: Buffer Write Output Stream
0x0 — input
0x1 input input
0x2 composite input
0x3 * buffer input
ox4 * — input
ox5 * input input
ox6 * composite input
Ox7 * buffer input
0x8 — composite
0x9 input composite
OxA composite composite
oxB * buffer composite
0xC — buffer
0xD input buffer
OxE composite buffer
OxF * buffer buffer

Each mode is defined by (e output strearfrom the Image Compositionetwork, and
(2) the data(if any) writteninto the Image Compositiobuffer. The possibilitiesfor the
output stream argl) input - the inputstream, (2)uffer - the values reaffom the local
image-composition transféuffer, or (3)composite- the composited pixel valuggrom
the input stream and thieansfer buffer). Fothe buffer-write, there is afourth choice,
null, meaning thahothing is written back into the image-composittcemsfer buffer; the
bufferchoice wouldbe used only for testing simc# has the same (non-)effect by writing
the buffer contents back into itself.

The Image Compositionetwork has @ne-bit data patfor eachpanel. Normallyall 32

PEs ineach panel aracessed, irthe order O througiB1. It is possible tgerform the
transfer for only some of the PEs, and/or to acttesBEs in adifferent pattern. If fewer
than 32PEsper panel are to baccessedthe nbytesargument toEMC _InitXfer (see

Section VI) is set proportionatelgssthan thenbytesargument to EMC_ICPort or

EMC_{L2R,R2L}Init. For example, if th@bytesargument t&EMC_InitXfer is half

thenbytesargument to the initialization command, then PEs O - 15 are accessed.

EMC_{L2R,R2L}Init allow some flexibility in PE access pattern. Tffsetargument,

in the range 0 - 31, specifies which PE is accessed first.stride argument, irthe range

0 - 3, specifies the stride between PEs accessed in log2 form (so 0, 1, 2, and 3 correspond
to strides of 1, 2, 4, and 8 PEs, respectively). For exampféset= 4, stride= 3, and
thenbytesargument ttEMC _InitXfer is set to access onli/8'th ofthe PEs,then PEs

4,12, 20, and 28reaccessedOnceEMC_{L2R,R2L}Init areused withnon-default

values forstride and offset transfers subsequentiyitialized using EMC_ICPort
commands will have the sanwride and offset values, unless afEMC_ICEnds
command isissued, which hathe effect ofrestoringoffset and stride to their default

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 53

values.

The Z-buffer, containing theunsignedZ-valuefor the compositeomputation, muslie at

byte addresses O tabytes- 1 in thetransfer buffer,and stored in reversarder, with
MSByte at address 0 and LSByte at addmsges- 1. The comman&MC_RevCopy

is provided for convenience in placing a byte-reversed Z value into the Image Composition
buffer; normallydstis set to LZRBASE or R2LBASE areh is set tazbytesl.

When doing the Z-comparison for a compositing operatt@ smaller Z valuavins; that
is, the pixel with the smaller (unsigned) Z valudasvarded to output and/or writténto
the transfer buffer. In a tie, whethe Z-values are thsame,the pixelfrom the input
stream "wins".

After the image-composition port is initialized using EMC_ICPort or
EMC_{L2R,R2L}Init, the transfer must baitiated using an RTController command,
such asT_EMC_InitXfer (see Sectiol). 1 After thetransfer is initiated, ictually
begins at some non-deterministic time in the future, based atatus ofthe otherboards
involved in thetransfer. It isimportant that once &ransfer hageen initiated, that the
transfer buffers not baddressedandthat theconfiguration not be disturbed (lanother
EMC_ICPort, EMC_{L2R,R2L}Init, or EMC_InitXfer command), until the
transfer has completed. This is done using semaphoresharid EMC_WaitXfer
command, using the protocol shown in Section VI.

IV.4 Commands to Configure the Local Port

The local port consists of the local input port and the local output port; tthegaorts may
operate simultaneously and independeriEigchmust be initialized, prior to exercising it
with TAS commands. This is done using the following commands:

Command: Synopsis: S C |Note:
EMC LParitin (nbytes, mode) /I Initialize local input port

EMC _LPortinLoop (nbytes, mode) /I Initialize local input port, for loopback mode

EMC LPortOut (nbytes, mode) /I Initialize local output port

EMC_LPWeave (dst, src0,srcl, len) I/l Weave two segments of memory into one X | X
EMC_LPUnWeave | (dstO,dstl,src,len) /I Unweave a segment of memory into two X | X

For each commandpytesspecifies the total number of bytes per PE to be transfered; valid
range is 4 to 32 (values less thaoafh beused withspecial TASmicrocode talk to Eyles

1 Under certain conditions, it is not necessary to issue initializatonmands prior teachtransfer.This

is because the PE counters wrap around; so if they wrap around exactly to 0, and the opedatace to
be the same, then no initializatim@emmand isneeded. The saved overheadan besignificant for some
algorithms. See Eyles for details.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 54

and Molnar for details). The argumenbdespecifies whethethe localport accesses PEs
in panel-majorhode=0) or panel-minorriode=1) order.

Execution of anrEMC_LPortin[Loop] or EMC_LPortOut command initializes the
local port controller, and sets the input or output "mark" registtretourrent value of the
pixel-ALU Enable register. The approprididS_ command(s) must then be executed to
exercise the local port and input or outdata(See Section \below). Once eitheport is
initialized and TAS commands begin exercising the portptr€s buffer in pixel memory
must not be accessed BfMIC__ commands, nomay theport be re-initialized, until the
port operation icomplete;this interlocking is accomplishedsing the semaphores (see
Section Vibelow). The input and outpuports can be configured andsedcompletely
independently.

The mark registers specify a subset of PEs tombaved in thelocal port operation. For
example, if a triangle is scan-converted, so that only the pixels \hiiririangular region
are enabled, and then BMC_LPortOut command igssued,any subsequercal port
output will use onlythe pixels within the triangularegion, that is, only the PEs which
were enabled ahe timeEMC_LPortOut was executed. Ithe local output port is
exercised after all marked PEs have been accessed, zeroes are outpidcal thyut port
is exercised afteall markedPEshave beeraccessed, nothing happens @fata is written
into the buffer). Most othe TAS_ commands which udike localport check an "active"
signal from the EMCs and terminate after all marked pixels have been accessed.

With mode=0, the local port accesses the PEs in panel-major ahders, all marked PEs
in Panel O are accessed, in PE order (PEs 0 thrdughhenall markedPEs inPanel 1,
and so on through Panel Normally, thismeans that the markegixels are accessed in
scan-line order (pixel-major, sample-minor), witie PEs representingall samples of a
pixel accessedogether. When mode=1, the PEs are accessed in panel-minorder.
<<STEVE, FILL THIS IN >>

The EMC_LPortinLoop command configures the local input port, similarly to

EMC_LPortin , except that the port is set for "loopback” mode, in wkhehoutput port
is connected to the input port. This command is normedsd only forchip test; it could
also be used to transfer pixel data among the panels within each EMC.

EMC_LPWeave takes segmentaem][srcO:lenjandmem|srcl:lenjand weaveshem into
a single segmemhem[dst:2*len] SrcOis packed into the evdrits of dst srclis packed
into the odd bits ofilst. EMC_LPUnWeave undoes this process. thkes the even bits
of mem|[src:2*len]and createsnem|[dstO:len] similarly, the odd bits of src are packed
together to formmem|[dstl:len] << JGE, THESE SEEM TO BE BROKEN NOW >>

For more information on using the local port, #&e description offIGC command set in
Section V below.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 55

IV.5 Miscellaneous EMC Sequencer Commands

Miscellaneous Commands
The following are miscellanous commands that execute on the EMC Sequencer:

Command: Synopsis: S C |Note:
EMC Ignore 0 /I No operation, does not get loaded into FIFO
EMC NoOp 0 /I No operation for sequencer (goes thru FIFO)
EMC NoOp2 0 /l Same as NoOp, with 2 word (I and P) opcode)
EMC_MetaNoOp 0 /I No operation, but flagged as meta instruction
EMC_EMCInit 0 /I Initialize EMCs (for simulations)
EMC_RefCr 0 /I Set pixel-memory refresh counter to zero
EMC PMABase (base_address) /I set pixel-memory address base register to

Il specified value
EMC _PipeHush 0 /I 'ldle for ?? cycles (to flush the EMC

/l control and LEE pipelines)
EMC Hang 0 /l Hangs the sequencer in a tight loop

/I (for debugging purposes)
EMC HogDBus 0 /I Toggles memory data busses on all PE’s in

1 the SIMD, for worst-case power
EMC_EOAWait 0 /I Waits fo EOrH to settle
EMC EOrTest 0 /I Waits fo EOrH to settle, tests it,

/I sets appropriate bit in CSR

EMC_NoOpand EMC_NoOp2 are no-operation commantls the EIGC. Both take

one cycle toexecute, but perform no action.EMC_PipeFlush is essentially a long
NOOP. lItinserts enough idle cycles into the EMC controlldtiel pipelines to cleathem

of any previous instructions or data. It is used to enthateaset of EIGCcommands
have actually executed, prior to initiating TIGC or Image-Composition Network operations
which use data.

EMC_PMABase setsthe pixel-memoryaddress base register. This offseqpplied to
any pixel-memory addresses in the range 448(&ftér 448 is subtracted). For example,
EMC_PMABase(100) followed by EMC_TreelntoMem(460,2) writes to
mem[112:2]

<< PRELIMINARY>> EMC_EOrTest is used to sample EOrH (the global-OR of the
Enable register). It inserts enough idle cycles to allow EOrsetitebased orthe results

of the previous commands. It then tests ECahl) setshe appropriatésticky" bit in the
GP's CSR. This bit must be cleared by the GPprior to issuing a successive
EMC_EOrTest command.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 56

Commands to Initialize the EIGC Sequencer

The EIGC Sequencer must lstialized afterpower-up or ifthe Rasterizer is reséthis
may be necessary if either IGC hangs due to faulty microcode or an iopabde, or if it
is waiting on an externddandshake signal)The initializationsequence involves putting
the sequencer into a special md@Mode), loading the microcodestore, setting the
program counter to O, arekiting the speciainode. The user of thisdocuement need not
be concerned with the details of doitings, whichare given in théGC documentation; an
IGC library function will be supplied tanitilaize the sequencersThe commands are
described here for completeness:

Command: Synopsis: S C |Note:
EMC IFSpec (Rim Tiim,Endlian) /| Set interface control register
EMC_RViodeOn 0 /| Put the sequencer in RMode
EMC_RModeOff 0 /I Cause the sequencer to exit RMode,
/| and set sequencer program counter to 0
EMC_MCWite (addr, lonB2, high32) // Load the 64-bit word (specified by two 32-bit
// words) into the specified microcode location.
EMC MCRead (eddn /| Set the sequencer program counter to ‘addr'.
/l This command is also used to read
// microcode memory during chip testing,
// but this function is not available during
// normal operation)

On power-up,the interface control register is undefinedsiitould beinitialized, using
EMC_IFSpec, before any other commands aent, else theFIFO flags will behave
unpredictably. The argumentRlim and Tlim define the high-watemarks forthe R and T
FIFOs. The status flageERFullH is asserted whenevéie number of commands in the
RFIFO is greaterthan Rlim; similarly, ETFullH is asserted wheneveéhe number of
commands in th@FIFO is greater thaifilim. Endianis set to 0 if thdow-order 32-bit
word of a 64-bit coefficient is input into the IGC before the high-order word; it is set to 1 if
the high-order word comes first.

To load the sequencer microcastere, it firstmust be put intdiRMode either bydoing a
Rasterizer reset (which places bdBCs into RMode by default) or byusing the
EMC_RModeOn() command. Next, aBMC_MCWrite() command isused toload
each64-bit word of microcoderequired. Finallythe EMC_RModeOff() command is
used to reset the sequencer's program counter to 0 and put the sequencer in normal mode.

When the sequencer is RMode it can acccepbnly commands which do naxecute
microcode, such as EMC_RModeOn, EMC _MCWrite, EMC_MCRead,
EMC_RModeOff, EMC_RefClr, EMC_Offset, EMC_PMABase, EMC_IFSpec

and the various “meta&fommands. Other commands cause undefined results, including the
possiblity of hanginghe sequencerThe EMC_MCWrite() command mushever be
issued except when the sequencer RMode

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 57

The standard location for the EMC sequencer microcode is in tHeMi® ucode.hin an
the initializedarray static unsigned EMC_ucode[]; thisfile is generated by the EMC
microcode assembleasmEMGC from microcodesource provided byhe IGC hardware
designer, as described above.

These commands can also be used to reloalN{& sequencer microcodmn-the-fly, if it
becomes necessary to use more than one version of the microcode in the same application.

Initialization of the rasterizer also requires initializing M&C Sequencer and configuring
the linear expression evaluators otme EMCs. Initializing the TIGC Sequencer is
accomplishedising precisely the same commasequences described in this section, but
with the TIGC sequencer versions ofthe commands: TAS_RModeOn,
TAS_MCWrite, TAS_MCRead, andTAS_RModeOff. Configuring the LEE is
described above in Section IV.2.

No T_ version ofEMC_MCWrite andTAS_MCWrite exists,since these commands
use the C coefficent. Thus microcode loading cannot be done via the TFIFO.

IV.6 Commands for the Rasterizer Glue Chip

The following commands are used for manipulating the “scratch registers” on the Rasterizer
glue-chip.

The most important of these can be used for handshaking with the GP:

Command: Synopsis: S C |Note:
SetScratch{1,2} 0 /I Set glue-chip sync bit which tells the GP to
i do something
WaitScratch{1,2} 0 /l Wait for the GP sync bit to be cleared
EOrReadMem (src,len) /I Read len bytes of pixel memory through EOr
1l syncing with the GP after every byte
/I Assumes that exactly one PE is Enabled
EOReadTree Mt (en[A,B],Q) // Read LEE result through EOr

V.7 Test Commands

A number of other commands exist; these were used for hardware debug andkxtoest
generation. The intrepid heart will have tlmok atthe IGC microcodesource files to be
enlightened about these commands. They are summarized here.

The following are primarily for simulation and fault-coverage of thEsC chip:
EMC_TESTSEQl1, EMC_TESTSTIN, EMC_TESTLoopCount, EMC_PMATest,

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 58

EMC_PMABase3 EMC_TESTRefCnt, EMC_FIFOENty , EMC_MCReadC,
EMC_TreeBigMem, EMC_MemPlusTree3

The following are primarily for simulation and fault coverage of thEMC chip:
EMC_EMCInit , EMC_SimBoot, EMC_FlogEQr, EMC_ALUTest, EMC_EOrMemTst,
EMC_EOrMlemTstPartial , EMC_FlogDBus.

The following commands are obsolete. They have been replaced by equivalent commands
with better names:

EMC_EnabAndEgMem replaced by EMC_BitTstHi
EMC_EnabAndEgMemBar replaced by EMC_BitTstLo

EMC_PixCopy{1,2,4,8} replaced by EMC_PixCopyDn{1,2,4,8}

\% TIGC COMMANDS

The command set for the TIGC is similarthat of theEIGC, with two major exceptions:
(1) A, B, C coefficientscannot be notised (TASICshave no lineaexpressiorevaluator)
and (2) TIGC commandgenerally take many more cycles to execute tRAGC

commands.

TIGC commandsxecute in parallel on the array ®ASICs to perform data-transfer
operations between tHeMCs' local port buffers,the GPbus, and external texture/video
memory. Data transfesan be localithin module-local i e. data istransferred between
the EMCs and SDRAMSs of each module) or they can be glokaldata issent from one

module to other modules over the inter-module TASIC ring).

TIGC commands can be divided into the following categories:
1) Commands for reading/writing external memory
2) Commands for communicating with the GP

3) Commands for configuring the video port
4) Miscellaneous TIGC commands

These are described in the following sections.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 59

V.1 External Memory Organization

Before describing the TIGC command set, we first give furdlegsils on the organization
of the external memory (texturingubsystem othe rasterizeboard. Asdescribed in
Sectionll.4, the rasterizer is divided intbour modulescontaining eightEMCs, two
TASICs (one logical TASIC), and eight SDRAM memories. TA&SICs' and SDRAMS'
main purpose is to perform high-spe@tlage-based texturing and other table-lookup
operations which are difficult or time-consuming on BMCs. The driving problem is to
perform mipmap texturing on all the pixels in a 128x64-pixel region in a smaliple of
the time required to composite the region's pixels.

Mipmap textures require eight lookups per pixel: four from each obtljacentresolution

levels in the mipmapyramid. Thiscan be accomplished Iproviding eight independent
memories: any lookup will access each memory exactly once if they are inteiZs@vet
each resolutiortevel (two resolutionlevels (even/odd) 2x2 interleaves at eaatesolution

level = eight independent banks or memories).

Although only a modest amount of texture storage is neéti@édor so MBytes), the
bandwidth required to texture at thegmeeds requires large number oimemories. 32
SDRAMs were judged to provide a reasonalbalance betweerbandwidth and
cost/space/power requirements, etcThe 32 SDRAMs provide an aggregate peak
bandwidth of 32 « 100/Bytes/sec =3.2 GByte/sec.This is sufficient to look upeight
four-byte values peeach pixel in d@28x64-pixel array in abouit40 psec. Equivalently,
about 7,000 regions can be mipmapped per second.

Normally, texture data will bestored redundantly irach of thour modules (since any
pixel generally must bable toaccess any texel)Replicating the memory ithis fashion
increases lookup bandwidth four-fold, but unfortunately, doesnoase texture storage
correspondingly.

The unit of operation in the memosybsystem is foeach pixel in a module took up a

value fromeach of the eighBDRAM memories in themodule. Initially, each pixel
processor calculates eight independent row and column addresses for the eight memories in
its module and copies these intoldsal port buffer. The texturesubsystem readthese
addresses from the local-port and appiiesn to the eighEDRAM memoriesthen reads

the eightcorrespondingdatavalues and loadthem into thepixel-processorslocal-port

input buffer. These operations are depicted schematically in Figure 15.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 60

Enabled pixel's local-

port output buffer (eight | [row col | | row
row/col addresses) (

Lrow] col| [row col] [row] col] frow | col| [row col] [row]| col]
T T T T

col
- HHH CIHH CHH HHH HHHH HHH HHH
Elgrgég\ﬁs Mem O [Mem 1 FMem 2 K Mem 3+ Mem 4 Mem 5 rMem 6 HMem 71
S INEEN NENNN NN aEENIEN] INEEN Lty el
T T T T T T T
Enabled pixel's ‘(‘(|(‘((‘('(y(

S
o
2
S
o
Iy
2
S

Y
[_data | data |_data | data

|_data |

local-port input buffer dat
(eight data values)

Figure 15: Logical operation of an external memory read operation.
Eight data values are read corresponding to the eight row/column
addresses stored in each enabled pixel in the local-port output buffer.

Specifying independent row/column addresses for each memory albomygete flexibility

in addressing: the eight memory chips can be viewed as disjoint memories or as interleaved
memories in a variety of patterifgx8, 8x1, 2x4, 4x2, 2x2x2). Fanipmaptextures,
frame-buffer storage, etc., it is mastural to considethe eightchips asmplementing a

pair of 2x2-interleaved memorgystems omanels (not to be confused with an EMC
panel), as shown in Figure 16. dach panestores a 2Carray oftexels, diltered-texture

lookup requires precisely one accesgdoh of thdour banksina panel, nomatterwhere

the texture issampled. Having two panels allows tfittered texturelookups to be
performed simultaneously. This is desirable for MIP-map texturing. For sifiopies of
texturing, a pair of lookups can be done simultaneously (perhaps for two supersamples or
pixels in different regions).

Panel A Panel B
(Even Memories: (Odd Memories:
01214!61 1,3,5,73,
interleaved 2x2) interleaved 2x2)
41614al6l4]6 G715 7[517] -
02]0]2]0|2 11311 (3]113]
416]416]14|6] ' 51715 (715 (7] '
02]0]2]0]|2 11311 (3]1]3
Pixels (or texels) Pixels (or texels) Pixels (or texels) Pixels (or texels)
in memory 0 in memory 2 in memory 1 in memory 3

Figure 16: Double 2x2 interleaving organization of external memory.
Each memory in a panel stores every second pixel (texel) in every second
row.

The SDRAMSs contain one other complicating feature. Each SDRAM memory contains two
internal memonbanks. Eachbankcan be accessed in a methamtblogous to fast-page

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 61

mode of a conventiondDRAM: a row address igjiven first followed by potentially
multiple columnaddresses.The SDRAMs contain internal columaddress counterthat
permit burst accesses: a single column address is given inhiates aburst of writes or
reads to/from consecutive memory locations. The two-bank design of the SDRAMs allows
the row address command to be overlapped with burst reads/writes ttiatherbank,
essentially hiding theow access time. If bankare accessed alternatetiajs can nearly
double the memory bandwidth eachchip. Oneway to guarantee thdtankswill be hit
alternately is to stordataredundantly in théwo banks oreach chipand have successive
lookups accesthe data inwhichever bank isnext. The most significantbit of each
memory's row addresadicates one ofwo banks oreach SDRAMchip. The TASICs
allow this bit to be manipulated independently of the other address bits.

For 16 Mbit SDRAMSs, row addresseme 12bits long and columraddressesire 9 bits
longl Addressbit 11 selectsvhich of the two banks ineach SDRAM is to baccessed.

This means the effective size of the texture array in each modul€ is 4096 rows by 2
=128 columns per memory chip (assuming 4-byte texelsthelimemories are organized
as two panels of 2xihterleavedmemories, as describeabove,the size of the overall
texture array, therefore, is 2x8192x256 texels. If we shuffle address bits aromaéteto
the panels as square as possible, this provides two 2048gpa02K of 4-byte texels, as
shown in Figure 17.

¢ 2k 2k
Extra memory available
when using SDRAM banks
independently
N1k 1k
2 3 \ =S ==
0 T R LO Panel = HIPanel =4
Z 3 AR (Memories == (Memories =5
2 3 AN 0-3) == 4-7) =
0 1 N == —
4-byte texel = T Tm--o 0 0
assigned to) 4k bytes 0 4k bytes
Memory 1 1k texels 1k texels
Figure 17: Dimensions of external memory arrays allocated as two 2x2-

interleaved panels. Each cell represents a logical 4-byte texel.

IFor 64-Mbit SDRAMSs, which may be used in the future, row addresses are 14 bits (@ii$ 13specify
1 of 4 banks); column addresses are 9 bits.

Rasterizer
Rev. 7.0 jge/sem

PixelFlow System Documentation
— CONFIDENTIAL —

8Rasterizer p. 62

Data alignment. Due to thebit-sliced nature of thefASICs and forsimplicity in
allocating external memory, external memory is allocated in 4-byte quantities (ogitzdl
texely, with the 4 bytes stored ahdjacent columraddresses ithe samememory, as
shown in Figure 17. Data types shotteain 4 bytesre supported by overlayingultiple
texture(or pixel) mapswhosedatalengths sum to déytes. Forexample, a texture map
with two-byte texels might occupgytes O and 1 okach logica4-byte texel, while a
second texture map with one-byte texels occupies byte 2 of the same texel.

This leads to the following alignment restrictions:

* 4-byte data must be aligned to 4-byte boundaries (two low col. address bits = 0)
» 3-byte data must be aligned to 4-byte boundaries

» 2-byte data must be aligned to 2-byte boundaries

* There is no alignment restriction for 1-byte data

Address Sources. As mentionedefore,textures are normallgtored redundantly on
each of thdour modules, s@ixels in any module calook up any textureoordinates.
Texture memory within each chip &ldressed tthe individualbyte. Atexel is specified
by the row address and lilye columnaddress of it¢east-significanbyte. These texture
addresses are applied to the SDRAMs by the TASICs and can be generated ithoge of
ways:

1) The EMCs may calculate the addresses and send themTA$h€s overthe local
port (normally done for texture reads).

2) The GNI can send the addresses to the TASICs using the inter-module TASIC ring.

3) The internal address generator on TA&ICs can provide theddressegnormally
done for texture writes and video reads/writes). (more details below)

The EMCsmust generataddresses when doing randaexture lookups (onlythe PEs

know from whatlocation a texel is to béetched). They would be used t@enerate
addresses for writes as wedceptthis would exact a performancpenalty. The EMC
local-port bandwidth isnatchedwith the SDRAM bandwidth when doindgexture reads.
However, wherdoing texturewrites, addresseand datawould have toflow the same
direction. Furthermore, the local-port output buffer is not big enough to store 8 addresses
and 8datavalues. So, instead, it mossible tchave theTASICs generate theddresses,
allowing data to flow at full bandwidth.

The GNI cansend addresses the TASIC by means of the inter-module TASIGg.
This is useful wherthe GPdesires toretrieve datadrom texturememory. The TASIC
address generator could be used for this purpose as well.

Whenaddressesre sent tothe TASICs, they arestored inthe Address Corner Turner
(ACT). An address foeach SDRAM isstored foreachEMC. This implementation is
transparent in some instructions, lmain beusedexplicitly in others to supply a base
address which isnodified by the Mregister.The M register is essentially an apunter,
and thus can generate sequences of addresses. More detail is provided below.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 63

Address Output Modes. The address supplied teach SDRAMdepends on the
TASIC address port mode. The address for each panel is formed by one of the following:

1) The ACT output
2) The M register output
3) The ACT output xored with the M register output

This is shown in Figure 18.

TADDR_HOLDXORIM{0:7} TADDR_LDADDRXORMCOL TADDR_LDVCOL
ACode = 0x00-0x07 ACode = 0x18 ACode = 0x1c
[a7z6]=5]a4a3]a2]a 10| [a7]a6] @ E [a7es25]a4]a3[a2]a1]a0]
m7m6[mgm4jm3m2|m1mo} 0| 5
TADDR_LDADDRXORIM{0:7} TADDR_LDADDRXORMCOLINC TADDR_LDVCOLINC
ACode = 0x08-0x0f ACode = 0x19 ACode = 0x1d
[a7z8[25243[a2]e1fe0] [M] E7elespaaez]a k0] [id
| I ! G | J ! G&oD
Post-i t
mqme) mE‘m4|m:1m2|m]|m0| mqm 5|ml‘n11n2|n1|n0| Post-incrementd 0 V;SCA?((:\%T&?T i
MCnt VXCnt=VXMax)
TADDR_LDIM{0:7} TADDR_LDADDRXORMROW TADDR_LDVROW
ACode = 0x10-0x17 ACode = Oxla ACode = Oxle
[e7[as[a5a4]a3]azatfeo] [M] a7]a6fas pafadfez]adl aO [ir
/';4%// D
5 m7mgm5|m 2 0|
TADDR_LDADDRXORMROWINC TADDR_LDVROWINC
ACode = 0x1b ACode = Ox1f
F7S] Eﬂ [ind
GoD
mmgmsim 2 0 Post-incrementd

MCnt

VXCnt:VXMax)‘

Figure 18: Address output modes. ar-a0 refer to the eight ACT outputs.
m7-mO refer to the eight SDRAM output addresses. M refers to the
output of the MCnt register and crossbar. Im refers to the set of eight
immediate address registers. V refers to the VYCnt/VXCnt registers (for
video address generation—will be described later).

Different modesareused bydifferent datatransfer commands.The particular mode for
each command is described in Section V.3 below.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 64

Data Replication. As mentionedabove, toread (or write) SDRAMs as rapidly as
possible the two banks withineach SDRAMchip must be accessed alternately. Since
alternateaccesses tthe same memory will bérom different pixels, the only way to
guarantee thatankscan be hit alternately is to replicate the dataagetin. The simplest
way to do this is to stortne same data iboth banks othe samechip. Amore complex
method, but one that makes texture writing more efficient, is to skemécal data irbank

0 of one panel and bank 1 thfe other panél We have adopted thaépproach. Weall
replicated texture maps that are stored in bank 0 of Panel A and bank 1 of BaarbBd
texture maps that are stored in bank 1 of Panel A and bank O of Pasiet| B

Replicated textures are slower to write than non-replic&edres,since the datanust be
stored twice. They also reducthe amount of texture storage by a factotvad, sothey
should only be used when needed.

Non-replicated textures do not require the even/odd distinction.

V.2 Configuration Commands

The following commands set ughe various TASIC address andtontrol registers in
preparation for data transfer commands.

Commands to Configure the Address Generator Output

These commands configure the address generator by enabling/disabling the Address Corner
Turn (ACT) and M crossbar register for all combinations of panels.

Iwhen writing texture memory, it is desirable to keep both panels busy. |If teareresplicated irboth

banks of the same chip, writing a given textwi# only affectone of the two panels. Tkeepthe other

panel busy, two texture maps would have to be paired together and both written at the same time. This has
ugly softwareimplications. With themethod we havedoptedihe data is replicatedcrosspanels, so a

single texture write affects both panels; the redundatécan bewritten in a single pass without wasting

one panels’ memory cycles.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 65

Command: 5ynopsis:

TAS_SetAPortModeAll Configure address generator, enable ACT and M for both panels
TAS_SetAPortModePanA Configure address generator, enable ACT and M for panel A only
TAS_SetAPortModePanB Configure address generator, enable ACT and M for panel B only
TAS_SetAPortModeACT Configure address generator, enable ACT for both panels
TAS_SetAPortModeACTPanA Configure address generator, enable ACT for panel A only
TAS_SetAPortModeACTPanB Configure address generator, enable ACT for panel B only
TAS_SetAPortModeM Configure address generator, enable M for both panels
TAS_SetAPortModeMPanA Configure address generator, enable M for panel A only
TAS_SetAPortModeMPanB Configure address generator, enable M for panel B only
TAS_SetAPortModeNone Configure address generator, disable ACT and M

Commands to Select the Xfer Mode

The inter-module TASIC links and the configurable datapath on the TASICs allow transfers

to be done in several ways (refer to Figure 11 for a pictorial description of these modes):

 Xferltol mode: Point-to-point transfers frome EMCs of modulesrc to the
SDRAMSs of modulelst

o XferltoN mode: Broadcasts fronthe EMCs of modulsrc to the SDRAMSs of
all modules.

o XferNtoN mode: Parallel transfers fronthe EMCs to the SDRAMs ddll four
modules.

+ XferGtol mode Point-to-point transfers fror&NI to the SDRAMs of module
dst

» XferGtoN mode: Broadcast from the GNI to the SDRAMS of all modules.
» XferltoG mode: Point-to-point transfer from EMCs of module src to the GNI.

Commands to select one of these transfer modes are as fbllows:

1 The 1tol and Gtol modes operate differntly in TASIC Rev1.0 and Rev2.0. In the Rev1.0 T#SEC,
modes perform writes to all four modules, but zero the data going to the ACT/DCT of the non-dst modules.
In Rev2.0, these modes perform writes only to the ACT/DCT of the dst moduleadditesgointers of

the ACT/DCT in non-dst modules are not incremented, so the ACT/DCT’s of the four modules are will not
be “in synch” until four such transfers have been performed (oeadomodule). Thischangewas made

to allow more efficient texture paging from the GNI.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 66

Command: Synopsis:

TAS_SetXferModeltol (sre,dst) |/l Select Xfer1tol mode, specify src and dst modules
TAS_SetXferModel1toN (src) /I Select Xfer1toN mode, specify src module

TAS_SetXferModeNtoN) /I Select XferNtoN mode
TAS_SetXferModeGtol |(dst) Il Select XferGto1 mode, specify dst module
TAS_SetXferModeGtoN [() Il Select XferGtoN mode

TAS_SetXferModeltoG (src) Il Select Xfer1toG mode, specify src module

Commands to Set theMCnt and MSel Registers

TheMCntregister is a 32-bit presettable up-counter, which allows an ordered sequence of
addresses to bgenerated beginning at any desirgdlue. It is followed by a
programmable 64 to 32rossbar switch, which allowsICnt bits to be permutedvhen
forming row and column addresses. This counter and crossbar are shown in Figure 20.

The crossbar is configured byeans of a 192-bit registealled MSel MSelis divided
into 28 6-bitchunks. Eachchunk corresponds to omew or column addressbit and
selects the source of that bibm one ofthe 64inputs. MSek5:0> selects thesource for
column address bit ®Sek11:6> selects the source for row address bit 0, and so forth.

The reasonthe crossbar has 64nhstead of 32 inputs ishat theupper 16 inputs are

hardwired to 1 anthe next 1Gnputsare hardwired to 0. Selecting these inputs allows
certain address bits to be held constant regardless of the contei@atof

MCntHf<63:0>

oxffff | Ox0000 32-bit presettable up-counter

63 48 32 o
% 64->32 crossbar
ARG it

MSelHf<191:0>

rowl5| coll5| rrrrvvinnen rowl| coll | rowO| colO
191186 180 24 18 12 6 0
| ! |-
T
JMRAddr<15:o> § McAddr<15:0>

Figure 20: MCnt and MSel Registers.

The following commands set théCnt andMSelregisters:

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 67

Command: 5ynopsis:

TAS_SetMCnt (val8) | Set the 8 LSBs of the MCnt register, first shifting left 8 bits

TAS_SetMSel (rsel, | Set the 12 LSBs of the MSel register, first shifting left 12 bits
csel)

TAS_SetMCnt shifts the 32-bitMCnt registerleft 8 bits and setshe 8LSBs of the
register toval8 (8 bits). This command must be repedtmar times to set the entifglCnt
register.

The TAS_SetMSelcommands shift the 192-biSelregisterleft 12 bits and setshe 12
LSBs of the register togel << 6) |csel. The 6-bit valuessel andcsel select thesource

of one row and one column address bit within the exteiedt register. Thiommand
must be repeated 14 times to set the eMBelregister. If only 12 address bits are needed
(as for 16 Mbit SDRAMS), it need only be executed 12 times.

Command to Preload the ACT

The block read/write and interleaved read/write commands described later may use the ACT
as a source of texture read/write addresses. The folla@imgnandoads addresses from
the EMCs into the ACT:

Command: 5ynopsis:

TAS LoadACT 0 | Load addresses from the EMC local port into the ACT

TheTAS_LoadACT command transfersctets of row/columraddresses frorthe local-
port output registers of marked pixels in each EMC and loads them into the AGIRgl&
octet from an EMC may come from one or mBi€s, depending on thevay the local-port
output buffer is configured.Exactly 32bytes perEMC is transferred. If arEMC is
marked to send more than 32 bytes, the PEs which were not aceeséd marked after
the instruction has finished. If an EMC is marked to send fewer than 32 tyte<)s are
transferred for the remaining addresses.

Commands to Initialize the SDRAMs Memory System

The following commands are used to initialize and configureSIiBRAM external memory
system:

Command: 5ynopsis:

TAS_Init 5 / Initialize the SDRAMs

TAS_Init configures the TASICs to drive the SDRAM memories at 100 MHz, precharges

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 68

both banks of each SDRAM memory chip and sets the mode register on each SDRAM to its
default setting

Command to Refresh Memory

The SDRAMs thatompose external memory are dynamic memory devicesrast be
refreshed periodically Each of the2048 rows ofthe two banks oneach SDRAM chip
must be accessed every 64 msé&he following commandoerforms one refrestiycle for
both banks, usinghe internalrefresh counter inthe SDRAM chips to keeprack of the
current refresh row:

Command: 5ynopsis:

TAS_MemRefr |() / Do one refresh cycle

This command seldomeeds to bealled explicitly. Rather, an opportunistic refreshing
scheme is used. This command is placed at microcode location 0, mibaningxecutes
by defaultwhen noother command is pending. whenthe TIGC sequencer is idle,
external memory is refreshed continuously.

The TIGC sequencemay bebusy for long periods, however. Twevent therefresh
interval from beingexceeded, every commarticht is more tharone or twocycles long
branches torAS_MemRefr when it ends. Routinesthat arelonger than therefresh
interval have internalefresh cycles. In this manner, refreshing is perforsugticiently
often, no matter what the sequence of TAS commands and/or idle periods.

There is one exception to thisvhenthe sequencer is IRMODE it isinactiveand cannot
perform refresh cyclesCare must be taken &nsurethat theTIGC sequencer is not in
RMODE for longerthan ??nsec.,andthat aTAS_MemRefr is executed immediately
after leaving RMODE. This can be done by placingthe TAS_RModeOn,
TAS_RModeOff, and intervening instructions in a packet of the following form:

TAS_SetScratch2(s); /I Synchronize with GP
TAS_WaitScratch2(s);

TAS_RModeOn(s); /l Enter RMODE

(Microcode read/write commands);

TAS_RModeOff(s); /I Exit RMODE
TAS_MemRefr(s); /I Do refresh cycle immediately

The GPensuredhatthis packet executes without interruption thyshing the IGCStream
buffer after theTAS_MemRefr, waiting for theScratch2bit in the rasterizer glue chip to

Lits default setting is: CAS_latency = 3, burst_mode = 'sequential', burst_length = 4fewATAS
commands changie moderegistersetting to a burst length less than 4 hese commands restore the
mode register to its default setting before they complete.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 69

be set, then clearing ti8eratch2bit. The entire packet dhstructions mustakelessthan

?7? nsec to execute. Note that these precautions are only necessary if the contents of texture
memory are to bereserved. During startup,the contents of the external memories are
undefined, so a lapse in refreshing will do no harm.

V.3 Commands for Reading and Writing External Memory

This section describes commanfty reading and writing externanemory. These
commands are divided intwo classes:block commands andcattercommands. Block
commands assume that blocks of data can be read from or written to memory ldbations
share the samm®w addressand therefore catake advantage dast-page mode accesses

to theSDRAMs. Scatter commands perform a full row/column acdesgach datatem
transferred. They allow successive data items to be read from/written to arbitrary locations
in texture memory.

Block commands generally use thECntMSel registers t@enerateaddresses (though the

ACT can be used to “tweak” addresses if it has been preloaded using$hd.oadACT
command). Scatter commands use addresses computed by the EMCs and transferred to the
TASICs along with the data.

The number oflata itemdransferred is governed lige number ofPEs withtheir mark
flags enabled (see Section 11.3), so their execution time is variable.

Block Read Commands

The following commands transfer blocks of data between SDRAM memory and the EMCs’
local-port input buffers:

Command: 5ynopsis:

TAS_MemRdBlockl 0 | Block read, 1-byte texels
TAS_MemRdBlock?2 0 | Block read, 2-byte texels
TAS_MemRdBlock4 0 | Block read, 4-byte texels
TAS_MemRdBlockllleavel6 | | Interleaved block read, 1-byte texels
TAS_MemRdBlock2lleave32 [| Interleaved block read, 2-byte texels
TAS_MemRdBlock4lleave64 0 /| Interleaved block read, 4-byte texels

(Outlined commeands are currently unimplemented)

Each of these commandsadsthe designated number bijtes fromeach of the eight
SDRAM memories in the respective module dadds thisdata into the local-port input
buffer of each marked pixel. The suffik, '2' or '4' specifies the number diytesread
per memoryi(e. the texel size).

Addresses fothe SDRAMreadsare generatedsing the MCntMSel addressgenerator

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 70

xor'ed with the ACT. This behaviorcan be modified byfirst issuingthe appropriate
TAS_SetAPortMode* command. MCnt is incremented oncdor each dataitem

transferred (from all the SDRAMs in parallel). The contents ofAG& arenot modified

during these commands.

Dataread fromthe SDRAMs is loaded 8ytes at aime (1 byte perSDRAM) into the
TASICs’ DCTs. When a “batch” of 32bytes hasbeen read froneach of the eight
SDRAMSs, the DCT begins transferring this data to the EMCs, while loading dbadetn”
from the SDRAMs. (You want to consuthe drawings ofthe ACT/DCT above(or the
more detaileddrawings inthe PixelFlow TASIC Functional Descriptioh to understand
how these commands move data within the TASIC).

Block readcommands(TAS_MemRdBlockn) perform 16 read operations between
precharges of the SDRAMHence, all 16 consecutive data items redim a single
memory must lie in the same memory row. Also, reads must begin on block boundaries.

Interleaved block reaccommands(TAS_MemRdBlocknlLeavel6n) are similar,
except consecutive blocks muistin alternatingSDRAM banks. The row access for one
block can be overlappedith the datareads fromthe previous block, making these
commands approximately ?? % faster than block ceatmands. To usthe interleaved
block readcommandspit 11 of therow addressand bit 9 of the colummddress must
toggle between alternate blocks.

In both types of commands, number of data items transferred is governed by the number of
PEs whosenark register iset. Ifsome EMCs have more markBé@Esthanothers,data

values will continue to be read undill EMCs arefinished. The data will bediscarded on

EMCs with no remaining marked PEs.

Prior to issuing one of these commands, the EMC local-port input and butiferts must
be configured as follows:

For each marked pixel:

* The local-port inputbuffer must be configured teeceive the correct number of
bytes per PE usinthe EMC_LPortin command. This numbeét must be a
multiple of the size of the data items transferred.

Figure 21 shows a typical usage of these commands. We will assume that each marked PE
is to receive eight 2-bytdataitems, hence aTAS_MemRdBlock2 command isused.

The local-port inputbuffer is configured toreceive 16bytes. When the command
completes, the local-port input buffer contains eight 2-byte values, as shown.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 71

EMC Local Port Buffer

I« Output data >
Output x“ﬁiﬁﬂﬁﬂﬁéi
Buffer: s 2
Byte 31 Byte 0
Input [¢&——— Input Data —|
Buffer B “dd7 a6 lasldalaalldaolar [dol
(after): Byte 31 Byte 15 Byte 0

Figure 21: Contents of EMC local-port buffers before and after a block
read command.

The ACT andDCT address pointers #te start of Block commands will be resetz&ro.

At the conclusion of a Blockcommand,the contents of thMCnt register will be
undefined. The contents of the local-port outduiffer are unchanged after any of these
commands, as are the unwritten bytes of the local-port input buffer.

Block Write Commands

The following commands transfer blocks data between the EMCs’ local-port output
buffers and the SDRAMs of one or all modules:

Command: 5ynopsis:

TAS_MemWrBlockad 0 | Block write, 1-byte texels
TAS_MemWrBlock2 0 |/ Block write, 2-byte texels
TAS_MemWrBlock4 0 | Block write, 4-byte texels
TAS_MemWrBlockllleavel6) | Interleaved block write, 1-byte texels
TAS_MemWrBlock2lleave32 | | Interleaved block write, 2-byte texels
TAS_MemWrBlock4lleave64 0 /| Interleaved block write, 4-byte texels

(Outlined commeands are currently unimplemented)

Each of these commanusites the designated number bjites fromthe EMC local-port

output buffers of marked pixels to the eight SDRAM memories in the designated module or
modules. The suffix ‘1’, '2' or '4' specifies the number of bytesen per memoryi(e.

the texel size).

These commands are similar to the corresponding block read commands detafmivs
in the opposite direction). There are three other considerations specific to writes:

» Writes can be destined to one or all modules.
» All writes occur—even ones resulting from unmarked PEs (if other EMCs still have

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 72

marked PEs). These “invalid” writes generally are to SDRAM address 0.

* The local-port output buffer is used for outgount@ta; the local-porinput buffer is
unused.

Unlike reads, in which data from a module’s SDRAMS is always returndwetBMCs of
that module, write commands casenddata to other omll modules. The commands
TAS_SetWriteMode{1to1,1toN,NtoN} can beused to specifithe desiredsource
and destination module(s).

With write commands there is narovision for discardinglatafor invalid writes (unlike

read commands, in whicldata destined for arEMC with no markedPEs simply is
ignored). Write operations are always performed so care must be tadeabte the same
number of PEs inall EMCs. Otherwise, spurious writegill occur (addresseswill
continue to be generated as before, but zeroes will be written, since there is no valid data).

Prior to issuing ablock write commandthe EMC local-port outputbuffers must be
configured as follows:

For each marked pixel:

* The local-port outpubuffer must be configured to transrttie correct number of
bytes per PE usinthe EMC_LPortOut command. This numbésr must be a
multiple of the size of the data items transferred.

Figure 22 shows atypical usage of one of theseommands, in thiscase
TAS_MemWrBlock4. The local-port outpubuffer is configured to send 3&ytes.
The local-port input buffer is unused.

EMC Local Port Buffer

la »|

Output I Output data |
Buffer | _d7 | d6 | d5 | d4 | d3 | d2 | di | do |
(before): Byte 31 Byte 0

Note: The input buffer is unused

Figure 22: Contents of EMC local-port buffers before a block write
command.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 73

Scatter Read Commands

The following commands transfetatafrom arbitrary locations ir6DRAM memory into
EMCs’ local-port input buffers:

Command: Bynopsis:
[TAS_MemRdScatterEvenl [() // Scatter read even, 1-byte texels
TAS_MemRdScatterOddi () | Scatter read odd, 1-byte texels
[TAS_MemRdScatterEven2 |() I/ Scatter read even, 2-byte texels
TAS_MemRdScatterOdd2 () | Scatter read odd, 2-byte texels
TAS_MemRdScatterEven4d) /| Scatter read even, 4-byte texels
TAS _MemRdScatterOdd4) /| Scatter read odd, 4-byte texels

(Outlined commeands are currently unimplemented)

Each of these commandsadsthe designated number bites fromeach of the eight
SDRAM memories in the respective module dodds thisdata into the local-port input
buffer of each markedpixel. Unlike the block readcommands, addresses fdrese
commandscome from the EMCs and can accedata inrandom locations irSDRAM
memory. Again, the suffix ‘12" or '4' specifies the number diytes read pememory
(i.e.the texel size).

Data flow for these commands is more complicated tbathe block reaccommands. In
addition to movingdata from SDRAMs to EMCs (vias the DCTs), addresses are
simultaneously transferred frothe EMCsthroughthe ACTs, and then are applied to the
SDRAMSs.

To maximizeread bandwidth,these commands read consecutilaa itemsfrom each

SDRAM from different internabanks. The ‘Even’ and ‘OddVversions ofthe commands
access bank 0 first and bank 1 first, respectively and correspond to even aggliodtdd

texture maps, as described in Section V.1. The commands sulesdit 11 (the bank
select bit) automatically, saddresshbit 11 should not be set iither row or column

addresses).

Prior to issuing one of thesmmmandsthe EMCsmust compute 16-bitow and column
addresses for each marked pixel and stogen into the local-pordutput buffer ashown
in Figure 23 below. Thécal-port input and outpuiuffers forthese pixels must then be
configured as follows:

* The local-port outpubuffer must be configured to transmit 4 bytes(address)
data for every data item to be received usingei€ LPortOut command.

* The local-port inputbuffer must be configured teeceive the correct number of
bytes per PE using tHeMC_LPortin command.

Figure 23 shows a typical usage of these commands. We will assume that each marked PE
is to receive eight 2-bytedata items, hence TAS_ MemRdScatterEven2 or

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 74

TAS_MemRdScatterOdd2 is used. Eight row and eight columraddressesre loaded
into the local-port output buffer (address bit 11 must be zereddn ofthese). The local-
port output buffer is configured to send 32 bytes #mel local-port inputbuffer is

configured to receive 16 bytes. Whis@ commanaompletesthe local-port inpubuffer

contains eight 2-byte values, as shown.

EMC Local Port Buffer

| Output data >|
Output | | | I | | I | | | | | | I | | 0 |
Buffer:
Byte 31 Byte 0
Input [¢——— Input Data ——|
Buffer [{d7 | de [dsldaldzlldo[d1{do]
(after): Byte 31 Byte 15 Byte 0

Figure 23: Contents of EMC local-port buffers before and after a scatter
read command.

These instructions have the side effect of setting the address port modieeamstruction
TAS_SetAPortModeACT was issued.

Note that when usingscatter read commandsr unreplicatedtextures,half of the data
values returned will be bogus and can simply be discarded.

INote also that when performing mip-map textreads,the addresses and dafar a particular mip-map
resolution level will alternate between PanebAdPanel B in successivaxels. Thus, awazzling step
may be needed to align addresses and data before further computations can begin.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 75

Scatter Write Commands (currently unimplemented)

The following commands allondata to be written to arbitrary locations BDRAM
memory:

Command: Bynopsis:
TAS_MemWrScatterEvenlA |() | Scatter write even, 1-byte texels, panel A
TAS_MemWrScatterEvendB |() | Scatter read even, 1-byte texels, panel B
TAS_MemWrScatterOdd1A |() // Scatter write odd, 1-byte texels, panel A
TAS_MemWrScatterOddiB |() | Scatter read odd, 1-byte texels, panel B
TAS_MemWrScatterEvenz2A |() | Scatter write even, 2-byte texels, panel A
TAS_MemWrScatterEven2B |() | Scatter read even, 2-byte texels, panel B
TAS_MemWrScatterOdd2A |() // Scatter write odd, 2-byte texels, panel A
TAS_MemWrScatterOdd2B |() | Scatter read odd, 2-byte texels, panel B
TAS_MemWrScatterEvendA 0 /| Scatter write even, 4-byte texels, panel A
TAS MemWrScatterEven4B 0 /| Scatter read even, 4-byte texels, panel B
TAS_MemWrScatterOdd4A () /| Scatter write odd, 4-byte texels, panel A
TAS _MemWrScatterOdd4B 0 /| Scatter read odd, 4-byte texels, panel B

(Outlined commeands are currently unimplemented)

These commands correspondiie Scatter Read commands descriledve, except that
values can only be written to one panel (four SDRAM memories) in each module ata time.
Each of these commands transfers the designated number of bytes fiGHhecal-port
output buffers oimarked pixels to the designated pa(feur SDRAM memories) in the
designated module or modules. In these commands, both addresslesaaaidprovided

by theEMCs. Thesuffix ‘1, '2' or '4' specifies the number difytes read pememory
(i.e.the texel size).

The Even/Odd suffix designates whether an even or odd texture map isvtidteée. The
A/B suffix designates whethelata is to be written to panel A or B. These commands
automatically enable the appropriate panel.

As with block writes, these commands have the following properties:

* Writes can be destined to oneadrmodules by configuringhe TASIC datapaths
with the TAS_SetXferMode{1tol,1toN,NtoN} commands (with TASIC
Rev2.0,1tol commands need additional thought).

» All writes occur—even ones resulting from unmarked PEs (if other EMCs still have

1The reason for this is two-fold: The local-port output buffer of one PE isarge enough to storeoth
the addresses and ddtar eight SDRAMS. More importantly, the EMC to TASI®andwidth canonly
support half-speed writes

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 76

markedPEs) or tothe maskedpanel. These “invalid” writes are to SDRAM
address zero.

* The local-port output buffer is used for outgoigfa; the local-porinput buffer is
unused.

Prior to issuing alock write commandthe EMC local-port outputbuffers must be
configured as follows:

For each marked pixel:

* Addresses and data must be stored in the local-port dutfffiet. The four 4-byte
addresses must occupy bytes O—Tiie four datavalues must occupthe next 4,
8, or 16 bytes (for 1, 2, and 4-byte writes, respectively).

* The local-port outpubuffer must be configured to transrtiie correct number of
address+data bytes per PE usingBMC_LPortOut command.

Figure 24 shows atypical usage of one of theseommands, in thiscase
TAS_MemWrScatterEvend4. The local-port outpubuffer is configured to send 32
bytes. The local-port input buffer is unused.

EMC Local Port Buffer

Output }¢—— oOutput data ———>}4— Output addresses —]

Buffer L d3 | d2 | d1 | do [e3|r3lcolrelcalralcolvol
(before): Byte 31 Byte 15 Byte 0

Note: The input buffer is unused

Figure 24: Contents of EMC local-port buffers before a scatter write
command.

These instructions have the side effect of setting the address port modieeamstruction
TAS_SetAPortModeACTPanX , (whereX is depends on whicpanel the instruction
writes to) was issued.

Scatter Command Notes. As mentionedabove, the scatter commands perform
SDRAM accesses which implicitly alternate between banks. Because of the way the corner
turnsare filled andaccessedthe EMCs argorocessed in round robin ordeiVhat this

implies is that with an even scatter instruction, the even EMCs always access the even bank
while the odd EMCs always access the odd bank (vice versa for the odd instructions). The
duration of a texture access is as long as=M€ with the most data. For example, if all

EMCs except for are finished, the EMCs are still processed in round robin order (accessing
the appropriate even/odd banks), except that the data for the finished EMCs is ignored.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 77

Setup and synchronization. All of the commands above requsetup bythe EMCs
prior to execution and processing of results after they complete. Figsteo2s aypical
use ofthe TAS_MemRdScatterEven4 command. The other commands (including
write commands, described below) are used similarly.

EMC commands to enable a desired set of pixels;
EMC commands to calculate memory addresses;
EMC commands to copy addresses into the local port input buffer,;

EMC_LPortin() ; /I Configure the local input port
EMC_LPortOut() ; /I Configure the local output port
EMC_VTas(); /I Make sure local port is configured
TAS_PEmc() I before TAS command begins
TAS_MemRdScatterEven4() ; // Do memory read

(Optional EMC commands);

TAS_VEmc(); /I Prevent EMC commands from executing
EMC_PTas(); I until TAS read completes

EMC commands to copy data from the local port output buffer,
EMC commands to operate on the data,

Figure 25: Typical use of TIGC memory commands.

The EMCs must prepare addresses, copy them into local buffer memory, and configure the
local port prior to beginninghe memoryread. The EMC_VTas and TAS_PEmc
commands ensure that all setup calculations compétee theTAS_MemRd command

begins. Similarlythe TAS_VEmc and EMC_PTas commands ensurihat the read
operation completes before EMC commands which require the data can execute. Since read
operationstake manycycles, it isoften desirable to perform unrelat&dC operations

while the read commands are executing. These can be placed bé&&eMemRd and

thefirst TAS_VEmc. SectionVI.1 gives furtherdetails on theuse of semaphores to
synchronize the processing of EMC and TAS commands.

TAS_MemWr commands do not affect the contents of either the local-port output or input
buffers. Synchronizing witthe EMCsequencer is only needed beforéAS _MemWr
command is executed (unlikKEAS_MemRd commands, whichrequire synchronizing
before and after the command).

V.4 Commands to Communicate with the GP

This section describes commands used to tradster betwee®ixelFlow PA-8000-based
GPs and the texture subsystem, primarily for loading (and patgirtires, andetrieving
framebuffer data. The current commandsssumehe presence of &NI and are dirst
implementation of this interface. Many alternatives are possible.

Commands for synchronization with the GP
The following commands support synchronizatitsetween theTIGC sequencer and

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 78

program execution on th@P. They areuseful, for example, tndicate to the GP that a
particular set of commands have been executed byItBE sequencer. Two forms of
synchronization are supported: interrupts and pollifige currentsoftware convention is
to useScratchlbit in the rasterizer glue chipr interrupt-based synchronization, and the
Scratch2bit for polling-based synchronization.

Command: Synopsis:

TAS SetScratchl 0 /I Set glue chip Scratchl bit, causing a GP interrupt
TAS_SetScratch? 0 /I Set glue chip Scratch?2 bit, by convention polled by the GP
TAS WaitScratchl 0 /I Wait for the Scratchl bit to be cleared

TAS WaitScratch2 0 /I Wait for the Scratch2 bit to be cleared

Commands for setting GNI registers

The following TIGC commands s&NI internalregisters andreused to providgacket
destination and length informatievhen sendinglatafrom the rasterizer t&Psover the
Geometry Network.

Command: Synopsis:

TAS SetGNIPktHdr | (val) /I Set the 8 MSbits of the GNI packet header register to val,
/I right shifting the remaining bits

TAS SetGNIMsgHdr | (val) /I Set the 8 MShits of the GNI message header register to val,
/I right shifting the remaining bits

TAS SetGNIPktSize | (bytes) /I Set the packet size to bytes (valid range is 256 to 1024 in

/I multiples of 256)

See the GNI documentation for the appropriate use of these registers.

GP read/write commands

The following commands allowsPs to sendind receivedata to/from texturend EMC
memory via the GNI and TASICs:

PixelFlow System Documentation

Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 79

Command: Synopsis:
TAS XferEtoG 0] /I Transfer 512 bytes from EMCs of selected module to GNI
TAS XferGtoE (bytes) /I Transfer bytes bytes of data from the GNIs to the EMCs of

I/l one or all modules (depending on Xfer mode). Possible values for
/Ibytes are: 256, 512, 768, 1024.

TAS XferTtoG_Block4 | () /I Transfer 512 bytes of data from SDRAMs of selected module to
/I GNI using MCnt register to generate addresses.
TAS XferGtoT_Block4 | (bytes) /I Transfer bytes bytes of data from the GNIs to the SDRAMSs of one

I/ or all modules (depending on Xfer mode). Mcnt register is used
// to generate SDRAM addresses. Possible values for bytes
/[are: 256, 512, 768, 1024.

Before executing any of theseommands,the TASIC transfer mode must be set
appropriately using one of thRAS_SetXferModeXXX commands Possible settings
for each command are as described in the paragraphs below.

TAS_XferEtoG must be preceded byTAS_SetXferModeltoG(src) command to
configure the inter-module TASIC ring and select sowonoglule. It transfers packet of
512 bytes from the SDRAMs of modidec to the GNI.

TAS_XferGtoE must be preceded byeither TAS_ SetXferModeGtoN() or

TAS_SetXferModeGtol(dst). It transfersoyte bytesfrom the GNI to the EMCs of
all or a single module. In the GtoN case, GNI data is written to the EM&lisfotir mod-

ules. Inthe Gtol case, GNtlata is written to the EMCs of the selecteddule,while

zeroes are written to the EMCs of non-seleateodules. (ForTASIC Rev2.0, this

command will have to beewritten, sinceGtol transfersvill only load the DCTs of one
module).

TAS_XferTtoG_Block4 must be preceded by TeAS_SetXferModeltoG(src)
command. It transfers a 512-bydacket of datdrom the SDRAMs of modulsrc to the
GNI. The SDRAM addresses used by ttienmand are generated by t€nt register.
Thus,MCnt/ MSelmust be configured appropriately prior to issuing this command.

TAS_XferGtoT _Block4 must be preceded by eithEAS_SetXferModeGtoN() or
TAS_SetXferModeGtol(dst). It transferdytebytes from the GNI tdhe SDRAMSs
of all or a single module. In the GtoN case, GNI data is written to the SDRAMKfotir
modules. Inthe Gtol case, GNdata is written to the SDRAMs of the selecteddule,
while zeroes are written to the SDRAMs of non-selectertiules. (FOTASIC Rev2.0,
this command will have to bewritten, sinceGtol transfersill only load the DCTs of
one module)The SDRAMaddresses used by ttemmand are generated by thnt
register. ThusMCnt / MSel must be configured appropriately prior issuing this
command.

Note that all of these commands require careful synchronizatiortheitGP €.g. sending
data to theGNI at the righttime, use of synchronization commands). Misusehete

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 80

commands can cause the TIGC or GP to hang. Consequbetg, commandshould be
encapsulated within tested system code and not made daeatlgble to applicationode.

For futher information on the use and operation of tlkesemands, consuthe comments
in the microcodesourcefile TAS.ucode.preand the libraryroutinesthat use them in

~pxfl/pbase/src

V.5 Video Control Commands

On boards with video input or output circuitry, the TASICs write or read video data to/from
the SDRAMmemories at the behest of the videmntroller. This meanthat theymust
generate the row and column addresses required for video scan-in (scan-out). The TASICs
havex andy base address registers for eight independent fields (a field is an array of pixels
that arescanned in or out iorder). The fields can be chained togetheramommodate
display or input modes with multiple fieldstereo, interleavinggtc.). Wedefine aframe

as one or more fieldthat aredisplayed or acquired consecutively without requiring
intervention by the GP.

Figure 28 shows the TASIC video field and video address registers.

VNxtFId0<2:0>

VNxtFrmFld0<2:0>

VXMax0<15:0>

VYBase0<15:0>

VXBase0<15:0>

VNxtFld1<2:0>

VNxtFrmFld1<2:0>

VXMax1<15:0>

VYBasel<15:0>

VXBasel<15:0>

VNxtFld2<2:0>

VNxtFrmFld2<2:0>

VXMax2<15:0>

VYBase2<15:0>

VXBase2<15:0>

VNxtFld3<2:0>

VNxtFrmFld3<2:0>

VXMax3<15:0>

VYBase3<15:0>

VXBase3<15:0>

VNxtFld4<2:0>

VNxtFrmFld4<2:0>

VXMax4<15:0>

VYBase4<15:0>

VXBase4<15:0>

VNxtFld5<2:0>

VNxtFrmFld5<2:0>

VXMax5<15:0>

VYBaseb<15:0>

VXBase5<15:0>

VNXxtFld6<2:0>

VNxtFrmFld6<2:0>

VXMax6<15:0>

VYBase6<15:0>

VXBase6<15:0>

VNxtFId7<2:0>

VNxtFrmFld7<2:0>

VXMax7<15:0>

VYBase7<15:0>

VXBase7<15:0>

VFId<2:0>

VYCnt<15:0>

VXCnt<15:0>

Figure 26: TASIC Video Field and Video Address Registers.

VFId storesthe index of theactive field (the fieldcurrently being scanned in aut).
VNxtFldn> andVNxtFrmFIckn> store the index of the next field and next frarakl for
eachpossiblefield valuen = 0-7. The VNxtFId registersare used tochain fields into
frames. For example, on an NTSC frame-buffer wittexaen andbdd field VNxtFId0>
might be set to 1 andNxtFld<1>, sothat thetwo fields toalternate. The/NxtFrmFId
registers store the first field of the ndsime. Usuallythey are configured to point to the
first field of the currenframe. However, when a neframe is availablgfor example,
when it is time to swap buffers in a double-buffered display)yietFrmFldregisters for
the current frame’s fields are set to point to the first field of the new frame.

Rasterizer
Rev. 7.0 jge/sem

PixelFlow System Documentation
— CONFIDENTIAL —

8Rasterizer p. 81

VXBase&n> andVYBase&n> store starting andy values forthe videoaddress counters,
VXCnt andVYCnt These logicak andy addresseare mapped into physic8DRAM
row/column addresses using a crossiarilar to theMCntMSel crossbar described in
Section V.2. This crossbar is shown in Figure 29.

VCntHf<63:0>

oxffff | Ox0O000 VYCnt<15:0> VXCnt<15:0>

63 48 2 16 0
% 64->32 crossbar
Tl

VSelHf<191:0>

rowl5| coll5| rrrrrreeeeas rowl| coll | rowO| col0
191186 180 24 18 12 6 0
| ! e)
T
JVRAddr<15:0> § veaddre1s:0>

Figure 27: Video address counters and crossbar.

VXCntis incremented by the videuicrocode routindor each pixel on &canline. Since
scanlines can contain arbitrampumbers of pixels, aradditional set of registers
VXMaxn>, is provided to specify a maximus#XCntvalue for each field WhenVXCnt
reaches/ XMaxxVFld>, VXCntis reset tovXBas&VFId> andVYCntis incremented.
The crossbar followingVXCnt and VYCnt allows address bits to hgermutedwhen
generating actual SDRAM row/column addresses.

The TIGC monitors the VidReq inpéom the videocontroller. When a video request is
received, it may be one of three types:

* Request new frame.
* Request new field.
* Request new scanline.

If a newframe request is receivellFId is set toVNxtFrmFIkVFId>. If a newfield
request is receivedFId is set toVNxtFIdkVFId>. In eithercase,VXCntVYCntare set
to VXBaséVYBasefor the new field, andthe read/writepointers forthe VFIFO are
cleared. A new scanline request causes the TIGC sequencer to load/umwasicanline
of pixels to/from theVFIFO, usingVXCnt /VYCnt to generate thaddresses fothese
reads/writes.VFId is not affected.

The video controller can ass&fidReq at anytime. The TIGC microcodefor a particular
video deviceensuredhatthis input is polled sufficiently oftethatnew scanline requests
can be serviced before the VFIFO ruitg. The video controller may requesnhaw field
or new frame at any time, even during the middle of a field. This alloev3 ASIC video

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 82

interface to synchronize with the video controller or an external, genlocked video source.

Commands to Set the Video Base and Field Registers
The following commands are used to configure the various video control registers.

Command: 5ynopsis:

TAS_SetVBasen (val8) / Load 8 LSBs of val8into VBase<n>, n=0to 7
TAS_SetVNxtFldn (fld) | Set VNxtFld<n> to fld

TAS_SetVNxtFrmFldn |(fld) | Set VNxtFrmFld<n> to fld

TAS_SetVBas@ loads the composite 48-bit videobase addressregister
VXMaxn>;VYBase&n>;VXBas&n>. It sets the eight LSBs of thitmposite register to
val8 and shiftsthe remainingoits of the register eighbits to the left. These commands
must be called six times to initialize an entit®aseregister.

TAS_SetVNxtFldn loadsVNxtFlokn> with the argumentid. It is used tochain a
sequence of one or more fields together into a frame.

TAS_SetVNxtFrmFIdn loads VNxtFFrmldkn> with the argumenfld. It is used to
specify the first field of the next frame.

Commands to Operate the Video Controller

The following commandsareused tainitialize and operate the TASIC vidgaort, once it
has been configured using the commands above:

Command: 5ynopsis:

TAS_SetVFId (fld) | SetVFId to fld ; no synchronization with video controller
TAS_SetVFIdSynch (fld) | Wait until next-frame request; then Set VFId to fld
TAS_ClearEOF 0 | Clear the end-of-frame (EOF) sticky bit in the GP status register
TAS_WaitEOF 0 | Wait until end-of-frame (EOF) sticky bit is set

TAS_SetVFIld simply sets the current fieleégisterVFId to fld. This is done regardless
of the current state of the video controller. It can result in bogus pixel values being scanned
in/out until the next-frame request is received from the video controller.

TAS_SetVFIdSynchalso setd/Fld to fld, but attempts to do so mogeacefully. It
spin-locksuntil a next-frame request igceived, servicing next-field and next-scanline
requests in the meantime, but blocking subsequent TIGC comm#vigsn a next-frame
request is received, it initializes the VFIFO, 3#d to fld, andinitializes theVXCntand
VYCntcounters in preparatidior the scanning in/outhe new frame indicated byld. It

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 83

then acknowledges the next-frame request and allows normal TIGC operation to resume.

TAS_ClearEOF and TAS WaitEOF are usedtogether to block instructions from
executing until a framéas finished. TAS_ClearEOF clears the end-of-frame (EOF)
sticky bit in the GP status registerTAS_WaitEOF spin-locksuntil the EOF bit isset,
blocking subsequent TIGC commands, but procesdingdeo controllerequests in the
meantime.

V.6 Video Control Examples

(This section written by Greg Welch and revised by Steve Molnar)

The video configuration and operation commands outlined in the preceding section can be
used in avariety of ways tofacilitate thesmooth and correatpdating, displaying, or
acquiring of various types viddoames. Asstated earlier, we define feame as one or

more fieldsthat aredisplayed or acquired consecutively without requiring intervention by
the GP. What follows are descriptions of several possible scenasosrounding the
display or acquisition of video data, along with some sample code fragments which use the
preceding commands.

Asynchronous Two-Buffer Frame Buffering

We first look at sampleommand streami®r writing and displayingvideo framesusing

two buffers. In these examples we will consider the use of a double-buffered frame-buffer
where each frame consists of a single field. Thus, in the following examples field O will be
used for frame 0 and field 1 for frame 1.

Initially we consider thesynchronousipdate & displaycase,the casevhere it isknown
that frameupdates can or wiltake longer than correspondinigame scan-outs. Irthis
situation wesaythat the framaupdates occur asynchronously with respedtame scan-
outs.

The startup code shown below includes commands to write thérdimse of pixeldata, to
configure the video port, and to reset the controller.

Commands to write pixel data to frame O (field 0)

Commands to configure the video controller for single-field frames
TAS_SetVNxtFrmFId0(0); /l Chain frame 0 to itself
TAS_SetVFIdSynch(0); /I Reset the video controller, making field O active

Oncethese commands have beesued,frames are repeatedly beisganned-out from
field O, by the video controller. Frame 1 can then be updated and the commanad

1The EOF bit in the GP status register is set whenever the video controller issersframe requesi.é.
after it hasscannedbut the last pixel of &rame). This bit is “sticky”, meaning thabnce it isset, it
remains set until explicitly cleared by using ih&S_ClearEOF command.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 84

active can be issued as follows:

Commands to write pixel data to frame 1 (field 1)

TAS_SetVNxtFrmFId1(1); /l Chain frame 1 to itself
TAS_SetVNxtFrmFId0O(1); /I Chain frame 0 to frame 1 (switch active buffers)
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
TAS_WaitEOF(); /I Wait for frame 0 to be scanned out at least once

Note that theTAS_ClearEOF and TAS_WaitEOF commands are needed to prevent
subsequent writes twame O from occurring until frame 1 is active. They also guarantee
that frame 0 has been scanned-out at least once.

In the normal steady state, there is a continuous synchronized series of writes and displays:
whenframei is active, frama+1 can be writtenwhen framei+1 hasbeenwritten, the

video port configuration can be changed so that fiathdecomesctive at the next frame

start; when the next-frame request associated with frafneccursframei+2 can then be

written and the corresponding video port configuration commands can be issued; etc.

An example ofusingthe commands of thgrevious section tamplementsuch a steady-
state series of double-buffered updates and displays follows.

/I Frame 1 is active here

while (TRUE)

{
Commands to write pixel data to frame O (field 0)
TAS_SetVNxtFrmFId0(0); /l Chain frame 0 to itself
TAS_SetVNxtFrmFId1(0); /I Chain frame 1 to frame O (switch active buffers)
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg
Miscellaneous other commands
TAS_WaitEOF(); /I Wait for EOF bit (frame 1 to be inactive)
Commands to write pixel data to frame 1 (field 1)
TAS_SetVNxtFrmFId1(1); /I Chain frame 1 to itself
TAS_SetVNxtFrmFIdO(1); /I Chain frame 0 to frame 1 (switch active buffers)
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg
Miscellaneous other commands
TAS_WaitEOF(); /I Wait for EOF bit (frame O to be inactive)

}

The TAS_ClearEOF and TAS_WaitEOF commands prevent thactive framefrom
being overwritten. If other commandse needed that witlot corrupt the contents of the
active frame, these can bsandwiched betweelMAS ClearEOF and TAS_ WaitEOF
commands as shown.

For multi-field frames,the startup code is slightlgifferent. The following example is
similar to the oneabove,except thaframes areassumed to consist of two fields, as in a
double-buffered NTSC displayFrame 0 comprises fields 0 and 1. Frame 1 comprises
fields 2 and 3:

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 85

Commands to write pixel data to frame 0 (fields 0,1)
Commands to configure the video controller for double-field frames

TAS_SetVNxtFIdO(1); /I Chain field 0 to field 1
TAS_SetVNxtFId1(0); /I Chain field 1 to field O
TAS_SetVNxtFId2(3); /I Chain field 2 to field 3
TAS_SetVNxtFId3(2); /I Chain field 3 to field 2
TAS_SetVNxtFrmFId0(0); /l Chain frame 0 to itself
TAS_SetVFIdSynch(0); /I Reset the video controller, making field 0 active

TheTAS_SetVNxtFld commands do not have to be repeated. The only difference in the
steady-state loop ithat to switch active buffers VNxtFrmFId1] will be set to 2 and
VNxtFrmFId3] will be set to O.

Synchronous Two-Buffer Frame Buffering

Next we consider the synchronous update and display case: the case where it is known that
each frame update takes less time tharctlieespondingrame scan-out. In thisituation
we say that frame updates occur sychronously with respect to frame scan-outs.

Because frame updates occur in lock-step with frame scan-out, we caadmmlof the two
fields directly to eactother. In this situatiorthe startup code can be modifiedsdmwn
below.

Commands to write pixel data to frame O (field 0)
Commands to configure the video controller for single-field frames

TAS_SetVNxtFrmFIdO(1); /I Chain frame 0 to frame 1 (permanently)
TAS_SetVNxtFrmFId1(0); /I Chain frame 1 to frame O (permanently)
TAS_SetVFIdSynch(0); /I Reset the video controller, making field O active

As a result of thdast frame-update capability, there is no longer a need to chain and
unchain fields duringhe steady-statseries of double-buffered updates adplays.
Therefore the steady-state update code may now resemble the following simple loop:

/I Frame 1 is active here

while (TRUE)

{
Commands to write pixel data to frame O (field 0)
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
TAS_WaitEOF(); /I Wait for frame 0 to be inactive
Commands to write pixel data to frame 1 (field 1)
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
TAS_WaitEOF(); /I Wait for frame 0 to be inactive

}

Again, by issuing &AS_ClearEOF prior to theTAS_WaitEOF, we guarantee that the
previouslyactive framebecomes inactivdefore we updaté&. Note that this scheme is
dangerous. It will fail if any frame cannot be updated in time.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 86

Three-Buffer Frame Buffering

We now consider sample command streams for writing and displaying video frdr@es
threebuffersare available. Because there is more thanioaetive buffer (two in fact)

when any one buffer is active, we can alter the above two-buffer code slightly to gain some
flexibility and potentially some efficiency.

In thefollowing example we willonly explorethe casevhere frame updatesake longer
than framescan-outsj.e. the casewvherethe frame updates occasynchronously with
respect to external displaypdates. Ifframe updates can be accomplished @tt@ faster
than the framescan-out ratethen the frame updates can (lesired) becompletely
synchronized with the external displagdates. This would b&ccomplished in a manner
similar to that described above for the synchronous two-buffer frame buffering.

Specifically, let’s look at the case where video frames are being generated from a traditional
double-buffered stereo franteiffer. In this situationwhile four physical fields would
typically beused (twoleft fields and tworight fields) one can think ofuch a system as
actually using threéogical buffers as follows. Aany point in time, oneach of the two

left and two right physical fields will be chainedtogether, by use of the
TAS_SetVNxtFld commands, to be repeatedly displayed. Thesechamed fields can

be thought of as one single logical buffée active logical buffer. Each of the remaining

left and right fieldswould be considered itswn single (inactive)logical buffer. This
makessensebecause either of these remaining inactive &fd right fields can be
individually updated and then exchanged (replaced in the duaione ofthe left or right
fields in the active logical buffer. Thus thetal number oflogical buffers would behree:

one active logical buffer with two physical fields, and two inactive logical buffers each with
one physical field. Two such examples are shown in Figure 30 below.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 87

Example 1 Example 2

..

A

..

% Active logical buffer
. Inactive logical buffer

Figure 28: Two examples of logical buffer triples. The arrows denote the
order of chaining of the physical fields.

Unlike the precedingwo-buffer example, in thisxample we willnot associate particular
physical fields with particulabuffers. Instead we will continue to refer touffers as
abstract logical buffers, numbered 0, 1 andThe physical fields associatedth each of
the three logicabuffers might vary withthe use of TAS_VNxtFld commands, andiill
not be described explicitly. We will assurttgat the controller isconfigured for the
appropriate number of fields per frame, e.g. two fields per frame for a stereo buffer.

The initial startup code in this situatiomould beidentical to thatshown abovefor the
asynchronous two-buffer case. Once these startup commands have been issued, frames are
being generated (by the video controller) from logical buffer 0. One divihéree logical

buffers, buffer 1 for example, can then be updated and the commamageat active can

be issued as follows.

TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
Commands to write pixel data to buffer 1 (field 1)

Commands to make buffer 1 active (field chain commands)

TAS_WaiteEOF(); /I Wait for buffer 0 to have been scanned-out

Again theTAS_ClearEOF andTAS_WaitEOF commandsareonly necessary if writes
to buffer O willimmediatelyfollow, as wouldnormally be the case as we begin a steady-
state process of alternating writes and displays.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 88

Note in particular the repositioning of thAS_ClearEOF command tdefore the buffer

write and chain commands. This early placement provides a relatively long opportunity for
the EOF bit to be sadrior to theissuance othe TAS_WaitEOF. This thenpotentially
decreases the amounttohe that theTAS_WaitEOF will block subsequent commands.
When theTAS_WaitEOF does unblock, ware no longer guarantedésht the currently

active buffer (buffer O in our example) has become inactive, but since we have three buffers
available and would typically be writing to the next inactive buffer anyway (buffer 2 in our
example) this situation is acceptable and even desirable.

An example ofusing the commands of thprevious section tamplement a steady-state
series of three-buffer updates and displays follows.

/I Logical buffer 2 is active here
while (TRUE)
{
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
Commands to write pixel data to logical buffer O
Commands to make buffer 0 active (field chain commands)
Miscellaneous other commands
TAS_WaitEOF(); /I Wait for buffer 2 to have been scanned out

TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
Commands to write pixel data to logical buffer 1

Commands to make buffer 1 active (field chain commands)

Miscellaneous other commands

TAS_WaitEOF(); /I Wait for buffer 0 to have been scanned out

TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status port
Commands to write pixel data to logical buffer 2

Commands to make buffer 2 active (field chain commands)

Miscellaneous other commands

TAS_WaitEOF(); /I Wait for buffer 1 to have been scanned out

One-Shot Frame Grabbing

The one-shot frame grab is somewhat analogous to displaying a single frame of video from
a particular frame buffer. We present texampledor grabbing a singlérame ofvideo,
both which accomplish the same task but in different fashions.

Our first example directly manipulates the videontroller, stopping and starting the
controller as needed to obtain a single frameidéo. The video will be written to field O
for this example.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 89

Commands to stop the video controller

TAS_ClearEOF();

Commands to configure the video controller for single-field frames

Commands to configure the video controller for a one-shot frame grab
TAS_SetVFId(0); /I Select a destination field for the single frame
Commands to start the video controller

TAS_WaitEOF();

Commands to read the grabbed data from field 0

Our secondexample demonstrates a methaithat allows the video controller to run
continuously in a free-running modayt usesfield chaining commands to divert a single
frame of video to a particuldruffer or field. For this example, waill assumethat the
controller is currently cyclinghroughfield 1, (.e. field 1 is chained tatself, and the
controller is free-running), and that we would like to store our single frame of video in field
0. We will also assume that the controller is configured for single-field frames.

TAS_VNxtFrmFIdO(1); /l Make sure we leave field O after grabbing frame
TAS_SetVFIdSynch(0); /I Make field O active

TAS_ClearEOF();

TAS_WaitEOF(); /I Wait for scan in to occur and field O to become inactive
Commands to read the grabbed data from field O

The one-shot frame-grab is useful for a one-time acquisition of a singlefrade®, or for
the repeated and ongoing acquisition of video in the situation uleeitene toprocess the
grabbed data is longer than the time to acquire the data. Undatteheircumstances, the
second method (abovehay prove to be desirable depending thre amount oftime
required to stop anstart the videaontroller. With the second method, might at first
seem to be a problem that while the video controller is alrgadgumably) synchronized
with the external video source, one must Viaitthe beginning okachsuchframe before
grabbing. On the other hand, with the first method one watillchave to wait thevorst-
casetime of asingle frameanyway duringeachstart-up of the video controller, to
synchronize with the external video source.

Asynchronous Free-Running Frame Grabbing

This case is analogous tasynchronous two-buffeframe buffering. This example
demonstrates the use of the TAS video commands to continuously grab frames from a free-
running video controller in the case where the time to read and process each frame is greater
than the time to scan-in each frame.

In this situation the incoming videtata can be written ttwo alternatingfields, bouncing

back and forth, but not on consecutiv@me scan-outs. Insteadjdeo port configuration
commands must be usedperiodically switch between fieldthat areotherwise normally
chained to themselves. In this case since the frame processing is not fast enough, the frame
grabbing cannot stay synchronized wiitle externalvideo, i.e. not every externalrame

can be grabbed.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 90

Commands to configure the video controller for single-field frames
Commands to configure the video controller for continuous frame grabbing

TAS_SetVNxtFrmFId0(0); /I Chain frame 0 to itself for reset
TAS_SetVFIdSynch(0); /I Reset & synch the controller, making frame 0 active
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg

while (TRUE)

{
TAS_SetVNxtFrmFId1(1); // Chainframe 1 to itself (protect frame 0 after scan-in)

TAS_SetVNxtFrmFId0(1); // Specify switch from active field 0O to field 1

TAS_WaitEOF(); /I Wait for frame 0 to be grabbed & inactive
Commands to read and process pixel data from frame 0
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg

TAS_SetVNxtFrmFId0(0); // Chainframe 0 to itself (protect frame 1 after scan-in)
TAS_SetVNxtFrmFId1(0); // Specify switch from active frame 1 to frame 0

TAS_WaitEOF(); /I Wait for frame 1 to be inactive
Commandes to read and process pixel data from field 1
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg

}

Notice that while incoming video fields being read from frame 0, incoming video frames
i+1 through some franjeare being written (over-written) in field 1. When the reading of
frame i from field O completegduring frame j) the appropriate set of field chaining
commands are issued. Then frajdsthrough somé&amek are written to field O while
framej is being read from field 1, etc.

Notice that between the time frain@as read from field 0 and frampaevasread fromfield

1, j-i frames of incoming video welest. It isthe need to protect one fiefcom the
incoming video while it is being read that is the meamsequence of thasynchronous
grabbing scheme. However sucls@eme may be either necessitated byldhg time
required to read and process a single incoming video frame, or desired for other reasons.

Synchronous Free-Running Frame Grabbing

This case is analogous to synchronous two-buffer frame buffering. The following example
demonstrates the use of the TAS video commands to continuously grab frames from a free-
running video controller ithe casevherethe time toprocesseach frame isessthan the

time to scan-in each frame. In this situation the incoming \ildé® can be written to two
alternating fields, bouncing back and forth on consecutive incofranges. Ifthe frame
processing isndeed fasenough,the framegrabbingcan then remairsynchronized with

the external video, i.e. every incoming frame can be grabbed.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 91

Commands to configure the video controller for single-field frames
Commands to configure the video controller for continuous frame grabbing

TAS_SetVNxtFrmFId0O(1); /l Chain frame 0 to frame 1
TAS_SetVNxtFrmFId1(0); /l Chain frame 1 to frame O
TAS_SetVFIdSynch(0); /I Reset & synch the controller, making field 0 active
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg
while (TRUE)
{
TAS_WaitEOF(); /I Wait for frame 0 to be scanned-in & inactive
Commands to read and process pixel data from field 0
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg
TAS_WaitEOF(); /I Wait for frame 1 to be scanned-in & inactive
Commandes to read and process pixel data from field 1
TAS_ClearEOF(); /I Clear the sticky EOF bit in the GP status reg
}

V.7 Miscellaneous TIGC Sequencer Commands

Miscellaneous Commands

The following are TIGC Sequencer commandsat operate in the same manner as the
miscellaneous EIGC Sequencer commands listed in Section IV.5.

Command: 5ynopsis:

TAS_NoOp 0 | No operation

[TAS_NoOp2 0 | No operation (version with long 64-bit opcode)

TAS_Hang 0 / Hangs the sequencer in a tight loop (for debugging purposes)

Commands to Initialize the TIGC Sequencer

The TIGC Sequencer is initialized in the same manner aBM Sequencer (see Section
IV.5). Thefollowing commandsareused towrite and read microcode and to cause the
TIGC Sequencer to enter apglit RMode TheTASICsare initialized by each command
that uses them, so no special commands are required for this purpose.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 92

Instruction:

Synopsis:

TAS_IFSpec (RimTimEndain) |/ Set interface control register

[TAS_RModeOn 0 | Put the sequencer in RMode

TAS_RModeOff |() // Cause the sequencer to exit RMode, and prepare for normal input
[TAS_MCWrite (edar, wordO,wordl) |// Load ‘wordQ' and 'word1' into the specified microcode location
TAS MCRead (addr) | Set the sequencer's program counter to ‘addr' (this command is

| also used to read microcode memory during chip testing, but
/ this function is not available during normal operation)

The standard location for TIGC Sequengecrocode is in the flFAS <type> ucode,h
in an the initializedarray unsigned TAS_<type> ucode[] where <type> is the
mnemonic for the video configuration (see Section III).

VI

RT CONTROLLER COMMANDS AND SYNCHRONIZATION

On eachlGC, the command streanfsom the RFIFO and TFIFOmerge at the RT
Controller, which dispatches commands in a designated order to the Sequencer.

There are two threads of contfor the Rasterizer, one is buffered the RFIFO, and the
other is buffered in the TFIFO. Each threzmh contairboth EIGC and TIGC commands.
Thetwo Sequencersan be interlocked within eithéhread, andhe two threadscan be
interlocked for either Sequencer. This interlock is performed using semaymbrel and

preference commands, described in Section VI.1 and VI.2. Other RT Controller commands

control operation of the Image Composition Controller; these are described in S&c3ion
Sections VI.4andVI.5 show howthese commands are typicallged, bygiving sample
control algorithms for rasterizer and shader boards.

VI.1

Semaphore Commands

The interlock semaphores are summarized in the table:

PixelFlow System Documentation

Rasterizer

— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 93

Interlock Semaphore Blocks Command to P | Command to V
Counter (wait and (increment
decrement) counter)

EMC_ commands wait EIGC RFIFBLK RFIFO on EIGC EMC_PTfifo T_EMC_VRfifo

for T_EMC commands

T_EMC_ commands wait | EIGC TFIFBLK TFIFO on EIGC T_EMC_PRfifo EMC_VTfifo

for EMC_ commands

TAS_ commands wait for | TIGC RFIFBLK RFIFO on TIGC TAS_PTfifo T_TAS_VRfifo

T_TAS_ commands

T_TAS_ commands wait | TIGC TFIFBLK TFIFO on TIGC T_TAS_PRfifo TAS_VTfifo

for TAS_ commands

EMC_ commands wait EIGC RSEQBLK | RFIFO on EIGC EMC_PTas TAS_VEmc

for TAS_ commands

TAS_ commands wait for | TIGC RSEQBLK RFIFO on TIGC TAS_PEmc EMC_VTas

EMC_ commands

T _EMC_ commands wait | EIGC TSEQBLK TFIFO on EIGC T _EMC_PTas T_TAS_VEmc

for T_TAS_commands

T_TAS_commands wait | TIGC TSEQBLK TFIFO on TIGC T_TAS_PEmc T_EMC_VTas

for T_EMC_ commands

Thefirst two semaphoresiterlock EIGC commands fronthe RFIFO andTFIFO. For
example, if it is necessary to wéitr a certainRFIFO EIGC command EMC_Foo) to
finish before a TFIFO EIGCommand T_EMC_Foo) canexecute, the'eMC_Foo is
followed by EMC_VTfifo , andT_EMC_Foo is preceded by EMC_PRfifo.

The second two semaphores interlock TIGC commands from the RFIFO and TFIFO.

The third pair of semaphores interlocks EIGC and TIGC commaritie RFIFO stream,
and thefourth pair of semaphores interlocE8GC and TIGC commands ihe TFIFO
stream.

V1.2 FIFO Preference

On eachGC, eitherFIFO can have'preference"”. Typicallythe TFIFO has preference.
This means that commands are processed from the TFIFO until it is blockeithdryone
of thetwo semaphore interlocks, or byéaitXfer command (see below); even if the
TFIFO becomes empty, it retains control and no instructoageadrom the RFIFO. If
preferenceshifts tothe RFIFO, then the situation iseversedand no commands are read
from the TFIFO until the RFIFO becomes blocked, or uh&lRFIFO "yields"preference

Rasterizer
Rev. 7.0 jge/sem

PixelFlow System Documentation
— CONFIDENTIAL —

8Rasterizer p. 94

back to the TFIFO.

After reset, the TFIFO has preference. Either FIFO command st@atgrab” or "yield"
preference. This is done using the following commands:

Interlock Action

EMC_Grab RFIFO becomes preferred on EIGC
EMC_Yield TFIFO becomes preferred on EIGC
T_EMC_Grab TFIFO becomes preferred on EIGC
T_EMC_Yield RFIFO becomes preferred on EIGC
TAS_Grab RFIFO becomes preferred on TIGC
TAS_Yield TFIFO becomes preferred on TIGC
T _TAS Grab TFIFO becomes preferred on TIGC
T_TAS_Yield RFIFO becomes preferred on TIGC

Note that a"grab" commandobeysthe preferenceules like any other command. For
example, if the next command in tRE&IFO onthe EIGC isEMC_Grab, but theTFIFO
has preferencethe "grab” command will not execute and cause REIFO to gain
preferenceuntil the TFIFO hasbecome blockedor if a T_EMC_Yield command is
executed from the TFIFO).

VI.3 IC Controller Commands

After reset, a board is "dead". Thigeans that imindlessly propagates tleadyandgo

signals, and the image-compostion data stream, through untouched; thus it is transparent to
the transfer operations and does not participate. During system initialization, nafstfor

the boards are set to be "alive”. Hmage-composition loopan be formed by specifying

two "end" boards. Foexample,the left-most aliveboard is set as a "left-enddoard,
meaning thaits left-hand output stream is connected to its left-hand ispetam, and
similarly a "right-end" board ispecified. More thanone (non-overlapping) loopan be

formed by specifying more than one pair“"ehd” boards. A'dead" board cannot be
specified as an "end" board.

EachlGC contains an Image Compositi&ontroller, but onlythe one on th&IGC is

used. The Image Composition Controller contains two flip-flops, one or both of which are
set to initiate a transfer operation.thie L2R Xferflip-flop is set,the board will propagate

the "left-to-right" ready signal fromthe downstream board (to its "right") the upstream
board (to its "left"); then, when it receives tpesignal from the upstreatvoard, it causes

the EMCs to begin compositing amqmhssesthe go signal to thedownstreamboard.
Similarly, theR2LXferflip-flop indicatesthat theboard is ready tparticipate in &right-
to-left" transfer operation.

There is a set of commander controlling the Image Compositio€ontroller. The
following table lists these commands:

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 95

Command: Synopsis:
EMC_Dead 0 /I Set this board to be "dead" (board is always dead after reset)
EMC_Alive (left, right) /| Set this board to be "alive", and specify whether it lies at either

I end of an image composition loop (must be accompanied by
i EMC_ICEnds command)

EMC_WaitXfer 0 /I Block until any pending Image Composition transfer is complete

EMC_InitXfer (nbytes, /I Initiate an Image Composition transfer operation
2rarm,|2rfst,|2rlst,
r2larm,r2lfst,r2list)

EMC_Dead and EMC_Alive determine the connectivity of the image-composition
network andare normally issued only atmachine initializationtime. EMC_Dead
designates a board as transparernhéoimagecomposition networki.e. all data, and the
ready and go signals, pass through uncharigbtC_Alive designates a board alve

or active, allowing it to participate in image-composition network operations; the arguments
specify whether a board is at the left eledt € 1) or right endr{ght = 1) of a closed loop

of the image composition network, or if it is interitaf(= right = 0). EachEMC_Alive
command must be accompanied byEMC _ICEnds command withdenticalarguments

(see Section IV.3).

TheWaitXfer command acts somewhat like a wait-for-semaphBreommand; it causes
the RT Controller to block the FIFO containing iNaitXfer command and wafbr any
previously initiated Image Composition transfer operation to complete.

The InitXfer commanddoesseveralthings. It setone or both ofthe L2RXfer and
R2LXfer flip-flops, to indicate thatthis board is readyfor a transferoperation; the
operation does not actually begin until all system boards involved in the operation are ready
for the transfer (this interlock is performed by hardware, transparertthg pgogrammer).

Only when all boards are ready does the transfer actually begin, and onlyhetramsfer

is completed are th#ip-flop(s) cleared, thereby enabling aWyaitXfer command to
complete.

The nbytesargument tdnitXfer specifies thetotal number of bytes pepixel to be
transferred; like thebytesargument t&MC_ICPort , it must be in the range 1- 32. After
the transfer actually begins, it takes 12i8ytescycles for it to complete.

All transfer operations involve a sequence of sydteards which is a subset thle total
system. There can be a separate sequefocethe left-to-right ("I2r") and right-to-left
("r2I") directions, or a sequence may wrap-around and involvediattional pathsthere
can be several sequences involving disjoint sets of boardsl|2raha argument is set to 1
to indicate thathis board isparticipating in the left-to-rightransfer,thereby setting the
L2RXferflip-flop; 12rfst is set to 1 indicatethat this isthe first board inthe sequence of
boards participating in the left-to-right transfer, #2bt is set to 1 if this ishe lastboard
in the chainL2rfstandl2rlst must be zero il2rarm is zero.The arguments2larm, r2lfst,
andr2list specify the sequence of boards for the right-to-left transfer.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 96

Partial transfers. If it is desired to transfer lessan a full region opixels, the nbytes
argument tolnitXfer can be set to a proportionately smaller value than nibygtes
argument tEMC_ICPort or EMC[L2R,R2L]Init . For example, ihbytesis set to 16
in anEMC_ICPort commandwhich configuresthe EMCs, but to 8 in thelnitXfer
commandwhich initializes thetransfer,then only halfthe pixels in the region will be
compositedThe compositioroccurs in PE-indewrder, inparallelfor all 8 panels, so in
this example, the left half of the region will be composited (?).

Care must be taken tensurethat all boards participating in a composition-network
operation have been configured with BEMC ICPort command. ransferan InitXfer
command until all of the boards in s must only be given when a

V1.4 Rasterization Control Algorithm

We now show the basic rasterization control algorithm (the control algorithm on a Renderer
board). We consider two cases:

a) Rasterization into a scratch buffePrimitives are rasterized intosaratchbuffer at
a fixed location in pixememory,then copied into a regiobuffer, wherethey
remain until they are copied into the IC Port buffer for compositing.

b) Multiple transfersper region. Two or more composition cycles are required to
transfer all of the data per pixel.

Figure 31(a)shows case (a)above, the most common ofthe threecases. First,
T _EMC_VRfifo is used to presdéhe actuahumber of region buffergthe number is
determined by the number bfts per pixel requiredor the renderingalgorithm). The
number of buffers can be changedtba fly usingT_EMC_VRfifo andEMC_PTfifo

appropriately.

After initializing the RT Controller, the first region is rasterized intthe scratchbuffer.
EMC_PTfifo is thenused to ensuréhat aregion buffer isavailable (itblocks RFIFO
commands on th&IGC, and thus any further rasterizatioontil a region buffer is
available). Thedata is then copiedfom the scratchbuffer into a region buffer and
EMC_VTfifo is usedto indicate that there is i@egion readyfor compositing. The
TFIFO command sequence containd aEMC_PRfifo command tansure there is a
region ready for compositing, followed byfa EMC_WaitXfer command tansurethat
the previous transfer operaion has completed. It then faegsxel-ALU state, copies the
region from the region buffer into one thfe IC Port buffers,initializes the ICport using
the EMC_ICPort command, and launchethe transfer with the IGC_InitXfer
command. It also issuesTaEMC_VRfifo command to indicate that a region buffer has
been freed up.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 97

I/ Initialize board; set # of free buffs

EMC_Alive;

EMC_ICEnds;

for number of pixel buffers nbuffs
T_EMC_VRfifo;

/I Loop for each region
for each region r {

/l RFIFO commands /l TFIFO commands
Rasterize -> scratch buff, T_EMC_PRfifo;
EMC_PTfifo; T_EMC_WaitXfer;
Copy scratch -> buff{r%nbuffs]; T_EMC_ALUSave;
EMC_VTfifo ; Copy bufflr%%nbuffs] (1/12) -> Xfer buff,
T_EMC_ICPort;
/I TFIFO commands T _EMC_ALURstr;
T_EMC_PRfifo; T_EMC_InitXfer;
T_EMC_WaiXfer; T _EMC_WaitXfer
T_EMC_ALUSave; T_EMC_ALUSave;
Copy buff[r%nbuffs] -> Xfer buff, Copy buff{r%nbuffs] (2/12)-> Xfer buff,
T_EMC_VRfifo; T_EMC_VRfifo;
T_EMC_ICPort; T_EMC_ICPort;
T_EMC_ALURstr; T_EMC_ALURstr;
T_EMC_InitXfer; T_EMC_InitXfer;
}
\
a) Basic algorithm for rasterizing b) TFIFO commands to perform two
into a scratch buffer. transfers per region.

Figure 29: Use of control commands for typical rasterization algorithms.

The sequence oFFIFO commands toitiate thetransfer operation is critical First, the
data to be composited must be copied into the image-compdsai@ierbuffers, and the
compositor circuitry on the EMCsnust beinitialized using an EMC_ICPort (or
EMC_[L2R,R2L]Init) command. Since theTFIFO command sequencese executed
at unpredictable times relative to tR&IFO commandstream the state of th&MC pixel
processors must be saved and restordédeabeginning and end ebchTFIFO command
sequence, using tHEMC_ALUSave andEMC_ALURstr commands; these commands
require a 6-byte area of pixel-memory to save the state.

Figure 31(b) shows @odified TFIFO command sequenciat performs twoimage-
composition transfers per screeggion. Thissequence is used when a shader requires
more than 256 bits per pixel/sample.

VI.4 Shading Control Algorithm

The control algorithm orshader boards isimilar to the rasterization contralgorithm,

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 98

except that regions of pixels are loaded, processed, and unloaded, rather than simply being
unloaded onto the image-composition network. Figure 32 shows the basic shading control
algorithm.

/I Initialize board
EMC_Alive;
EMC_ICEnds;
EMC_VTfifo;

/I Load first region

EMC_PTfifo; /I RFIFO cmds
EMC_VTfifo;

T_EMC_PRfifo; /l TFIFO cmds
T_EMC_WaitXfer

T_EMC_ALUSave;

T_EMC_VRfifo;

T_EMC_ICPort;

T_EMC_PipeFlush ;

T_EMC_ALURSstr ;

T_EMC_InitXfer ;

/I Load second region

EMC_PTfifo; /I RFIFO cmds
EMC_VTfifo;
T_EMC_PRfifo; /l TFIFO cmds

T_EMC_WaitXfer;
T_EMC_ALUSave;
Copy Xfer buffer -> scratch;
T_EMC_VRfifo;
T_EMC_ICPort;
T_EMC_PipeFlush ;
T_EMC_ALURStr ;
T_EMC_InitXfer ;

/I Loop for remaining regions
for each region r> 2 {

EMC_PTfifo; /I Rfifo cmds
Shade pixels in scratch;

EMC_VTfifo;

T_EMC_PRfifo; / TFIFO cmds

T_EMC_WaitXfer;

T _EMC_ALUSave;

Copy Xfer buffer -> scratch,

(Copy shaded pixels -> Xfer buffer,)
T_EMC_VRfifo;
T_EMC_ICPort;
T_EMC_PipeFlush ;
T_EMC_ALURStr ;
T_EMC_InitXfer ;

Figure 30: Use of control commands for typical shading algorithm.

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 99

The first two transfers prime the pipeline and load the first region of pixels insh#der.
During each succeeding transfer, a region is loaded, a regitvaded and (optionally) a
region is unloaded. The last two transfers empty the pipeline and are not shown here.

Shading commandare loaded into th&FIFO, and copy commandare loaded into the
TFIFO, the same as on Rendefieoards. The semaphores providéhe handshaking
necessary to synchronize the operation of the two FIFOs.

APPENDIX A — IGC COMMAND EXECUTION TIMES

The following table providesexecution timedor the IGC commandset. For EIGC and
TIGC Sequencer commands thise refers to executiontime within the specified
sequencer.The formulas given in this column contain arguments friia argument list
given in Sections IV and V.

A.l EMC Command Execution Times

In general the execution times are pixel-membandwidth boundthe executiontime

equals the number of pixel memopccesses plus a fewycles of overhead. For
instructions which use memory and the LEE, the LEE is "free", except ftinytiescycles
(see below). For LEE-only instructions, each byte of LEE result takes one cycle.

For instructions which use the LEE, the formulae also include the argtbyss Fbytes
is 0 for versions which do namnclude an explicitfbytesargument (constartEE mode
and/or integer coefficientsjor linear modenstructions with floating-point or fixed-point
coefficients (command suffixed [fdpq]), fbytesis an instruction argument.

Note that all instructions require at least two cycles.
Meta instructions take 2 cycles, except for [EMC, TAS] IFSPec and [EMC, TAS] Ignore,

which take Ocycles. For instructions whiamay block aFIFO, these are minimuraycle
counts.

EMC_ COMMAND Cycle count
ClrEnab
SetEnab
Enablnv
SetEnabPixel
EnabPixel
MemIntoEnab

CrylntoEnab
BitTstHi

WIN|JW OO N[N N

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 100

BitTstLo 3
TreeEqZero len + 1 + fbytes
TreeGEZero len + 1 + fbytes
TreelLTZero len + 1 + fhytes
SNETree 3

Mesh (N%8==0 ? 0 : N%8+2)+ (hits/8) + 3 + fhytes
MemEqQByte 3
MemEqgZero len + 2
MemEQqOnes len +2
MemNEZero len + 2
MemNEOnNes len +2
MemEgMem 2*len+2
MemNEMem 2*len+2
MemGEMem 2*len+2
MemGTMem 2*len+2
Mem2GEMem2 2*len+2
Mem2GTMem2 2*len+2
MemEqTree len + 2 + fbytes
MemNETree len + 2 + fbytes
MemLETree len + 2 + fhytes
MemLTTree len + 2 + fbytes
MemGETree len + 2 + fhytes
MemGTTree len + 2 + fbytes
EnabOrEqMem 4
EnabXoregMem 5
EnablintoCry 2
EnablntoMem 4
MemOrEqEnab 3
MemAndEgEnab 3

LoadPixel len+5

Clear len+1

Set len+1

BitClr 3

BitSet 3

BitXor 3

ClrCry 2
BytelntoMem 2

TreelntoMem

len + 1 + fbytes

TreeClmpintoMem

dlen + slen + 2 + fbytes

TreelntoS

2

MemintoS

2

PixelFlow System Documentation

— CONFIDENTIAL —

Rasterizer
Rev. 7.0 jge/sem

8Rasterizer p. 101

Copy MAX (3,2 *len)
Swap 4*len

Inc 2*len+1

Dec 2*len+1

Merge 5

LSL MAX (3,2 *len)
LSL4 6*len+1

LSR MAX (3,2 *len)
LSR4 MAX (6, 6 * len - 4)
ASR MAX (4,2 *len+1)
ASR4 6 *len

ROL MAX (3,2 *len)
ROR MAX (3,2 *len)
Invert 2*len+1
Negate 2*len+1
AbsVal 2*len+3

MemPlusMem

2 * dlen + MIN(dlen,slen) + 1

MemClmpPlusMem

3 *dlen + MIN(dlen,slen) + 2

MemMinusMem

2 * dlen + MIN(dlen,slen) + 1

MemClimpMinusMem

3 *dlen + MIN(dlen,slen) + 2

MemPlusMem?2

2 * dlen + MIN(dlen,slen) + 1 (add 2 if dlen>slen)

Mem2CIimpPlusMem?2

3 *dlen + MIN(dlen,slen) + (dlen >slen ? 7 : 4)

MemMinusMem?2

2 * dlen + MIN(dlen,slen) + 1 (add 2 if dlen>slen)

MemAndMem 3*len+1
MemOrMem 3*len+1
MemXorMem 3*len+1

MemPlusTree

2*len + 1 + fhytes

TreeMinusMem

2 *len + 1 + fhytes

MemAndTree 2*len + 1 + fhytes
MemOrTree 2 *len + 1 + fhytes
MemXorTree 2*len + 1 + fhytes
Min MIN (8,5 * len + 2)
Min2 MIN (8, 5 *len + 2)
Max MIN (8,5 * len + 2)
Max2 MIN (8, 5 *len + 2)
OVFix len +2
CrylntoMem 4

MemIntoCry 2

SLoad 2

WriteS 2

MulUUn 9*slen+dlen+1

PixelFlow System Documentation

— CONFIDENTIAL —

Rasterizer

Rev. 7.0 jge/sem

8Rasterizer p. 102

MulUSn 9 *slen + dlen + 1 (+1 more if dlen > slen+1)
MulSSn 9 *slen + dlen + 1 (+1 more if dlen > slen+1)
SgRoot 128

RootStepl 2*len+1

RootStep2 3*len+2

Divide 34 * (len-1) + 2
DivAddSub 3 *dlen + MIN(dlen,slen)
DivShift MAX (4,2 *len +1)
DivStepl dlen +slen +1
DivStep2 3*len+2

InvSqgStep 2 *dlen + MIN (dlen, slen) + 1
ClampFix len +3

ByteToShort 7

ResetEnab 2

PushEnab 3

PopEnab 4

RestoreEnab 3

XorEnab 3

BreakEnab 4

GMax 258 *len + 2

Sample 2

FEdge len + fbytes

MEdge len + fbytes

ZCmp len + fbytes (len + 1 for _S*, _Li, Ll versions)
FLoad len + fbytes

MLoad len + fbytes

MLoad1 2

LLoad len + 1 + fbytes
ThiStep len+2

TblEntry dlen + slen + 2 + fbytes
PixSwapN 2*(N+1)*len+2
PixCopyDnN (N+1)*len+2
PixCopyUpN (N+1) *len + 2
ALUSave 16

ALURstr 6

Ignore 0

MetaNoOp 2

NoOp 2

NoOp2 2

PipeFlush 32 (may change later)
Hang countably infinite

PixelFlow System Documentation

— CONFIDENTIAL —

Rasterizer
Rev. 7.0 jge/sem

8Rasterizer p. 103

EOrwWait ??
EOrTest ??
EorMemTst 24*len+2
Offset 2
RegLoad 3
ReglLoadsO 3*n
ReglLoadsl 3*n
GReglLoad 3
ICEnds ??
ICPort ?? (the transfer itself takes much longer, see text)
L2RInit ?? (the transfer itself takes much longer, see text)
R2LInit ?? (the transfer itself takes much longer, see text)
RevCopy MAX (3,2 *len)
LPortln 21 (approx)
LPortinLoop 21 (approx)
LPortOut 21 (approx)
LPWeave 8*len+1
LPUnWeave 8*len+1
IFSpec 0
RModeOn 2
RModeOff 2
MCWrite 2
MCRead 2
PixelFlow System Documentation Rasterizer

— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 104

A.2 TIGC Command Execution Times

The following table giveshe executiortime in rasterizer cyclefor the TIGC commands.
Some ofthe commands have fixed executibmes. Texture read/write commands have
execution times which depend on the number of pitkels have their local-port select flag
set. For these commands, execution time is determined typthecaseEMC, that is, the
EMC which has thenostpixels for which the select flag is set (designatptk in the table
below;npixis in the range [0, 256]).

TAS_ Command Cycle count
TAS_SetACTXXX 2
TAS_SetimAddr n 2
TAS_SetlmAddr nShort 3
TAS_SetWriteModeXXX 2
TAS_SetMCnt 2
TAS_SetMSel 3
TAS_LoadACT ??
TAS_MemCIlk50 2 + refr
TAS_MemClk100 2 + refr
TAS_MemPreCharge ??
TAS_MemInitModeReg ??
TAS_ _MemRefr 7 + refr

TAS_MemRdBlockl
TAS_MemRdBlock2
TAS_MemRdBlock4
TAS_MemRdBlocklleavel
TAS_MemRdBlocklleave?2
TAS_MemRdBlocklleave4
TAS_MemWrBlockl
TAS_MemWrBlock2
TAS_MemWrBlock4
TAS_MemWrBlocklleavel
TAS_MemWrBlocklleave?2
TAS_MemWrBlocklleave4
TAS_MemRdScatterEvenl
TAS_MemRdScatterOddl1
TAS_MemRdScatterEven2
TAS_MemRdScatterOdd2
TAS_MemRdScatterEven4 npix=0: 14 (approx)
TAS_MemRdScatterOdd4 npix=1: 145

npix = 2: 90 + 55npix

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0 jge/sem

8Rasterizer p. 105

TAS_MemWrScatterEvenlL
TAS_MemWrScatterEvenlH
TAS _MemWrScatterOdd1lL
TAS_MemWrScatterOdd1H
TAS_MemWrScatterEven2L
TAS_MemWrScatterEven2H
TAS_MemWrScatterOdd2L
TAS_MemWrScatterOdd2H
TAS_MemWrScatterEven4lL
TAS_MemWrScatterEven4H
TAS _MemWrScatterOdd4L
TAS_MemWrScatterOdd4H

MemRefr 12
MemPreCharge 17
MemInitModeReg 19

GPWait ?7?

GPStrobe ??

GPWr ?7?

GPRd ??
SetVidModeln 2
SetVidModeOut 2

SetVAddr n 2

SetVNxtFId n 2

SetVFId 2

NoOp 2

NoOp2 2

Hang countably infinite
RModeOn 2

RModeOff 2

MCWrite 2

MCRead 2

PixelFlow System Documentation Rasterizer

— CONFIDENTIAL — Rev. 7.0 jge/sem

