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Real-Time Programmable Shading

Abstract

One of the main techniques used by software renderers to produce
stunningly realistic images is programmable shading—executing
an arbitrarily complex program to compute the color at each pixel.
Thus far, programmable shading has only been available on
software rendering systems that run on general-purpose
computers. Rendering each image can take from minutes to hours.

Parallel rendering engines, on the other hand, have steadily
increased in generality and in performance.  We believe that they
are nearing the point where they will be able to perform
moderately complex shading at real-time rates. Some of the
obstacles to this are imposed by hardware, such as limited
amounts of frame-buffer memory and the enormous computational
resources that are needed to shade in real time. Other obstacles are
imposed by software. For example, users generally are not granted
access to the hardware at the level required for programmable
shading.

This paper first explores the capabilities that are needed to
perform programmable shading in real time. We then describe the
design issues and algorithms for a prototype shading architecture
on PixelFlow, an experimental graphics engine under
construction. We demonstrate through examples and simulation
that PixelFlow will be able to perform high-quality programmable
shading at real-time (30 to 60 Hz) rates. We hope that our
experience will be useful to shading implementors on other
hardware graphics systems.

1 INTRODUCTION

The bulk of research in computer graphics has been directed
toward making computer-generated images appear as realistic as
possible. Since much of this effort was motivated by film making,
the term "photorealistic" has been used to describe a very well
rendered image, presumably one that couldn't be distinguished
from a photograph of a natural scene. The latter has rarely been
true, but certainly the quality of the images has improved
dramatically. Practitioners generating these high-quality images
have been content to wait moderately long periods of time for the
rendering computations that it took to achieve these excellent
results.  Quality was the primary goal.

At the same time, other researchers have been striving to render
images at interactive rates. The computations necessary just to

determine visibility are demanding enough that, at first, only
simple flat shading was possible. As technology has improved, the
standard shading model on high-end commercial machines has
progressed to Gouraud shading and, fairly recently, to image-
based texturing. Still, rendering more geometry within tight time
constraints has been most important. Interactivity was the primary
goal.

We believe the time has come when one can achieve both high
quality shading and interactivity. Advances in technology have
made it possible to render, at interactive rates (15 Hz or greater),
images that just a few years ago were considered "photorealistic".
We don't claim that all of the techniques used for high-quality
shading can now be done interactively, but a very large class of
renderers, those dealing with local lighting effects, can be
computed in real time. A notable example of this class is the
Reyes renderer [1].

As evidenced by the quality of the work produced at Pixar, local
effects can produce striking images. Cook, et. al. observed that
many global effects can be approximated using tables, such as
environment and shadow maps [1]. If a rendering system can be
designed to fit the traditional rendering pipeline, communication
patterns can be kept well structured, and global communications
can be limited, very complex geometry with complex shading
models can be rendered to produce very high quality images.

This paper consists of two main parts. The first examines the key
requirements of programmable shading and explores how current
hardware and software architectures can be adapted to meet these
needs. The second half of the paper describes a real-time
hardware/software shading architecture we have designed for
PixelFlow, an experimental graphics machine currently under
construction. We describe the decisions and tradeoffs in the design
and give a detailed example of a complex shader that will run in
real time, together with performance simulations that justify this
claim.

2 TOWARD REAL-TIME SHADING

In order to achieve real-time programmable shading, we must
identify the crucial requirements of software renderers and
combine them with the real-time capabilities of hardware
renderers, as indicated in Figure 1.

2.1 Programmability

A number of computer graphics researchers [2, 3, 4] have argued
that a fixed shading model, even with adjustable parameters, is not
sufficiently powerful to shade realistic images. The wide variety
of surfaces makes it difficult, if not impossible, to create a single,
comprehensive, shading program. Programmability allows the
practitioner to create any desired effect. As a result, most software
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Figure 1: Merging the capabilities of software and
hardware renderers.

systems designed for high-quality rendering allow users to specify
the shading algorithm either in a traditional high-level language
[2], or in a language specifically designed for shading [3, 4, 5].

On the other hand, computers designed for interactive graphics
typically have powerful hardware for interpolating color and depth
values, and more recently for computing image-based textures, but
only support a fixed shading algorithm with a few adjustable
parameters—most commonly linear interpolation of colors or
intensities between vertices.

Some of these computers have hard-wired processors. Ironically,
many have programmable processors. Even though the processors
may be capable of performing adds, multiplies, and linear
interpolations—the basic operations necessary for shading—they
are not available for general shading because users are not given
access to this level of code.

The reason for this is twofold. First, programming at this level is
difficult, since pixel processors tend to be specialized and arcane,
and the documentation and programming environment for them
often is poor. More importantly, code written at this level is not
portable. It is specific to a particular system implementation,
which may change between successive machine models and even
upgrades of a single model. Manufacturers also desire software to
be compatible over a range of machines spanning prices and
generations (and more recently, different vendors). Typically,
system firmware writers are the only ones who are granted direct
access to the pixel processors.

These considerations are useful and important, but they need not
preclude programmable shading. Just as access to geometry
rendering hardware is provided by portable graphics libraries,
such as PEX and OpenGL, programmable shading can be
provided by a portable language, such as the RenderMan shading
language [4]. The shading language can be compiled for the
particular hardware, or in low-end machines, software execution.
As with current machines, more powerful, expensive workstations
will shade at interactive rates, while cheaper models will produce
the same images much more slowly.

We believe that programmability at the pixel level is essential to
meet the goal of high-quality shading and that it can be provided
in machines sufficiently powerful to shade at interactive rates.

2.2 Memory

Programmability goes hand in hand with storage. The norm in
software renderers is to provide full access to the memory of the

workstation, which in many ways is virtually unlimited, especially
when coupled to secondary memory, such as a disk.

Systems designed for interactive graphics, on the other hand, have
very limited amounts of memory for shading. A minimal frame
buffer with space for z and color at each pixel is often the only
memory available. High-end systems provide more, but the
limitations are obvious when one considers that frame buffer sizes
are still typically measured in bits, not bytes. Recently, graphics
workstations have added memory for image-based texturing, but
normally it is accessible only in regimented ways.

For high-quality shading at interactive rates, we need more
memory than is available on current graphics engines, but it does
not need to be as voluminous as on a workstation, and we
certainly do not need advanced features such as virtual memory
and access protection.

One way to make implementation feasible is to observe that
memory requirements for most shaders fall into two categories:
storage for local variables used during the shading calculations,
and storage for tables containing texture maps, shadow maps,
environment maps, etc. The local memory can be simple since the
computational units only need access to their own memories, not
to those of other processing elements. It must, however, be very
fast because the processor can only execute as fast as it can access
the local memory. On the other hand, the global memory for table
lookup is not used very often, so access can be slower than that of
the local memory but it must be accessible from essentially all of
the processing elements.

We can take advantage of these distinct uses by dividing our
memory into those two classes, memory local to a pixel and global
memory that must be accessible from all of the pixels. These
divisions by function are common in special purpose hardware
because the technique of specializing memory can increase speed
and decrease cost.

Local Memory. Let us examine the demand for local memory
first. In our experience, procedural texturing is the operation that
consumes the most local memory. For example, Figure 2
illustrates the amount of memory used by several of the shaders
that are shipped with the RenderMan software package [6].

Shader
Local variables

carpet 24

marble 26

stippled 33

stone 23

Figure 2: Local memory requirements for RenderMan
shaders.

Our experience is that storage for 30 to 40 local variables is
adequate, though this does not count all of the necessary global
parameters such as normals, intrinsic color, etc. Space must also
be provided for a program stack used for function calling and for
the temporary variables of the called functions. On a workstation
this much storage, say a total of 100 floats or 200 bytes seems like
a very small amount of space.

However, a frame buffer with 1600 bits of storage per pixel is
very rare indeed. An observation on the nature of shading can help
us solve this storage dilemma. The large memory demand can be
thought of as the peak, temporary usage, necessary only when a
surface is being shaded. Once shading is complete, only a small
amount of memory is necessary, just enough to store color and
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perhaps depth. It is not necessary to instantiate this amount of
memory for every pixel at once. We need this working memory
only for the pixels that are being shaded at any one time. One can
imagine doing shading calculations one pixel at a time and saving
only the final color. Realistically, however, given the amount of
computation that is necessary for rendering, calculating one pixel
at a time is impractical. More likely, a system will shade a number
of pixels in parallel, but not necessarily the complete screen.

Table Memory. The second type of memory that is necessary is
that used for table lookups, not only to apply image-based textures
but also to transfer global information to surfaces by means of
intermediate images, such as shadow, and environment maps. We
also wish to look up stored information to use during local
computation, for example, to modify lighting for local effects such
as bump mapping.

The characteristics of this memory are very different from that
used to hold local variables. It only needs to be accessed
occasionally, but the access patterns are very general. Table
memory is an exception to the modest memory requirements of a
shader. This global storage pool needs to be much larger than any
single local memory.

Since we want to apply several visual effects to each pixel and
filtering is often required, we need to accommodate multiple table
lookups per pixel. Three or four accesses per shader is probably
the minimum. If we can accommodate eight to ten, we open the
way for more interesting visual effects. Furthermore, since shadow
and environment maps may be recalculated as often as every
frame, we must be able to either render directly into table
memory, or load a map from the frame buffer very quickly.
Address calculations and table access patterns should be flexible
since, in our experience, it is difficult to predict what a
programmer may wish to do.

2.3 Computational Power

The key to real-time shading is to combine the programmability
and memory requirements above with the tremendous
computational power needed to shade images in real time.

To get a feel for the magnitude of the calculations involved,
consider simple Phong shading. To do this for a million pixels at
30 times per second, requires a billion or more operations per
second. More sophisticated algorithms, such as bump mapping,
shadow mapping, procedural textures, and antialiasing, can
multiply these requirements by an order of magnitude or more.

Large-scale parallelism. The only way to achieve computation
rates such as these is to employ large-scale parallelism. Current
graphics engines employ dozens to hundreds [7] (or even
thousands [8]) of processors to perform visibility and relatively
simple shading. Even more are needed for programmable shading.

Fortunately, many features of general-purpose processors are not
needed here, so processors can be specialized for rendering. For
example, pixel-level processors can have tightly bound local
memory, specialized datapaths and functional units, separate code
stores, and may even share control and address paths (i.e. operate
in SIMD). Such specialization can reduce the cost and size to a
small fraction of that of a standard processor.

Even with specialization, a parallel processor for shading will be
expensive because of the great computational demands. To make
real-time shading practical, we must also reduce the workload as
much as possible through optimization. We now consider several
optimization techniques that can provide significant speedups.

Deferred Shading. One optimization is to shade only pixels that
will be visible in the final image. Figure 3a illustrates the normal

rendering pipeline. Shading is done as primitives are rasterized. If
the pixel is visible at the current time, the pixel is shaded and a
final color value is stored in the frame buffer. However, many
pixels may be covered by later primitives, particularly in scenes
with high depth complexity. The shading performed on non-
visible pixels is wasted.

// Rasterization/shading pass
for each primitive

for each pixel {
calculate depth;
if (pixel is visible) {

shade;
store color;

}
}

// Rasterization pass
for each primitive

for each pixel {
calculate depth;
if (pixel is visible)

store appear. params;
}

// Deferred shading pass
for each pixel

shade;

a) Immediate shading. b) Deferred shading.

Figure 3: Two variations of the rendering pipeline.

This wasted work can be avoided by delaying shading calculations
until after primitives have been rasterized, a technique known as
deferred shading [9, 10]. Figure 3b illustrates a pipeline modified
for deferred shading. The only work that is performed in the loop
over primitives is to determine visibility and to store the raw data
the shader will need to compute the pixel colors later. This data
typically consists of constants, such as intrinsic colors, or
interpolated parameters, such as surface normal vectors, texture
coordinates, etc. (Cook refers to these as appearance parameters
[3]. We will use this term in the remainder of the paper). A second
pass of the algorithm loops over the pixels, shading each one.

Deferred shading divides the cost of shading by the depth
complexity of the image. This can be substantial for complex
scenes. Deferred shading constrains the rendering algorithm in a
number of ways, however. It requires additional storage in the
frame buffer for appearance parameters, which require more space
than simply color and z. Also, shading cannot affect the visibility
of objects, since visibility is completely determined before the
shading pass.

Uniform vs. varying parameters. In the design of the
RenderMan shading language, Hanrahan recognized that a
potentially powerful optimization is to calculate expressions that
are independent of position on a surface only once [4]. To take
advantage of this, the language allows the programmer to specify
whether a variable is uniform, its value is constant across a
surface, or varying, its value depends on position. Expressions or
subexpressions that consist of only uniform variables may be
calculated once and, in a uniprocessor, cached away.

This optimization extends to MIMD parallel shading, only the
potential savings are not as great. as for a uniprocessor. Since each
processor shades only a fraction of the pixels, the calculation of
uniform parameters cannot be amortized over as many pixels.

However, this optimization fits the SIMD paradigm quite well.
The uniform expressions can be calculated on the control
processor to generate a single, position-independent result that can
be broadcast to all of the processing elements. Of course varying
computations are local and must be performed in parallel across
the processor array.

Fixed-point vs. floating-point arithmetic. In order to save
Silicon area and cost, most of the pixel-level calculations in
graphics workstations are carried out using integer arithmetic. In
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Figure 4: PixelFlow system block diagram.

contrast, most calculations in high-quality software renderers use
floating point. Can we use fixed-point arithmetic for shading?

Most shading parameters, such as surface normals, light source
direction vectors, ambient, diffuse, and specular coefficients, are
numbers in the range from zero to one. We can analyze the
numerical errors that may occur in a particular computation, such
as that for Phong shading, in order to determine the necessary
precision. For example, if we would like to obtain 12 bits of
precision for color, the Phong lighting and shading computation
will require:

• 2 bytes for intrinsic color
• 3 bytes for normals
• 2 bytes for the illumination model coefficients
• 3 bytes for intermediate colors

We can use four-byte integers for convenience as well as overflow
protection during the calculations and still perform our
computations an order of magnitude faster (or cheaper) than we
could with floating-point arithmetic.

The problem with fixed-point integer arithmetic, of course, is that
we cannot determine the necessary number of significant digits if
we don't know a priori the magnitudes of the equation parameters.
This is the case with global effects, such as shadow maps. In order
to write generally usable and robust procedures, we may have to
use floating-point arithmetic in some critical parts of shaders, such
as matrix transformations. However, for speed on a hardware-
supported shader, most shading calculations can be done in fixed-
point arithmetic.

Optimizations such as these, combined with parallelism and fast
processors, make it possible to build a system that can render
high-quality images at interactive rates.

3 THE PIXELFLOW SHADING ARCHITECTURE

We are building a hardware and software system to demonstrate
the feasibility of real-time programmable shading. In this section
we describe the architecture of the system and show how it can
meet our performance goals. We begin by briefly describing the
architecture of PixelFlow, the hardware on which the system is
built. We then explain the techniques that we use to achieve
interactive programmable shading. Finally, we outline the
programming models of the system: the existing low-level model,
and a high-level language we are implementing that is similar to
the RenderMan shading language [4].

We believe that this system, when the hardware is complete, will
be able to render the types of images previously seen only on
software renderers, at interactive rates.

3.1 Hardware Overview

PixelFlow consists of a set of nodes, each of which is essentially a
complete graphics computer. All of the nodes are identical,
although some have additional video input or output capability on
daughter cards to allow them to act as frame grabbers or frame
buffers. The PixelFlow nodes are connected by a linear network
that provides fast dedicated pixel-level communication and built-
in z-buffer compositing. General purpose communication between
the PixelFlow nodes is provided by a message passing network.
Figure 4 shows a block diagram of a PixelFlow system.

There are two types of computational resource on each PixelFlow
node. A SIMD array of 128x64 (8,192) pixel processors and a pair
of general-purpose RISC processors (GPs). The pixel processors
perform most rasterization and shading calculations, while the

GPs generate instructions for the SIMD array. These instructions
are stored in GP main memory and are fetched by an instruction
sequencer that controls the array. Figure 5 shows a block diagram
of a PixelFlow node.

RISC GP

GP Memory
Interface

GP
Memory

128 x 64 SIMD
pixel processor

array

Lookup
table

memory

Optional
video
card

Composition network

GP bus

RISC GP Interface

Geometry Network

Figure 5: PixelFlow node block diagram

A SIMD architecture was chosen for the pixel processors to
maximize the amount of compute power that could be placed on a
node. The advantage of SIMD is that a single instruction
sequencer, an expensive resource, is shared by a large number of
processors. The individual pixel processing elements are simple
and there is no direct pixel to pixel communication. This makes it
possible to put 128x64 processors on one board.

Each pixel processor contains an 8-bit ALU which performs a
standard set of integer instructions, such as addition, subtraction,
multiplication, and shifts. Most of the instructions allow operand
sizes to vary from one to eight bytes in length. Single-precision
floating-point operations, based on the IEEE standard, are
implemented as sequences of integer operations.

Fixed-point arithmetic. Earlier, we discussed the tradeoffs
between fixed-point (integer) and floating-point arithmetic. Figure
6 shows the instruction execution times, per pixel processor, of
integer vs. floating-point instructions. Even though up to 8K
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processors execute these instructions at once, the lower execution
times of some of the integer operations make them very attractive.

Operation
2-byte
short

4-byte
long

4-byte
float

Addition 0.07 µs 0.13 µs 3.94 µs

Multiplication 0.50 µs 2.00 µs 2.53 µs

Division 1.60 µs 6.40 µs 7.04 µs

Square Root 1.22 µs 3.33 µs 6.98 µs

Figure 6: Execution time of integer versus floating-point
instructions.

Conversion from floating point to 4-byte integer format takes
1.35µs, and from 4-byte integer to floating point takes 1.57µs. This
makes it feasible to convert representations to use whichever is
more advantageous. Whenever possible, we use fixed-point or
integer representations.

Memory.  Each processor has 256 bytes of local memory and 128
bytes of communication register that may also be used as local
memory. Each node can store 16MB of texture information in
table lookup memory. This memory may be read or written from
each of the pixel processors, thus serving as global storage.

3.2 Achieving interactive shading

Each PixelFlow node possesses an enormous amount of
computational power—over 40 billion integer operations or 2
billion floating-point operations per second. In addition, the
processors are programmable in a very general way, and we
believe that the 256 (+128) bytes of local memory at each
processor is sufficient to implement many interesting shading
algorithms. However, even this amount of computational power is
not enough to achieve our goal of real-time shading. We must
harness multiple PixelFlow nodes in an efficient manner to
multiply the power available for shading.

PixelFlow rasterizes images using a screen-subdivision approach,
sometimes called a virtual buffer  [11]. The screen is divided into
128x64-pixel regions, and the regions are processed one at a time.
When the rasterizers have finished with a particular region, they
send appearance parameters and depth values for each pixel onto
the image-composition network, where they are merged and
loaded into a shader.

If there are s shaders, each shader receives one of every s regions.
While it shades the region, it has full use of the local memory at
each pixel processor. With this method of rendering, even a small
machine can support an arbitrary sized screen. Of course, the more
complex the problem, the more nodes that are needed to achieve
interactive performance.

Deferred shading.  As stated in Section 2.3, deferred shading is a
powerful optimization for scenes of high depth complexity. It has
an even bigger payoff for a SIMD architecture such as PixelFlow.
We implement deferred shading on a machine-wide basis by
giving each node a designated function: rasterization or shading.
The rasterization nodes implement the first loop in Figure 3b,
while the shading nodes implement the second.

As specified in Figure 3b, the rasterization nodes scan convert the
geometric primitives in order to generate the necessary appearance
parameters. Multiple rasterization nodes can work on a single
region of the screen as described by Molnar, et. al. [12]. The
composition network collects the rasterized pixels for a given
region (including all necessary appearance parameters), and

delivers it to the shading node that has been assigned to process
that region.

Deferred shading provides an additional computational advantage
on PixelFlow because of the SIMD nature of the pixel processors.
Consider how a SIMD machine might behave if shading is
performed during rasterization (immediate shading—Figure 3a).
For each primitive, the processors representing the pixels within
the primitive are enabled, while all of the others are disabled. The
subsequent shading computations are performed only for the
enabled pixels. The processors representing pixels outside of the
primitive are disabled, so no useful work is performed.

Since most primitives cover only a small area of the screen, we
would make very poor use of the processor array. The key to
making effective use of the SIMD array is to have every processor
do useful work as much of the time as possible.

With deferred shading, all of the pixels in a region that require the
same shader can be shaded at one time, even if they came from
different primitives. This is especially useful when tessellated
surfaces are used as modeling primitives. These can be rasterized
as numerous small polygons but shaded as a single unit. In fact,
disjoint surfaces can be shaded at once if they use the same
shading function.

Factoring out common calculations.  We can go even further
than executing shading functions only once per region. Shading
functions tend to be fairly similar. Even at a coarse level, most
shading functions at least execute the same code for the lights in
the scene even if their other computations differ. All of this
common code need only be done once for all of the pixels that
require it. As illustrated in Figure 7, if each shading function is
executed to the point where it is ready to do lighting computations,
the lighting computations for all of them can be performed at
once. The remainder of each shading function can then be
executed in turn.

// Shader-specific code
for each surface shader

pre-light shading;

// Common code
for each light source 

accumulate illumination;

// Shader-specific code
for each surface shader

post-light shading;

Figure 7: Factoring out common operations for multiple
shading functions.

Currently, we code this manually, but this is yet another reason to
have a high-level compiler. A suitably intelligent compiler can
identify expensive operations (such as lighting and texture
lookups) among several shading functions and automatically
schedule them for co-execution.

Table lookup memory.  Each shader node has its own table-
lookup memory for textures but, since it is not possible to know
which textures may be needed in the regions assigned to a particu-
lar node, the table memory of each must contain every texture. For
interactive use this not only limits the size of the textures to the
maximum that can be stored at one node, but it also presents a
problem for shadow map and environment map algorithms that
may generate new textures every frame. After a new map is
computed, it must be loaded into the table-lookup memories of
every shader node. This aspect of system performance does not
scale with the number of nodes:  a maximum of 100 512x512
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texture maps can be loaded into table-lookup memory per second
(2-3 in a 33 ms frame time).

Uniform and varying expressions. For efficiency, expressions
containing only uniform shader variables (those that are constant
over all of the pixels being shaded) are computed only once on the
RISC GP. Varying expressions (those that vary across the pixels),
or those containing a mix of uniform and varying variables, are
executed on the pixel-processor array.

Shader parameters. There are two ways to communicate
parameters to a shader node. One is to send the parameters over
the composition network. The other is to send the parameters over
the front-end geometry network. Obviously, a varying parameter
that must be interpolated over the pixels, such as color or surface
normal, is produced on a rasterization node, and should be sent
over the composition network.

A uniform parameter that is used at the GP and does not vary from
primitive to primitive should be sent over the geometry network
because composition network bandwidth is a valuable resource.
An example is something like the roughness of a surface which is
a fixed parameter for a particular material. If the parameter is
needed in the local memory of the pixel processors, it can be
broadcast locally at a shading node. We allow the programmer to
choose the best way to transmit each parameter.

3.3 Shader programming model

Low-level model. Since instructions for the pixel processors are
generated by the GP on a PixelFlow node, the code that a user
writes is actually C or C++ code that executes on the GP. The
low-level programming model for the pixel processors (called
IGCStream) consists of inline functions in C++ that generate code
for the SIMD array. Some of these functions generate the basic
integer operations; others, however, generate sequences of
instructions to perform higher-level commands, such as floating-
point arithmetic.

We have written a library of auxiliary shading functions to use
with this programming model. It provides basic vector operations,
functions to support procedural texturing [5, 13], basic lighting
functions, image-based texture mapping [14], bump mapping [15],
and higher-level procedures for generating and using reflection
maps [16] and shadow maps [17, 18]. It is perfectly feasible to
program at this level. In fact, we currently use this programming
model to write code for testing, and to produce images such as
those in the example video. We would prefer, however, to work at
a higher, more abstract level.

High-level model. We are implementing a version of the
RenderMan shading language that is modified to suit our needs.
Our goal in using a higher-level language is not solely to provide
architecture independence. That may be useful to us in the future,
of course, but since PixelFlow is an architectural prototype it is
not necessary. We are more interested in the shading language as a
way to demonstrate feasibility and to provide our users with a
higher-level interface that they’ve had [19] in order to encourage
wide use of the shading capabilities of our system. Also, as
mentioned earlier in this section, a high-level shading language
provides opportunities for compiler optimization, such as co-
executing portions of several shader functions.

The RenderMan specification has only float, point, and color
arithmetic data types. Since we need to be frugal in our use of
floating-point arithmetic, we have added integers and fixed-radix-
point numbers to the data types of our language. A compiler for
the shading language will accept shader code as input, and emit
C++ with SIMD processor commands as output. This code will be

linked with the auxiliary shading function library and finally with
the application program.

API support. We also need some way for graphics applications to
access our shading capability. Since one of our main goals for
PixelFlow is interactive visualization of computations as they are
executing on a supercomputer, we have chosen an immediate-
mode application programmer's interface (API) similar to OpenGL
[20]. An advantage of choosing OpenGL, and extending it to meet
our needs is that students and collaborators are likely to be
familiar with the its basic concepts Also, this will make it easier to
port software between PixelFlow and other machines.

The current specification of OpenGL only incorporates the limited
set of shading models commonly found on current graphics
workstations: flat and linearly interpolated shading with image-
based textures. We have extended the specification to allow users
to select arbitrary shaders.

We do not plan to implement an official, complete OpenGL for
two reasons. One is that some of the specifications of OpenGL
conflict with our parallel model of generating graphics. The
second is that we lack the resources to implement features that we
do not use. Consequently, though our functions are similar to
OpenGL, we use a pxgl prefix instead of OpenGL’s gl prefix.
Within these constraints, we have attempted to stick as closely as
possible to the OpenGL philosophy. We intend to describe this
API, and the problems involved in implementing it on PixelFlow,
in a future publication.

Limitations. Although the PixelFlow shading architecture
supports most of the techniques common in “photorealistic
rendering,” (at least in RenderMan’s use of the term), it has a few
limitations. Because PixelFlow uses deferred shading, shaders
normally do not affect visibility. Special shaders can be defined
that run at rasterization time to compute opacity values. However,
these shaders poorly utilize the SIMD array and slow rasterization.

A second limitation is that shaders cannot affect geometry.
RenderMan, for example, defines a type of shader called a
displacement shader, which displaces the actual surface of a
primitive, rather than simply manipulating its surface-normal
vector, as is done in bump mapping. This is incompatible with the
rendering pipeline in PixelFlow, as well as that of virtually all
other high-performance graphics systems.

4 EXAMPLE

In this section, we present a detailed example of real-time high-
quality shading on PixelFlow. The example—bowling pins being
scattered by a bowling ball—was inspired by the well-known
“Textbook Strike” cover image of the RenderMan Companion [6].
We cannot guarantee that the dynamics of motion are computable
in real-time, but we are confident that a modest-sized PixelFlow
system (less than one card cage) can render the images at 30
frames per second.

The accompanying video was rendered on the PixelFlow
functional simulator. The execution times are estimates based on
the times of rasterization and shading of regions, using worst-case
assumptions about overlap. We simulated a PixelFlow machine
containing three rasterizer nodes, twelve shading nodes, and a
frame-buffer node. There are 10,700 triangles in the model. The
images were rendered at a resolution of 640x512 pixels with five-
sample-per-pixel antialiasing.
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4.1 Shading functions

Three shading functions are used to render these images, one for
the bowling pins, one for the alley, and one for the bowling ball.
Two light sources illuminate the scene, an ambient light and the
main point-light source which casts shadows in the environment.

Parameter  Number of bytes

Depth 4

Shader ID 1

Intrinsic Color 1 x 3

Normals 2 x 3

Texture coordinates, u, v 2 x 2

Texture gradients 2 x 2

 dP/du, dP/dv 2 x 6

Figure 8: Appearance parameters used in bowling
example.

Figure 8 shows the data for each pixel that is sent from a
PixelFlow rasterizer node to a shader node, a total of 34 bytes. We
actually plan to use 10 bits of color per channel on most PixelFlow
applications, but 8 bits were used for this simulation. In addition
to the appearance parameters used by the shaders, two other
parameters are necessary, the depth and a shader identification
number for each pixel. The shader ID is used by the shading
control program to select the shader code for each pixel.

The bowling ball has a shadow-mapped light source with a Phong
shader. The alley has a shadow-mapped light source, reflection
map, mip-mapped wood texture, and a Phong shader. The pins
have a shadow-mapped light source, procedural crown texture,
mip-mapped label, bump-mapped scuffs, mip-mapped dirt, and
finally a simple Phong shader. We factor out common lighting
computations as described in Section 3.2.  Each shader is divided
into three parts, the part before the lighting computation, the
common lighting computation, and the part after the lighting
computation.

4.2 Multiple-pass rendering

The shadow and reflection maps are obtained during separate
rendering passes. When each of these 512x512 images has been
computed and stored, rendering of the final image begins. In this
section we describe, in detail, the steps necessary to render and
store the shadow map and to render the final camera-view image.
Since computation of the reflection map is similar, we do not
describe it in detail.

Shadow map. A shadow map is a set of depth values rendered
from the point of view of the light source.  We use three rasterizer
nodes to rasterize all the primitives and compute the depth at each
sample point. Since we do not need to calculate colors or other
parameters, this is a simple computation. The worst-case time for
this step is approximately 100 µs, although many map regions
have very few polygons and take less time to rasterize.

The depth values are then z-composited over the composition
network, and the resulting depth is sent to all of the shaders.
Composition time is only 5 µs per region. Notice that data transfer
and computation can proceed simultaneously.

As mentioned in Section 3.2, storing tables for shadow or
reflection mapping is a point of serialization on our system. The
combined time to store both the shadow and reflection map takes
almost half the time for each frame. Since the hardware can store
four values into table memory at one time, we take advantage of

this intra-node parallelism by storing the depth map in units of
four regions each. Thus, the shader nodes accept four regions of
data before storing them (see Figure 11).

The total time to complete the shadow map pass is the time
consumed by eight table writes, 6.08 ms, plus the time to rasterize
the first four regions, for a total time of less than 7 ms.

Reflection Map. Rasterization for the reflection map can begin as
soon as enough buffer space is available at the rasterization nodes.
Shading for the reflection map can begin as soon as the last table
write for the shadow map has begun. The reflection map can be
generated and stored in less than 7 ms.

Final Image. The rendering time for the final image is a function
of both the rasterization time and the shading time. If the time to
rasterize a region is longer than the time to shade it, the shading
nodes will be idle waiting for appearance parameters from the
rasterizer nodes. The worst-case time will then be the total
rasterization time plus the time to shade the final region. If the
time to rasterize a region is less than the time to shade it, the
shading nodes will always have regions waiting to be shaded. We
will see that for this scene shading is the bottleneck, so the
rendering time will be the total shading time plus the time to
rasterize the first few regions (to get the shading nodes started).

First, consider the rasterization time. With all of the appearance
parameters, each of the front-facing triangles in the model takes
approximately 0.85 µs to rasterize. One of the busiest frames, with
all of the pins visible, contains just under 6400 front-facing
triangles (this includes the additional triangles that have to be
rendered when triangles cross region boundaries). This total takes
5.4 ms to complete on one rasterizer node. If we also do five
sample antialiasing, this becomes 27 ms. To achieve our
performance goal we divide the polygons over 3 rasterizers to
decrease the time to a little over 9 ms. Details on the use of
multiple rasterizers in PixelFlow can be found in [12].

Shading function

Section of code Pin Alley Ball

pre-light procedural crown 2 µs

mip-map label 15 µs

bump-map scuffs 24 µs

mip-map dirt 15 µs

mip-map wood 15 µs

light shadowing ← 28 µs →
post-light Phong shader 12 µs

reflection 27 µs

Phong shader 12 µs

Figure 9: Shading times (1 node, 1 sample, 1 region)
excluding table lookup.

Now, consider the shading time. In PixelFlow, the table lookup
time is proportional to the number of pixels that need data, so it is
not constant for a region but depends on how many total values
are actually needed.  The worst case for table lookup will occur if
all of the pixels in a region use the bowling pin shading function
since it needs to look up four different values: two mip-mapped
image textures, one bump map, and one shadow map. To do one
table lookup for all 8K pixels on a node takes 190 µs, so looking
up four values for a full region requires 760 µs.

The worst-case time for the rest of the shader processing occurs
for regions that require all three shading functions, bowling pin,
alley, and ball. For regions without all of these elements, only
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some of the shading functions need to be run.  Figure 11 shows the
processing time for the shading functions excluding the table
lookup times.   Note, however, that the time setting up for a
lookup and using the results is included.  The slowest time for a
region is the sum of all the times in the figure or 150 µs.

This time is for only one sample of one region.  Since we are
doing five samples and a 640x512 video image has 40 regions,
there are really 200 regions to shade.  The total time comes to
182 ms.  By distributing the shading among twelve shading nodes,
we can cut the worst-case shading time to about 15.2 ms.

The 9 ms spent rasterizing is less than the shading time.
Therefore, the shading time dominates.  The total time to compute
the final camera view is the shading time plus the time to rasterize
the first regions, or about 15.7 ms.

Total frame time.  A complete image can be rendered in under
29.7 ms.  This includes 7 ms to generate a shadow map, 7 ms to
generate a reflection map, and 15.7 ms for the final camera image.
These times were computed with pessimistic assumptions and
without considering the pipelining that occurs between the
rendering phases.  This results in a frame rate faster than 30 Hz.
With more hardware it will be possible to run even faster.

Additional hardware will not significantly speed the shadow or
reflection map computations since they are dominated by the
serial time spent writing the lookup tables.  But rendering time of
the camera image is inversely proportional to the number of
rasterization and shading nodes.  For more complex geometry, we
add rasterization nodes.  For more complex shading, we add
shading nodes.  Note that the hardware for both of these tasks is
identical.  The balance between them can be decided at run time.

5 CONCLUSION

In this paper, we described the resources required to achieve real-
time programmable shading—programmability, memory, and
computational power—requirements that many graphics hardware
systems are close to meeting.  We explained how this shading
power can be realized in our experimental graphics system,
PixelFlow.  And we showed with an example, simulations, and
timing analysis that a modest size PixelFlow system will be able
to run programmable shaders at video rates. We have
demonstrated that it is now possible to perform, in real time,
complex programmable shading that was previously only possible
in software renderers.  We hope that programmable shading will
become a common feature in future commercial systems.
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