
1

Appeared: Computer Graphics & Applications, November/December, 1998.

Images for Accelerating Architectural Walkthroughs
Matthew M. Rafferty, Daniel G. Aliaga, Voicu Popescu, Anselmo A. Lastra

Department of Computer Science
University of North Carolina at Chapel Hill

{ rafferty | aliaga | popescu | lastra } @cs.unc.edu

ABSTRACT
We are investigating methods to accelerate rendering of
architectural walkthroughs. In this paper, we improve upon
a cells and portals framework by using images to replace
geometry visible through portals (doors and windows) in a
three-dimensional model. We present several solutions:
images texture-mapped onto the portal, 3D warping of
single reference images, and 3D warping of layered depth
images. We have achieved significant speedups and present
the results of applying the techniques to large architectural
models.
Keywords: interactive, geometry, images, cells, portals,
image-based rendering, 3D image warping, layered depth
images.

1. Introduction
High quality architectural walkthroughs require large and
complex models with many geometric primitives.
Algorithms have been presented to take advantage of the
structure of an architectural model by subdividing it into
cells and portals [1][2]. These methods compute which
cells (or rooms) are visible from the current location by
finding the visible portals (windows, doors, etc.) to
adjacent cells. We can use the information to cull parts of
the model that are not visible.
As models increase in complexity, even this portal culling
does not reduce the amount of rendered geometry enough
to maintain interactivity. We have explored the use of
images, in several forms, at the portals as replacements for
the geometry seen through the portal.
A simple approach we have explored is to use one or more
images as a conventional texture [3]. The rendering burden
is substantially reduced by this method, since the portal
textures can be created once and reused. A problem is that a
portal texture is only correct from a given viewpoint. If we
want to maintain high visual fidelity and provide motion
parallax as the user moves, we have to use multiple textures
per portal. If we don't use enough portal textures to
represent each portal, the user notices a “pop” when we
switch from one texture to the next. The method of portal
textures can require a large number of texture samples to
reduce popping to an acceptable degree. This demands
more texture memory (or the use of a large amount of main
memory and copying to texture memory as necessary).
To combat this problem, we have applied image-based
rendering techniques [4][5] to warp the portal textures to
the current viewpoint, thereby achieving smooth
transitions. We are thus able to greatly reduce the number

of images required per portal. Unfortunately, there are
problems with the warping algorithms. For example, gaps
that appear in the warped image because areas of the scene
that should have become visible were not sampled in the
reference image.
We implemented two solutions. The first is to warp
multiple images made from different viewpoints. However,
this not only leads to redundant work, but also would
require z-buffering to resolve visibility. The second, more
comprehensive solution, uses layered depth images (LDIs)
[6][7] to store, on one image, multiple samples that become
visible as the image is warped.
Our overall approach is a specialization of the use of
impostors introduced by [8]. Portions of a general 3D
model can be replaced with representations that are faster
to render, namely 2D textures. Solving the general problem
of deciding where to place textures in order to improve
rendering performance is difficult [9,10,11,12]. The cells
and portals framework allows us to formulate a set of
concrete and efficient algorithms for replacing geometry
with images.
In this paper, we describe our image-based solutions to
produce a system for the interactive walkthrough of large
architectural models. The following section presents an
overview of portal culling and the use of portal textures to
replace geometry. Section 3 describes 3D image warping
applied to portals and the problems encountered. In section
4, we describe layered depth images. Section 5 describes
the implementation and section 6 shows some results we
have obtained using the system. Finally, section 7
summarizes future work and section 8 presents conclusions.

Figure 1. Portal Culling. From viewpoint A, the light gray
cells are visible and must be rendered. The medium gray
cell, although it lies in the view frustum, is not rendered
because it did not appear during the recursive traversal.

A

2

2. Portal Culling and Portal Textures

2.1 Portal Culling
Architectural models can be subdivided into cells and
portals. Each cell contains a list of portals to adjacent cells.
The cells and portals form a connectivity graph. Starting
with the cell containing the viewpoint (view cell), the
system recursively traverses the connectivity graph at
runtime by visiting all adjacent cells connected to the
current cell by a visible portal (Figure 1).

2.2 Replacing Portals with Textures
Our first system renders the view cell normally but renders
all visible portals as textures. Substituting textures for
geometry has the advantages that a texture can be rendered
in time independent of the geometric complexity it
represents, and that texture mapping is often supported by
graphics hardware. As the viewpoint approaches a portal,
we switch to rendering the geometry of the cell behind the
portal. The adjacent cell becomes the view cell once the
viewpoint enters it, and the previous cell will now be
rendered as a texture.
A very low-cost approach is to use only one texture per
portal, say sampled from directly in front of the portal.
However, as the user moves, the single texture appears
more like a large painting hanging on the wall than like
another room.
To approximate the 3D effect, we can use multiple textures
[3] and switch between them as we move. Since we are
designing an architectural walkthrough system, we assume
the eye height remains approximately constant and create
the textures from viewpoints along a semicircle in front of
each portal (Figure 2). Unfortunately, if we don't use
enough of them, we see a very objectionable popping effect
as the viewpoint moves and the system switches textures.
We found that to get smooth transitions, we needed to use
approximately one texture per degree. On many machines
that's just too much storage.
In order to smooth the transitions and reduce the number of
images per portal, we use 3D image warping [5] to warp
reference image(s) to the current viewpoint. The next
section describes the methods used to perform the warping
operation.

3. Warping of Portal Images

3.1 Formulation of the Image Warping
We use the McMillan and Bishop warping equation [5].
This equation is a 3D transformation reformulated to take
advantage of image-space coherence to reduce
computational costs. The equation is

x2 = δ(x1)P2-1(c1-c2) + P2-1 P1 x1
where

• x1 is a set of coordinates for a reference image point,

• x2 is the set of coordinates in the desired image to
which x1 warps,

• c1 is the center of projection (COP) of the reference
image,

• c2 is the COP of the desired image,

• P1 is the transformation matrix of the reference image,

• P2
-1 is inverse of the transformation matrix of the

desired image,

• δ(x1) is the disparity of the reference image pixel at x1.

 The disparity term is related to the classical stereo disparity
measure and is proportional to the distance from the COP
of the reference image to a pixel, divided by the range to
the surface represented by that pixel. Thus, the disparity is
inversely proportional to distance and measures how far a
pixel will flow as the viewpoint changes — closer objects
will move farther. We compute the disparity values from
the OpenGL z-buffer of a reference image as follows:

 disparity(u,v) = 1 - z(u,v) * (f - n) / f
 where,

• z(u,v) is the OpenGL z-buffer value for a pixel at u, v,

• f is the distance from the reference viewpoint to the far
clipping plane, and

• n is the distance from the reference viewpoint to the
near clipping plane.

 The amount of work for image warping is proportional to
the number of pixels in the image and independent of scene
complexity. Furthermore, since the reference image is on a
regular grid, many of these computations are incremental
and fast. The work is similar to that required by traditional
texture-mapping.
Note that the results of this warp are not one to one:
multiple points in the reference image may be warped to a
single point in the desired image. This raises the issue of
visibility resolution: we must somehow ensure that when
multiple pixels from the reference image warp to the same

Figure 2. Constrained portal texture viewpoints
lying on a semicircle in front of the portal at eye
height.

3

pixel in the desired image, the one representing the closest
of the points to the current viewpoint is the one that “wins”.
We could use z-buffering to resolve visibility, but in our
case it's faster to use the back-to-front occlusion-
compatible order described in [5].
This algorithm is similar to a painter's algorithm. We first
determine the projection of the COP of the desired image in
the reference image. If the desired COP is behind the
reference COP (i.e. farther away), the pixels must be
warped towards the projected point. The amount by which
a pixel is displaced is proportional to its disparity value. It
is difficult to create a raster-scan ordering of the circular
pattern of pixels moving towards or away from the
projected point. Thus, dividing the reference image into a
number of sheets generates an occlusion-compatible
ordering of the pixels. There are four, two, or one,
depending on whether both, one, or neither of the
coordinates of the projected point lie in the image domain.
The pixels of each sheet are warped towards or away from
the projected point, depending on whether the desired COP
is in front of, or behind the reference COP. Since the sheets
can be warped and rendered independently, with correct
occlusion guaranteed, we can parallelize the
implementation of this warp as described in Section 5.

3.2 Reconstruction
In our laboratory, we've used two methods for resampling
of the desired image: bilinearly interpolated surfaces and
splatting [13]. We decided that surface patches would be
too expensive to evaluate, therefore we used a splat.
Through a software switch, we can decide whether to
compute an approximation to the projected size of each
pixel (for a more accurate splat) or to use a fixed-size
footprint. Since the fixed-size splat is cheaper to compute
and provides a visually pleasing result, we use either a two-
by-two or a three-by-three footprint in preference to the
more accurate solution.

3.3 Limitation of Single-Image Warping
A typical image represents an environment from only a
single viewpoint. Therefore, there is information about only
a single surface at each pixel, the one nearest to the COP
(ignoring clipping by a hither plane). As we move in three-
dimensional space warping a single reference image, we
see areas of the environment that were not sampled in the
image (note the example in Figure 3). We have no
information about the exposed surfaces, so we don't know
what to render. The effect of these missing samples in
warped images is illustrated in color figure A. If nothing is
done to correct for the problem, the lack of information
appears as “tears” or sharp shadows in the images.
A partial solution, not correct but visually pleasing, is to
allow samples from previous images to persist as we warp
new ones [McMillan, personal communications]. We
accomplish this trivially by warping on top of the previous
image. Although this is a “hack”, it tends to fill the tears
with a plausible color, as long as the warped image is not
too far from the reference images, and the movement is
smooth. If we warp a single reference image too far or the

viewpoint changes are large, the effect is rather
hallucinatory. In practice, it works well.
Another solution is to increase the number of reference
images per portal. Thus when the viewpoint moves, the
reference image being warped is close to the desired image
and the widths of the tears are proportionally reduced.
However, it is not practical to use this solution, because it
exacerbates the problem we were trying to solve by
warping, namely the large number of reference images.
A better solution is to warp multiple reference images,
expecting that surfaces not visible in one reference image
will have been sampled in another image. We implemented
this solution by warping the two nearest reference images.
When using two images, we encounter one of three
visibility cases for each pixel: when both reference images
contain information about the same geometry, when one
image contains information absent from the other image,
and when information about some geometry is missing
from both images. The first and third cases are
straightforward (although in the third case, we will be
missing some information). The second case becomes a
problem if the last warped image is the one that is missing
data from a certain location, and it contains information
from a different depth that obscures correct detail by
warping to the same location. This problem manifests itself
as a flashing effect, as correct detail appears and disappears
under incorrectly overlaid imagery. A solution would
require a decision process to choose the best source for
each pixel in the composite image. This is a very difficult
problem without computationally expensive z-buffering.
In our first warping system [14], we did not decide
explicitly which warped pixels were best. Rather, we
warped the second nearest reference image first, then
warped the closest reference image over the first. Color
figure B shows the result of warping the two images nearest
to the same viewpoint used to render color figure A. Notice
that the exposed regions are now filled and the image looks
quite good. For comparison, we provide an image in color
figure D that is rendered from geometry. The only part that
is wrong in the warped image is visible through the
doorway on the left. Apparently there was some detail that

Figure 3. If the reference image is taken from viewpoint A,
and we warp to point B, we have no information about the
section of wall (shown in black) behind the sofa or about the
side of the sofa. Since parts of these surfaces are visible from
B, we must obtain this information from another reference
image.

A B

4

was not visible from either of the two reference images.
Presumably this was visible only from a narrow angle.
Warping a second image just to display a few samples (e.g.
10% of the pixels) that were not visible in the first is very
wasteful. Ideally, we could identify the necessary samples
and warp only those. Our next system, which used layered
depth images did just that.

4. Layered Depth Images
Layered Depth Images (or LDIs) [6][7] are the best
solution to date for the visibility errors to which 3D
warping is prone. They are a generalization of images with
depth since, like regular images, they have only one set of
view parameters but, unlike regular images, they can store
more than one sample per pixel. The additional samples at
a pixel belong to surfaces, which are initially invisible,
along the same ray from the viewpoint.
Figure 4 shows construction of an LDI using two methods.
The first, using raycasting, just stores multiple samples hit
by the rays of each pixel of the LDI. The second method
consists of warping secondary images to the viewpoint of
the primary image, then selecting samples that have not
already been stored in the LDI (this is an approximate
determination).
Whenever the LDI is warped to a view that reveals the
(initially) hidden surfaces, the deeper layer samples will not
be overwritten anymore and they will naturally fill in the
gaps that would otherwise appear. As will become clear in
the next subsection, most of the work is done during
preprocessing when the LDIs are constructed.

An additional benefit that the single set of camera
parameters brings is that, as demonstrated by [7], LDIs can
be warped in McMillan's occlusion compatible order [5].
The next subsections describe the construction and warping
of LDIs.

4.1. Construction of LDIs
In our system, we construct LDIs by taking advantage of
the architectural domain. We use images that are evenly
distributed on a semicircle in front of each portal to create
its LDI. Our main concern is to collect samples from all
surfaces that are visible in at least one view of the portal.
We take advantage of conventional rendering hardware to
create the images. There are several reasons for choosing
this approach:

• the samples in the LDI are all potentially visible
(keeping the depth complexity of the LDI low),

• the samples are taken at the proper resolution
(appropriate level of detail), and

• the construction of the LDI takes a reasonable amount
of time (of special interest when LDIs are constructed
on the fly).

Of course there is no guarantee that all potentially visible
surfaces are captured in the LDI. However the more images
used to construct the LDI, the lower the probability of
missing a sample. In our implementation we used thirteen
images per portal and the exposure errors were virtually
eliminated (Color figure C). The basic LDI construction
algorithm is:
1. Create empty LDI with view parameters of
 the central construction image
2. For every subsequent construction image

for each pixel (sample)
 warp to the LDI
 inspect all samples of the LDI
 location
 if there is a sample at similar
 depth, resolve conflict
 else install sample in a new
 layer at that location in
 correct depth order

Layer Samples % of total

1 120556 72.07

2 32458 19.40

3 9714 5.80

4+ 4567 2.73

Total 167295 100

Figure 5. Samples in layers of the LDI shown in color Figure F.

1 2

(a) (b)

Figure 4. Construction of a Layered Depth Image. The
LDI is constructed from viewpoint 1. Each sample of the
LDI stores not only color, but also disparity (depth). (a)
shows a LDI built by raycasting. The rays sample
surfaces beyond those that would be seen from viewpoint
1. (b) shows a LDI constructed by warping a second
image from viewpoint 2 to viewpoint 1. Redundant
samples are discarded, others are stored at deeper
layers. Note that the undersampling of the green surface
from viewpoint 1 is not a problem because it's never seen
from that direction.

5

The reason we decide at step one to give the LDI the
camera parameters of the central image is that it is the most
important view of the portal. Indeed, that is the view often
used during the walkthrough when one wants to explore the
adjacent room. The warping errors are smaller when the
desired image has the view parameters close to the view
parameters of the reference image.
Step two is the most laborious and one can see that the total
work is proportional to warping all of the images. If new
samples are encountered, they are stored in the LDI. A
sample is new if it warps to an empty LDI location or if it is
far enough away in depth from the other samples at the
same location. We establish the threshold below which a
sample is considered to be at the same depth by a trial and
error method, once per model.
The most delicate part of the algorithm is resolving the
conflicts when two samples collide in the LDI. Eliminating
one of the two avoids the redundant work that was the
major drawback when two or more images were warped.
However, eliminating too many will lead to undersampling
problems when the portal is viewed at acute angles. We
decide which one to eliminate by estimating the area of the
3D scene surface patch seen by the two samples in their
images of origin. The sample with the smaller area is
preferred. One exception is that if two samples come from
the same construction image, both are kept. This prevents
undersampling of surfaces that are nearly parallel to the
rays of the LDI. Also, the samples coming from the central
image are in the first layer of the LDI and cannot be pushed
back or eliminated by any other samples; this ensures a
high quality image when the desired view is similar to the
central image (a common case for this application). The
resulting LDI is similar to a wide field-of-view image of
the portal with the exception that some locations store more
than one sample. Color Figure F shows the first 3 layers of
an LDI. Figure 5 shows the number of samples at each
depth. The construction images were 256 by 256 pixels in
size.

4.2 Warping the LDI
The main concern in warping the LDI is efficiency. During
construction, we worked to include the best available
samples of the surfaces seen through the portal. From some
views, some areas are actually oversampled, causing us to
warp more samples than strictly necessary. However, better
sampling ensures that there will be enough samples for
every visible surface from all views. It also enables us to
use a small, constant-sized stamp for reconstruction via
splatting. We can use a stamp as small as 5 pixels: Center,
East, South, West and North.
A more direct way of improving the efficiency of the
warping is to eliminate some of the samples of the LDI that
will clearly not warp to the desired view of the portal. We
use a fast recursive-clipping algorithm that conservatively
eliminates the columns from the left and right side of the
LDI based on their minimum and maximum disparities
[15]. On our test paths, the clipping algorithm reduced the
number of samples to be warped by 50%, on average.

5. Implementation
We implemented our system on Silicon Graphics Onyx and
Onyx2 computers with Infinite Reality graphics and on an
Indigo2 with Max Impact graphics. The system is coded in
C++, and uses the OpenGL graphics library.
At run-time, our visibility algorithm determines which
portals are visible. Then, we make sure the reference
images for warping are created. We chose a nominal image
size of 256x256 pixels. All visible portal images are
warped into a common warp buffer of the same aspect ratio
as the main window. Then, the warp buffer is copied to the
frame buffer; finally all visible geometry is rendered on top
(leaving holes at the location of the portals through which
we see the warped images).
The COP of the desired image is projected onto the
reference image to determine the visibility preserving
ordering of the reference image pixels. In our first attempt

Figure 6. Rendering time of a path showing portal culling (upper plot, red dashed-line),
LDI warping (middle, green line), and a portal texture (lower, blue line).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500

Frame

R
en

de
ri

ng
 T

im
e

(s
ec

.)

6

to parallelize the warp, the resulting one, two or four sheets
were assigned to different processors but the load balancing
was often poor. We solved the problem by splitting each
sheet into p equal-area fragments where p is the number of
available processors [15]. The sheets are split along lines
emanating from the projected COP (as in Figure 7).
The top-level visibility algorithm is described below:
Visibility(cell, frustum) {
 Mark cell visible
 Cull cell to frustum
 Foreach portal {
 Cull portal to frustum
 if (portal is visible) {
 if (portal is image) {
 Warp reference image(s)
 } else
 Visibility(adjacent cell,
 culled frustum)
 }
 }
}

6. Results
We tested our system with two architectural models. The
first model, named Brooks House, is of a one-story
radiosity-illuminated house. The house has 19 cells, 52
portals and 1,744,000 polygons. The second model, named
Haunted House, is of a smaller two-story house with
214,000 polygons, 7 cells and 12 portals.
We recorded a 520-frame path through Brooks House
(Figure 6). We ran the path using several methods: portal
culling only, a single conventional texture, warping one
reference image, and warping one LDI per portal. For this
path, we used 256x256 reference images and a 640x512
common warp buffer. Note that an advantage to the use of

portal images is that the portal warping time is independent
of the amount of geometry beyond the portal.
When the portals were rendered by warping LDIs, using the
improved parallelization scheme, the clipping algorithm
and the smaller reconstruction stamps, the frame rendering
times were not much greater than the ones obtained when
only one image was warped (and always less than warping
two images). On our workstation, we can warp a single 256
by 256 reference image into a 640 by 512 frame buffer in
approximately 0.03 seconds. Warp of a LDI can range from
0.03 to 0.09 seconds. All of these timings include the copy
to the frame buffer.
The rendering load is typically reduced to that of the
current cell; that and the size of the images to be warped
determine the total rendering time. Thus, we should see
higher speedups for more complex models.
Since we require few reference images per portal, we
precompute the images and store them in host memory.
Thus, the total number of reference images stored per portal
does not affect performance  only the number of
reference images actually warped per frame affects
performance. We have experimented with computing the
images (not LDIs) on the fly. We obtain the same speedups
except for sporadic spikes whenever a reference image is
created. We feel that the amount of storage needed to store
the reference images is not unreasonable (for example, in
the Brooks House model there are only 52 portals).

7. Future Work
The work that might yield the most immediate benefit is an
investigation into the placement of reference images.
Perhaps a regularly spaced grid of sample points might
work best, especially if we were to work on models with
larger rooms.
For the same case of larger spaces, we might have to look
more closely at reconstruction. The farther we get from
reference image COPs, the more important it becomes to do
a better job of resampling. However, we are severely
limited by the amount of computational power available.
We are investigating specialized hardware to compute the
warped image more rapidly. This would allow us to not
only increase our frame rate, but would also enable us to
generate more detailed portal images.
Our models use only diffuse lighting (with a precomputed
radiosity solution). High specularity, in particular, might
force us to use more reference images. We could
investigate deferred shading of the warped samples,
although the cost might be prohibitive.

8. Conclusions
We have presented several systems for interactive
rendering of architectural walkthroughs that use image-
based techniques to increase performance while
maintaining high quality and smooth motion. For highest
quality, we prefer the LDIs. However, conventional
textures exhibit the highest performance and can be
generated at run time.

EM

E1

F1

F2

Figure 7. In this case, the projection E of the COP
falls outside the reference image (or the LDI). The
horizontal line EM divides the image in two sheets.
Using 3 lines, each of the sheets is divided in 4
fragments (one for each available processor) of
equal area. The pixels lightly shaded form an
example fragment F1 to be handed off to a single
processor.

7

To our knowledge, this is the first demonstrated application
using the McMillan and Bishop Plenoptic Warping
technique, which takes depth at each pixel into
consideration. We employ multiple processors to accelerate
the 3D-image warping and use a simple reconstruction
kernel. We employ LDIs to reduce the errors that occur in
portal image warping when previously occluded regions
suddenly become visible. Since so few reference images
are required, it's feasible to precompute them as we do in
our production walkthrough system.

9. Acknowledgments
We would like to thank Leonard McMillan for the warping
code from which we began our development, Wolfgang
Stuerzlinger for code and advice, and Bill Mark for insight
into image-based rendering.
The Brooks House model is courtesy of many generations
of students and members of the UNC Walkthrough team.
Dave Luebke and Mike Goslin created the Haunted House
model.
This research was supported in part by grant number
RR02170 from the National Institutes of Health National
Center for Research Resources, the Defense Advanced
Research Projects Agency under order number E278, and
grant number MIP-9612643 from the National Science
Foundation.

References
[1] John Airey, Increasing Update Rates in the Building
Walkthrough System with Automatic Model-Space
Subdivision, Ph.D. Dissertation, University of North
Carolina (also UNC-CS Tech. Report TR90-027), 1990.
[2] Seth Teller and Carlo H. Séquin, “Visibility
Preprocessing For Interactive Walkthroughs”, SIGGRAPH
‘91, 61-69, 1991.
[3] Daniel G. Aliaga and Anselmo Lastra, "Architectural
Walkthroughs using Portal Textures", IEEE Visualization
’97, 355-362, 1997.
[4] Shenchang Eric Chen and Lance Williams, "View
Interpolation for Image Synthesis", SIGGRAPH ‘93, 279-
288, 1993.
[5] Leonard McMillan and Gary Bishop, "Plenoptic
Modeling: An Image-Based Rendering System",
SIGGRAPH ‘95, 39-46, August 1995.
[6] Nelson Max and Keiichi Ohsaki, “Rendering Trees
from Precomputed Z-Buffer Views”, Proceedings of the 6th

Eurographics Workshop on Rendering, June 1995.
[7] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski, “Layered Depth Images”, SIGGRAPH ‘98, 231-
242, July 1998.
[8] Paulo Maciel and Peter Shirley, “Visual Navigation of
Large Environments Using Textured Clusters”, Symp. on
Interactive 3D Graphics ‘95, pp. 95-102, 1995.
[9] Jonathan Shade, Dani Lischinski, David H. Salesin,
Tony DeRose and John Snyder, "Hierarchical Image

Caching for Accelerated Walkthroughs of Complex
Environments", SIGGRAPH ‘96, 75-82, 1996.
[10] Gernot Schaufler and Wolfgang Sturtzlinger, "A Three
Dimensional Image Cache for Virtual Reality",
Eurographics '96, 227-235, 1996.
[11] Daniel G. Aliaga. "Visualization of Complex Models
Using Dynamic Texture-Based Simplification", IEEE
Visualization ‘96, 101-106, 1996.
[12] Peter Ebbesmeyer, “Textured Virtual Walls -
Achieving Interactive Frame Rates During Walkthroughs
of Complex Indoor Environments”, VRAIS ‘98, 220-227,
March, 1998.
[13] Lee Westover, Splatting: A Feed-Forward Volume
Rendering Algorithm, Ph.D. Dissertation, University of
North Carolina, 1991.
[14] Matthew Rafferty, Daniel G. Aliaga, and Anselmo
Lastra, “3D Image Warping in Architectural
Walkthroughs”, VRAIS ‘98, 228-233, March, 1998.
[15] Voicu Popescu, Anselmo Lastra, Daniel G. Aliaga,
and Manuel de Oliveira Neto, “Efficient Warping for
Architectural Walkthroughs using Layered Depth Images”,
IEEE Visualization ‘98, to appear, 1998.

8

Color Figure A: Visibility Errors. This image shows a
single reference image being warped (from a total of
six sampled across the portal). The viewpoint is at the
worst location for this reference image. Observe the
black areas where we have no information.

Color Figure C: Layered Depth Image. The LDI for
the portal captures almost all of the visible detail. In
addition, it takes up less storage and can be rendered
faster than two full reference images. Furthermore, in
the architectural domain, we can construct high-
quality LDIs by using reference images sampled
along a semicircle in front of each portal.

Color Figure B: Two Reference Images. An image
from the same viewpoint as A, but we are warping
the two nearest reference images (from a total of six)
to render the desired image. The large areas that were
invisible from one are visible from the second.

Color Figure D: Geometry. An image from the same
viewpoint as A, but rendered using the model
geometry for purposes of comparison with figures A,
B and C. The main difference is some detail through
the left doorway. Apparently these were some
features that were visible from only certain viewing
angles.

Color Figure E: Haunted House. A screen shot from
the Haunted House model. In this example, we are
warping one image from a total of six reference
images.

9

Color Figure F: Layers of a LDI. The images show, from
top to bottom, the samples at depth 0, 1 and 2 of a LDI.
The side walls are present in more than one layer not
because of visibility, but rather because they are not
adequately sampled by the central view; when the LDI is
warped to a view where better sampling is necessary, the
successive layers will unfold, ensuring better
reconstruction.

