
UNC-CH TR 97-040 1

Procedural Primitives in a High Performance, Hardware
Accelerated, Z-Buffer Renderer

Marc Olano, Anselmo Lastra, Jonathan Leech

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

Abstract
In the past, very few types of primitives have been
directly supported by graphics accelerators, in spite
of the fact that a great variety of complex primitives
are routinely used for high-quality rendering. We
explore the issues associated with the support of
arbitrary procedural primitives, and describe a
machine-independent language as well as an
extension to OpenGL designed to support user-
defined procedural primitives. We have created a
prototype implementation on PixelFlow, a high-
performance graphics accelerator.

1. Introduction
A large variety of different graphical primitives are
routinely used for high-quality, off-line rendering.
These primitives include polygons, spheres,
superquadrics, spline patches, blobs, and many
others (figure 1 shows examples of several).
Although libraries for interactive rendering, such as
OpenGL [Akeley92], support a subset of these
primitives, graphics acceleration hardware can
usually only directly render polygons. Thus, the
more complex primitives are tessellated to polygons
before being sent to the graphics hardware.
Unfortunately, this may not be the most efficient
way to render complex primitives because rendering
smooth surfaces in this manner can result in a very
large number of polygons (tessellated spheres are a
good example). An alternative is to directly use the
rasterization hardware.

Using a high-level language, we provide a way for
users to create new procedural primitives that can
render directly using the acceleration hardware or
indirectly by tessellation into other primitives. With
extensions to OpenGL, we allow the programmer to
supplement the existing primitives in a well-
integrated fashion. We have built a prototype
implementation on PixelFlow [Molnar92], a machine
for high-performance interactive 3D graphics. For
generality, we have avoided exposing into the
language the details of the PixelFlow machine itself,
beyond the fact that it uses Z-buffer rendering. Thus

this language is suitable for use with other hardware
or with software-based renderers.

This primitive-description language is an extension
of the shading language that we designed for
PixelFlow in an effort to demonstrate user-
programmable procedural shading in real time
[Lastra95]. We based the language on Pixar’s
RenderMan shading language [Hanrahan90].
Following the philosophy of the RenderMan design,
we have added only the language constructs that
seemed necessary to support the task.

The strongest evidence we have for the utility of
procedural primitives lies in our experience from
Pixel-Planes 5, our last graphics machine. A number
of people wrote code for their own primitives or for
special purpose modifications of standard primitives
on Pixel-Planes 5. All of these primitives were
created without the benefit of any higher-level
interface at all. By providing a high-level interface,
the task of creating these primitives will be much
easier on PixelFlow. Many of the arguments used to
justify procedural shading hold just as well for
procedural primitives. In fact, the first sentence of
[Hanrahan90], the paper that introduced the
RenderMan shading language, says, “The appearance

Figure 1. Examples of several primitive types.

UNC-CH TR 97-040 2

of objects in computer generated imagery ... depends
on both their shape and shading.”

We are, of course, not the first to consider procedural
primitives. There have been a number of papers on
procedural models [Hedelman84] [Amburn86]
[Green88] [Upstill90]. These are procedures for
higher level objects that generate lower level
primitives. They can provide some advantages for
high-level culling and changes in the level of detail
of the model.

A number of ray tracers allow new primitives to be
added [Rubin80] [Hall83] [Wyvill85] [Kuchkuda88]
[Kolb92]. In all of these, adding a new primitive
consists of adding a new ray intersection function to
the ray tracer. None that we are aware of use a
separate language to define the new primitives.

There have also been a handful of scan-line and Z-
buffer systems that have allowed the addition of new
primitives. [Crow82] treated primitives as separate
processes, whose result is later composited
separately. [Whitted82] used a well defined interface
in a scan line renderer to allow new primitives to be
easily written in C and added to the renderer.
[Fleischer88] allowed primitives to be defined as
LISP functions defining the surfaces parametrically
and implicitly. [Glassner93] defines primitives with
C++ code, which can be linked in fairly arbitrary
ways with the other stages of his renderer.

Finally, [Perlin89] extended procedural shading to
define one class of new primitives, which he called
hypertexture. Hypertexture primitives are a form of
implicit function primitives, like blobs or metaballs.
They are defined with a special purpose language,
with the surface of the primitive defined by the zero-
crossings of the hypertexture function.

In the remainder of this paper, we first examine
requirements that must drive the specification of
procedural primitives on any 3D Z-buffer hardware.

Next, we discuss the procedural primitive
specification derived from these requirements. Then
we give an example of a procedural primitive written
using our language. Finally, we comment on
performance and present our conclusions.

2. Requirements
In this section, we examine the question of what we
want our procedural primitives to do. As much as
possible, we will make only general observations,
applicable to both interactive and non-interactive
systems. Concerns about interactivity will be
deferred to section 3, where we define the
specifications for our primitives.

2.1 Procedural primitive
Figure 2 shows a typical graphics pipeline. What
portions of this pipeline should our proposed
procedural primitive include? Some parts of the
pipeline can be run without knowing what type of
primitive is being rendered, while others cannot. For
example, RenderMan and other procedural shading
systems demonstrate that shading does not require
any information about the primitive. Even if we are
using a fixed shading model, say Phong shading with
image textures, the shading does not rely on special
knowledge of the primitive type. On the other hand,
the scan conversion stage clearly requires
information about the primitive. It is impossible to
identify which pixels are inside the primitive without
knowing the geometry of the primitive.

Those parts, and only those parts, of the pipeline that
require information about the specific primitive will
be included in our procedural primitive. We will now
examine the stages of the pipeline to see which will
be included in the procedural primitive and which
will be left out.

Transformation: Transformation will (usually) not be
part of the procedural primitive. Most of the time,
we need to transform vectors, normals, points, and
planes. In the interest of reducing the coding effort
required, the code for the procedural primitive need
not be involved in the transformation beyond
indicating which things are vectors, which are
normals, etc. Any more complex specialized
transformation tasks will be handled by the
procedural primitive. For example, a quadric surface
renderer would have to handle the transformation of
the matrix that describes the quadric.

Clipping: We cannot separate the clipping task from
the domain of the procedural primitive. To see why,
consider clipping a polygon. We find the
intersections of the edges with each clip plane, and
add or remove vertices to get a new polygon. Now
consider clipping a spline patch. One method would

transformation
|

clipping
|

scan conversion
|

visibility
|

interpolation
|

surface shading
|

fog and atmospheric effects

Figure 2. A typical graphics pipeline. Shaded
portions are included in the procedural primitive.

UNC-CH TR 97-040 3

be to find the curves of intersection between the
patch and clip planes, and to use these to produce a
trimmed patch. Thus, the polygon clipper cannot be
used with the spline patch, and the spline patch
clipper cannot be used with the polygon.

Scan conversion and visibility: These are trivially
part of the procedural primitive.

Interpolation: By interpolation, we refer to
interpolation of shading parameters across the
primitive. These may be the many arbitrary
parameters used by a procedural shader or the few
specific parameters used by some hard-coded shader.
Whatever the shading model, its parameters are
interpolated in just a few ways. The interpolation
stage uses a number of interpolation parameters to
compute the values of each shading parameter.

Interpolation must be part of the procedural
primitive. To see why, compare interpolation
methods for a triangle and a sphere. Linear
interpolation across a triangle is natural and makes
sense. On the other hand, linear interpolation across
a sphere does not make much sense — linear
between where and where? Similarly, interpolation
based on spherical coordinates makes sense on the
sphere but is meaningless on the triangle.

Surface shading, fog and atmospheric effects: As
already mentioned, we need not include shading as
part of the primitive. Similarly, fog and atmospheric
effects will also be excluded.

As we have now seen, to define a procedural
primitive we need code for the four middle stages of
the pipeline in figure 2: clipping, scan conversion,
visibility, and interpolation.

2.2 Interface to the application
Not only do we need code for the procedural
primitive, but we need some way for the application
code to access the new primitive. This interface
should be something that is easy to use. It should
match, or at least be similar to the traditional
methods of defining scan conversion and shading
parameters for the built-in primitives. Yet it should
not make too many assumptions about what a new
primitive might require.

There are two parts to this problem. We need some
mechanism to assign values for the parameters that
control the scan conversion. One example of such a
parameter is the vertex of a triangle. We also need
some mechanism to control shading parameter
interpolation, for example to control the linear color
interpolation across the triangle. We have looked at
some example primitives to gain an understanding of
what is needed for both.

2.2.1 Scan conversion parameters
What parameters are needed to control the scan
conversion? For insight, we’ll look at the parameters
used to define polygons, spline patches, spheres, and
implicit surfaces.

Polygons: Polygons are defined by three or more
vertices. The positions of the vertices completely
define the geometry of the polygon.

Spline patches: The definition of a spline patch is
based on its control points. Just as the vertex
positions defined the geometry of the polygon, for
some patch types the positions of the control points
completely define the geometry of the patch. Other
patch types also have a weight at each control point.
Still others also use a knot vector.

Spheres: The geometry of a sphere is defined by a
center and radius.

Implicit Surfaces: Implicit surfaces are defined by an
isosurface of some 3D density function. Sometimes
they are defined through the position and parameters
of several density function kernels.

From these examples, we distinguish two kinds of
scan-conversion parameters for the primitive. There
are parameters associated with a control point (we
call these per-sequence-point parameters for reasons
described in section 3.1), such as vertex coordinates
or spline weights, and per-primitive parameters that
have a single value for the whole primitive, such as
the radius of a sphere.

2.2.2 Interpolated values
What parameters are necessary to control
interpolation? Once again, we’ll look for insight at
interpolation for polygons, spline patches, spheres,
and implicit surfaces.

Polygons: A natural method of interpolating across a
polygon is linear interpolation. For this, a different
value is given for the shading parameter at each
vertex. Other interpolation methods, such as
perspective-correct, are also desirable.

Spline patches: A natural parameter interpolator for
a spline patch uses spline interpolation from
parameter values at each control point.

Spheres: Unlike polygons and spline patches, there is
no natural way to interpolate a shading parameter
across the sphere based on a value at either the center
or associated with both the center and radius.
However, there is an implicit interpolation that is
independent of any points on the primitive. Surface
normals on the sphere are an example of this implicit
interpolation.

UNC-CH TR 97-040 4

Implicit Surfaces: There is no natural way to
interpolate a shading parameter based on values at
vertices or control points since the implicit surface
has neither. Nor can we expect a handy coordinate
system such as spherical coordinates. One possibility
for interpolation is to have the parameter value
defined in space by another function.

From these examples, we see that sometimes the
interpolation parameters that control the
interpolation must be bound at the vertex or control
point, sometimes they have a single value for the
whole primitive, and sometimes no value at all. To
interpolate a single shading parameter may take
several interpolation parameters.

3. Procedural primitives
We have used these requirements to create a
specification for our procedural primitives. This
section provides some of the details of that
specification as well as reasoning for the decisions
we made that were not mandated by the
requirements.

3.1 Vertices, control points and
sequence points
First, we will address the problem of the application
programmer's interface (API). The PixelFlow API is
an extension to OpenGL [Akeley92]. Our goal was to
divorce the abstract programmable-primitive
interface from the PixelFlow specific
implementation, and to support the existing OpenGL
primitives as a special case. In OpenGL, there is a
notion of the current state of attributes such as color,
normals, etc. The current attributes are bound to a
vertex at the glVertex call.

We have introduced a generalized parameter-setting
call, glMaterial (figure 3), to change the current

parameter state of any attribute. One of the
arguments to glMaterial is the name of the attribute
to change. As with OpenGL, at the vertex call, the
current values of all parameters are bound and used
for that vertex.

This mechanism covers most of what we want. We
would also like to have the ability to bind attributes
as with glVertex, but without an associated point.
For example, an implicit surface primitive may be
defined by a series of grouped sets of blob
coefficients. These coefficients must be bound as a
group, but there are no vertices involved. To perform
this binding function, we borrow the compiler idea of
a sequence point. At the glSequencePointEXT call
(see figure 4), the current values of all parameters
are bound, as with the glVertex call. Note that the
OpenGL glVertex call is equivalent to setting the
vertex position parameter, then making a
glSequencePointEXT call.

3.2 Special-purpose language
Should the procedural primitive be written in a
special-purpose language or a general-purpose
programming language such as C? We have elected
to follow the example of Pixar’s RenderMan and use
a special-purpose language. The language can
include features specific to the writing of procedural
primitives. This reduces the effort required to write
each new procedural primitive. The language also
allows us to hide the details of the hardware. This
allows a user familiar with graphics, but not familiar
with our hardware, to write new primitives. It also
may make the language and interface portable to
other hardware. Finally, since we compile our
primitives, we can perform optimizations on the
code, especially important for hardware-based
interactive rendering.

glBegin(my_sphere_primitive);
glRastParamfEXT(radius_name, radius_value);
glRastParam3fEXT(center_name, cx, cy, cz);
glSequencePointEXT();

glEnd();

Figure 3. Example showing sequence point extension to OpenGL.

// declare that my_shading_parameter should use linear interpolation
glMaterialInterpEXT(my_shading_parameter, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);
glBegin(GL_TRIANGLES);

glMaterialf(GL_FRONT_AND_BACK, my_shading_parameter, shading_value0);
glNormal3f(n0x, n0y, n0z);

// glNormal3f(...) is equivalent to glMaterial3f(GL_FRONT_AND_BACK, GL_NORMAL, ...)
glVertex3f(v0x, v0y, v0z);

// similarly for other three vertices
glEnd();

Figure 4. Example showing extensions to OpenGL for arbitrary shading parameters.

UNC-CH TR 97-040 5

The main disadvantage is that some effort must be
spent learning the new language. To minimize this
cost, our language is similar to our shading language,
thus to the RenderMan shading language and to C.

3.3 The pixel-centric view
In addition to adopting a language similar to the
RenderMan shading language, we have also adopted
their pixel-centric point of view. A RenderMan
surface-shading function is written as if it were
running on only a single sample on the surface. Its
job is to determine the color of that one sample. The
description for a single sample is extended to the rest
of the surface by the compiler and renderer. Compare
this pixel-centric view to the incremental one where
the shader must describe explicitly how to find the
color of a sample given the color of the neighboring
sample.

Our procedural primitive is also written as if it were
running at a single pixel. Its job is to determine
whether that pixel is in the primitive, whether the
pixel is visible, and what value each shading
parameter takes there. Compare this to the
incremental approach where the procedural primitive
steps from one pixel to the next and one scan line to
the next. Most scan conversion algorithms have
traditionally been defined in this incremental
fashion. One disadvantage of the incremental scheme
is that the code for the primitive needs to know about
the image sampling.

One example is the traditional incremental polygon
scan conversion algorithm. The algorithm follows
the edges from one scan line to the next, and
interpolates depth and shading parameters from one
pixel to the next across the scan line. One such
algorithm was introduced by Pineda [Pineda88], and
has been used by Silicon Graphics [Akeley93]. This
algorithm uses a linear function (ax + by + c) of the
pixel coordinates for each edge. This function is
positive inside the edge and negative outside. The
values of the edge functions are incrementally
computed by adding b for each step from one scan
line to the next and a for each step from one pixel to
the next in a line. When an edge function changes
sign, we know that we’ve crossed outside the
polygon. This algorithm can be cast, instead, in a
pixel-centric form. Then an individual pixel is
determined to be in the polygon if all edge functions
are positive. This can also be thought of as the pixel-
centric version of the Pixel-Planes scan conversion
algorithm [Fuchs82], where the polygon is defined
implicitly as the region where all edge functions are
positive.

Some RenderMan surface shaders (notably the wall
paper in Pixar’s KnickKnack) operate by drawing
geometric shapes on the surface. It is satisfying to

note the consistency between the pixel-centric view
used by these mini-scan converters in the surface
shader and the pixel-centric view of our procedural
primitives.

3.4 Sharing interpolators
Earlier, we decided that shading parameter
interpolation should be part of the procedural
primitive. This was based on a two examples of
interpolators that work only for a specific primitive.
While interpolators that work across the surface of
the primitive typically cannot be generalized to work
for all primitives, some interpolators can work on
any primitive. We would like to be able to share
these general interpolators across all primitives.

What allows an interpolator to be shared with any
primitive? It cannot depend at all on the parameters
that define the primitive, on the number of sequence
points, or on the per-sequence point parameters. All
that is left are per-primitive parameters. Obviously
these can be used to define constant values, though
that’s not terribly interesting. They can also be used
to define arbitrary value fields in space. This is
equivalent to the Ebert’s solid spaces [Ebert94].
Using this technique, a surface shader can be turned
into a volume shader, as is shown in Figure 5. The
texture coordinates are determined by two functions
which are defined everywhere in space. Any surface
can use these texture coordinates, no matter what
primitives generated the surface. Note that some of
the shading parameters for the surface may be
generated by primitive-specific interpolators, while
others may be generated by primitive-independent
interpolators.

4. System accommodations
The previous sections describe a language and an
interface that are independent of the fact that, in our
prototype, they are running with graphics
acceleration hardware. There are a few specific
requirements made of the hardware and of the
software to accommodate hardware-based rendering.

Figure 5. Primitive independent interpolation of
texture coordinates.

UNC-CH TR 97-040 6

Modern interactive graphics hardware must make
heavy use of parallelism in the rasterization stage of
the pipeline to achieve the expected performance.
Our first requirement is that these processors be
programmable. Our second requirement is that they
have enough memory to execute interesting
primitives.

We have added a fixed-point arithmetic construct to
the shading and procedural-primitive language in
order to decrease the time spent in computations. In
addition to the RenderMan float, we have a fixed
data type with length (in bits) and fractional
arguments. The parameters X, Y, and Z in figure 6
are all declared as fixed.

The software framework has also been designed with
procedural primitives in mind. For generality, all
primitives, including the “built-in” ones must
register themselves with the software system at
startup time. All primitives are also driven by a
general parameter setting mechanism. This
generality is invisible to the user since the standard
OpenGL constructs and primitives are all supplied.

5. Example primitives
We will show how a generalized polygon primitive
might look if programmed using our language. We
show two versions of the polygon primitive. The first
turns the polygon into screen-space clipped triangles,
demonstrating a primitive that is decomposed into
simpler primitives. The second part renders screen-
space triangles directly.

Figure 6 is pseudo-code for the polygon primitive. It
is assumed that the vertices are coplanar and the
polygon is simple and convex. Note that this polygon
handles two kinds of interpolation. It can perform
perspective corrected or uncorrected linear
interpolation. The basic algorithm is to clip the
polygon against the hither plane, then split into a fan
of triangles.

Figure 7 is pseudo-code for the screen-space triangle
primitive. Remember that the procedure executes as
if it were running on at a single pixel. The pixel’s
location is found in the X and Y parameters. As with
the RenderMan shading language, varying variables
are those that have different values at different

primitive polygon(int vertex_count; // number of vertices
Point vertex[]; // vertices — transformed since they are a point type
interpolator_data interp_data[]; // when this is used, it is really applied to all

// interpolation parameters
varying fixed<32,16> X, Y; // screen coordinates (passed into screen_triangle)
inout varying fixed<32,32> Z) // Z-buffer (passed into screen_triangle)

{

// check clipping against hither plane
for each vertex

check vertex against hither plane

// draw triangle fan
for each vertex

if vertex is unclipped
divide by W to get 3D non-homogeneous vertex
add vertex to screen triangle
add interp_data value for this vertex to screen triangle
if there are three vertices in the current screen triangle

call screen_triangle to render it
reset current screen triangle for the next triangle in the fan

if current vertex and next vertex are on opposite sides of hither plane
compute new 3D non-homogeneous vertex at intersection with clipping plane
add this vertex to screen triangle
for linear or perspective_linear interpolators

add new interp_data value at clipping plane
if there are three vertices in the current screen triangle

call screen_triangle to render it
reset current screen triangle for the next triangle in the fan

}

Figure 6. Polygon primitive pseudo-code. Important points: vertices are pre-transformed since they are listed
with a Point type; any operations performed with the interp_data are applied for all per-vertex interpolation
parameters; further computations that should also apply to all per-vertex parameters use the
interpolator_data type.

UNC-CH TR 97-040 7

pixels. Only the varying computations need be
performed at every pixel. All other computations are
done once for all the pixels.

��� ����	�
��� screen_triangle, tests the pixel’s
position against each of the edges and the Z-buffer.
If the pixel is outside the triangle or fails the Z-test,
the primitive function returns without changing the
Z-buffer or interpolating any shading parameters for
that pixel.

5.1 Dealing with interpolated shading
parameters
There are four main features of the language
designed to support shading parameter interpolation.

The first is the interpolation_data type. This type is
used by the primitive in any shading parameter
computations. Any computations using the
interpolation_data type are applied to all per-vertex
interpolation parameters. In other words, for any

expression using this data type, our compiler
generates code to compute the same expression,
using either fixed point or floating point as
appropriate, for arbitrary sets of shading parameters.
The polygon primitive uses this to compute
interpolation parameter values at the hither clipping
plane. For these computations, it uses a variable of
the interpolation_data type called screen_data.
This can be seen in figure 8.

The second feature is the magic interp_data
parameter to the primitive. This parameter is of the
interpolation_data type. It holds the interpolation-
parameter data for all of the per-vertex shading
parameters. This can be seen in figure 6 and figure 7.
The per-primitive parameters are not mentioned
because the primitive itself does not need to do
anything with them.

The third feature is the interpolation construct. This
looks similar to a C switch statement, but the
branches are the different kinds of interpolation that

primitive screen_triangle(float screen_vertex[3][3]; // vertices — not point type, not transformed
 interpolator_data interp_data[3]; // shorthand for all interpolation parameters
 varying fixed<32,16> X, Y; // screen coordinates

inout varying fixed<32,32> Z) // Z-buffer
{

for each pair of vertices
compute edge expression
return if pixel is outside of edge

compute triangle Z
return if triangle Z < Z buffer
Z = triangle Z

for perspective-corrected linear interpolation
compute interpolation value

for uncorrected linear interpolation
compute interpolation value

for all other types of interpolation
execute shared interpolators here

}

Figure 7. Pseudo-code for screen_triangle primitive.

// declaration
interpolation_data screen_data[3];
...
// if vertex is unclipped
// add interp_data for this vertex to screen triangle
screen_data[screen_vertex_count] = interp_data[current_vertex];
...
// if current vertex and next vertex are on opposite sides of the hither plane
// for linear or perspective_linear interpolators
// add new interp_data value at clipping plane
interpolation {

perspective_linear:
linear:

screen_data[screen_vertex_count] = (1-t) * interp_data[current_vertex] + t * interp_data[next_vertex];
}

Figure 8. Interpolation details from polygon primitive.

UNC-CH TR 97-040 8

the primitive handles. For example, in figure 9, there
are branches for linear, and perspective_linear, the
two kinds of interpolation the screen_triangle
primitive supports. There is also a default branch,
which can be used for actions for any kinds of
interpolation not known to the primitive. Figure 8
and figure 9 both show examples of the interpolation
construct in use.

The final feature is the interpolation_return
statement. It is typically used inside an interpolation
construct to set the interpolated shading-parameter
values. The action of interpolator_return is similar
to the action of the interpolation_data type. When it
executes, it sets the actual values of the shading
parameters for each parameter in the primitive using
that particular kind of interpolation. Figure 9 has
three interpolator_return statements: one for the
shading parameters using perspective-correct linear
interpolation, one for the shading parameters using
uncorrected linear interpolation, and finally one

(with no value given) for the any shading parameters
using shared interpolators.

5.2 Example of a shared interpolator
Figure 10 shows an example of a simple shared
interpolator. This interpolator produces shading
parameter values based on a cylindrical coordinate
system. It is similar to a primitive, but its only result
is a single value, given in an interpolator_return
statement.

interpolation {
// for perspective corrected linear interpolation
// compute interpolation value
perspective_linear:

a = interp_data[0]/vertex[0][2] * (vertex[1][1] - vertex[2][1])
+ interp_data[1]/vertex[1][2] * (vertex[2][1] - vertex[0][1])
+ interp_data[2]/vertex[2][2] * (vertex[0][1] - vertex[1][1]);

b = ...
c = ...
interpolator_return(a * X + b * Y + c);

// for uncorrected linear interpolation
// compute interpolation value
linear:

a = interp_data[0] * (vertex[1][1] - vertex[2][1])
+ interp_data[1] * (vertex[2][1] - vertex[0][1])
+ interp_data[2] * (vertex[0][1] - vertex[1][1]);

b = ...
c = ...
interpolator_return(a * X + b * Y + c);

// for all other types of interpolation
// execute shared interpolators here
default:

interpolator_return;
}

Figure 9. Interpolation details from screen_triangle primitive.

interpolator cylindrical_interpolation(float cylinder_transform[4][4] = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}},
float cylinder_start = 0, cylinder_end = 1;
fixed<32,4> X, Y;
fixed<32,32> Z)

{
float screen_space_point[4] = {X, Y, Z, 1};
float cylinder_space_point[4] = cylinder_transform * screen_space_point;
interpolator_return((cylinder_end - cylinder_start) * atan(cylinder_space_point[1], cylinder_space_point[2]) / 2 / PI

 + cylinder_start);
}

Figure 10. A simple shared interpolator

UNC-CH TR 97-040 9

6. Performance
We expect our compiled primitives to be fast enough
for prototyping and low-volume uses. In applications
requiring hundreds of thousands of instances of a
custom primitive, we expect that it will be further
hand-tweaked (or even coded in assembly language)
after prototyping is complete.

Performance of a user-programmable primitive
coded in the high-level language will be directly
related to the optimizations performed by the
compiler. Not all of the optimizations that we plan to
support have been written. We expect to see steadily
increasing performance as the compiler matures.

As mentioned earlier, we currently have PixelFlow
boards in hardware testing and software running in
simulation. Therefore, we do not have performance
numbers at this time. By the final paper deadline, we
expect to have an operational machine to run our
procedural primitives. Procedural primitives have
been a goal of the project throughout its
development. Even our fast, hand optimized
primitives use the same internal interfaces as the
procedural primitives. At system initialization, the
built-in primitives are installed in the same fashion
as user-defined primitives.

7. Conclusions
We have designed extensions to a special-purpose
language and to an existing graphics API for creating
new primitive types and have built a prototype
implementation for the PixelFlow 3D graphics
machine. To design the interface, we examined the
general characteristics required to support a variety
of procedural primitives for a Z-buffer renderer. Our
interface is a direct result of this analysis and of
some concerns mandated by the nature of general
graphics-acceleration hardware. As a result, we have
an interface that does not require the user to have
detailed knowledge of the underlying graphics
hardware.

UNC-CH TR 97-040 10

8. References
[Akeley92] Kurt Akeley, K. P. Smith, J. Neider,
OpenGL Reference Manual, Addison-Wesley, 1992.

[Akeley93] Kurt Akeley, “RealityEngine Graphics”,
Computer Graphics (SIGGRAPH ‘93 Proceedings),
volume 27, August 1993, pp. 109–116.

[Amburn86] Phil Amburn and Eric Grant and Turner
Whitted, “Managing Geometric Complexity with
Enhanced Procedural Models”, Computer Graphics
(SIGGRAPH ‘86 Proceedings) , volume 20(4),
August 1986, pp. 189–195.

[Crow82] F. C. Crow, “A More Flexible Image
Generation Environment”, Computer Graphics
(SIGGRAPH ‘82 Proceedings) , volume 16(3), July
1982, pp. 9–18.

[Ebert94] David Ebert, F. Kenton Musgrave, Darwyn
Peachey, Ken Perlin and Steven Worley, Texturing
and Modeling: A Procedural Approach, Academic
Press, 1994.

[Fleischer88] K. Fleischer and A. Witkin, “A
Modeling Testbed”, Proceedings of Graphics
Interface ‘88 , Canadian Inf. Process. Society 1988,
pp. 137–137.

[Fuchs82] Henry Fuchs, John Poulton, “Pixel-Planes:
A VLSI-Oriented Design for a Raster Graphics
Engine,” VLSI Design, 2(3), 1982, pp. 20-28.

[Fuchs89] Henry Fuchs and John Poulton and John
Eyles and Trey Greer and Jack Goldfeather and
David Ellsworth and Steve Molnar and Greg Turk
and Brice Tebbs and Laura Israel, “Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System
Using Processor-Enhanced Memories”, Computer
Graphics (SIGGRAPH ‘89 Proceedings), volume 23,
1989, pp. 79–88.

[Glassner93] Andrew S. Glassner, “Spectrum: An
Architecture for Image Synthesis Research,
Education, and Practice”, SIGGRAPH ‘93
Developing Large-scale Graphics Software Toolkits
seminar notes, 1993.

[Green88] Mark Green and Hanqiu Sun, “MML: A
language and system for procedural modeling and
motion”, Proceedings of Graphics Interface ‘88,
June 1988, pp. 16–25.

[Hall83] R. A. Hall and D. P. Greenberg, “A Testbed
for Realistic Image Synthesis”, IEEE Computer
Graphics And Applications, volume 3, November
1983, pp. 10–20.

[Hanrahan90] Pat Hanrahan and Jim Lawson, “A
Language for Shading and Lighting Calculations”,
Computer Graphics (SIGGRAPH ‘90 Proceedings),
volume 24, August 1990, pp. 289–298.

[Hedelman84] H. Hedelman, “A Data Flow
Approach to Procedural Modeling”, IEEE Computer
Graphics and Applications , volume 3, January 1984,
pp. 16–26.

[Kolb92] Craig E. Kolb, Rayshade User’s Guide and
Reference Manual , January 1992.

[Kuchkuda88] Roman Kuchkuda, “An Introduction
to Ray Tracing”, Theoretical Foundations of
Computer Graphics and CAD , volume F40,
Springer-Verlag 1988, pp. 1039–1060.

[Lastra95] Anselmo Lastra, Steven Molnar, Marc
Olano and Yulan Wang, “Real-Time Programmable
Shading”, Proceedings of the 1995 Symposium on
Interactive 3D Graphics, ACM SIGGRAPH, 1995,
pp. 59 – 66.

[Molnar92] Steven Molnar, John Eyles and John
Poulton, “PixelFlow: High-speed Rendering using
Image Composition”, Computer Graphics
(SIGGRAPH ‘92 Proceedings) , volume 26, 1992,
pp. 231–240.

[Perlin89] Ken Perlin and Eric M. Hoffert,
“Hypertexture”, Computer Graphics (SIGGRAPH
‘89 Proceedings) , volume 23, July 1989, pp. 253–
262.

[Pineda88] Juan Pineda, “A Parallel Algorithm for
Polygon Rasterization”, Computer Graphics
(SIGGRAPH ‘88 Proceedings), volume 22, August
1988, pp. 17–20

[Rubin80] S. M. Rubin and T. Whitted, “A 3-
Dimensional Representation for Fast Rendering of
Complex Scenes”, Computer Graphics, volume
14(3), July 1980, pp. 110–116.

[Upstill90] Steve Upstill, The RenderMan
Companion, Addison-Wesley 1990.

[Whitted82] T. Whitted and D. M. Weimer, “A
Software Testbed for the Development of 3D Raster
Graphics Systems”, ACM Trans. on Graphics (USA),
volume 1(1), January 1982, pp. 43–57.

[Wyvill85] Geoff Wyvill and Tosiyasu L. Kunii, “A
Functional Model for Constructive Solid Geometry”,
The Visual Computer , volume 1(1), July 1985, pp.
3–14.

