

PetShop (BYU Students, SIGGRAPH 2006)

Geometric Objects in Computer Graphics

Last Time

- Overview of the second half of the semester
- Talked about real cameras and light transport
- Talked about how to turn those ideas into a ray-tracer
- Generate rays
- Intersect rays with objects
- Determine pixel color

Time for some math

- Today we're going to review some of the basic mathematical constructs used in computer graphics

Scalars

- A scalar is a quantity that does not depend on direction
- In other words, it's just a regular number
- i.e. 7 is a scalar
- so is 13.5
- or -4

Points

- A point is a list of n numbers referring to a location in n-D
- The individual components of a point are often referred to as coordinates
- i.e. $(2,3,4)$ is a point in 3-D space
- This point's x-coordinate is 2 , it's y coordinate is 3 , and it's z-coordinate is 4

Rays

- A ray is just a vector with a starting point
- Ray = (Point, Vector)

Rays

- Let a ray be defined by point \mathbf{p} and vector d
- The parametric form of a ray expresses it as a function as some scalar t , giving the set of all points the ray passes through:
- $r(\mathrm{t})=\mathbf{p}+\mathrm{td}, 0 \leq \mathrm{t} \leq \infty$

Vectors

- We said that a vector encodes a direction and a magnitude in $n-D$
- How does it do this?
- Here are two ways to denote a vector in 2-D:

$$
\begin{aligned}
& \mathbf{V}=\left\langle V_{x}, V_{y}\right\rangle \\
& \mathbf{v}=\left[\begin{array}{c}
V_{x} \\
V_{y}
\end{array}\right]
\end{aligned}
$$

Vector Magnitude

- Geometrically, the magnitude of a vector is the Euclidean distance between its start and end points, or more simply, it's length
- Vector magnitude in n-D: $\|\mathbf{V}\|=\sqrt{\sum_{i=1}^{n} V_{i}^{2}}$
- Vector magnitude in 2-D: $\|\mathbf{V}\|=\sqrt{V_{x}^{2}+V_{y}^{2}}$

Normalized Vectors

- Most of the time, we want to deal with normalized, or unit, vectors
- This means that the magnitude of the vector is 1 :
- We can normallze a vector by dividing the vector by its magnitude:
- N.B. The ' \wedge ' denotes a normalized vector

$$
\hat{V}=\frac{V}{\|\mathbf{V}\|}
$$

Question

- Are these two vectors the same?
- $(x, y)!=(0,0)$

- A: Yes and no
- They are the same displacement vectors, which is what we will normally care about

Vector Addition

- Vectors are closed under addition
- Vector + Vector = Vector

Vector Addition

Properties of Vector Addition \& Scaling

Addition is Commutative	$\mathbf{P}+\mathbf{Q}=\mathbf{Q}+\mathbf{P}$
Addition is Associative	$(\mathbf{P}+\mathbf{Q})+\mathbf{R}=\mathbf{P}+(\mathbf{Q}+\mathbf{R})$
Scaling is Commutative and	
Associative	
$(a b) \mathbf{P}=a(b \mathbf{P})$	
Scaling and Addition are	
Distributive	$a(\mathbf{P}+\mathbf{Q})=a \mathbf{P}+a \mathbf{Q}$ $(a+b) \mathbf{P}=a \mathbf{P}+b \mathbf{P}$

Points and Vectors

- Can define a vector by 2 points
- Point - Point $=$ Vector
- Can define a new point by a point and a vector
- Point + Vector = Point

Linear Interpolation

- Can define a point in terms of 2 other points and a scalar
- Given points $\mathbf{P}, \mathbf{R}, \mathbf{Q}$ and a scalar a
- $\mathbf{P}=\mathbf{a R}+(1-\mathrm{a}) \mathbf{Q}$
- How does this work?
- It's really $\mathbf{P}=\mathbf{Q}+\mathrm{aV}$
- $\mathbf{V}=\mathbf{R}-\mathbf{Q}$
- Point + Vector $=$ Point

Vector Multiplication?
 What does it mean to multiply two

 vectors?- Not uniquely defined
- Two product operations are commonly used:
- Dot (scalar, inner) product
- Result is a scalar
- Cross (vector, outer) product
- Result is a new vector

Properties of Vector Dot Products

Commutative
Associative with Scaling
Distributive with Addition
$(\boldsymbol{P} \mathbf{P}) \cdot \mathbf{Q}=\mathbf{Q}=a \cdot \mathbf{Q} \cdot \mathbf{P} \cdot \mathbf{Q})$
$\mathbf{P} \cdot(\mathbf{Q}+\mathbf{R})=\mathbf{P} \cdot \mathbf{Q}+\mathbf{P} \cdot \mathbf{R}$
$\mathbf{P} \cdot \mathbf{P}=\\|\mathbf{P}\\|^{2}$
$\|\mathbf{P} \cdot \mathbf{Q}\| \leq\\|\mathbf{P}\\|\\|\mathbf{Q}\\|$

Perpendiculars and Projections

Dot Product

 Application: Lighting- $P \cdot Q=\|P\|\|Q\| \cos a$
- So what does this mean if P and Q are normalized?
- Can get cos a for just 3 multiplies and 2 adds
- Very useful in lighting and shading calculations
- Example: Lambert's cosine law
Cross Product

$$
\mathbf{a} \times \mathbf{b}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right] .
$$

$\mathbf{a} \times \mathbf{b}=\mathbf{i}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\mathbf{j}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\mathbf{k}\left(a_{1} b_{2}-a_{2} b_{1}\right)$

Cross Product

 Application: Normals- A normal (or surface normal) is a vector that is perpendicular to a surface at a given point
- This is often used in lighting calculations
- The cross product of 2 orthogonal vectors on the surface is a vector perpendicular to the surface
- Can use the cross product to compute the normal

Columns and Rows

- 3 non-linear points
- Use linear interpolatio

- A perpendicular vector and an incident point
- $\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{0}$
- $a x+b y+c z+d=0$
- Hessian normal form: Normalize n first
- $\mathbf{n} \cdot \mathbf{x}_{-}=-\mathbf{n}$

Matrices

- Reminder: A matrix is a rectangular array of numbers
- An m x n matrix has m rows and n columns
- $M_{i j}$ denotes the entry in the i-th row and j th column of matrix M
- These are generally thought of as1indexed (instead of 0 -indexed)

Matrices

- Here, M is a 2×5 matrix:

Matrix Transposes

- The transpose of an $m \times n$ matrix is an $\mathrm{n} \times \mathrm{m}$ matrix
- Denoted M^{\top}
- $\mathrm{M}^{\top}{ }_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ji}}$
$\mathbf{M}^{\boldsymbol{T}}=\left[\begin{array}{lllll}M_{11} & M_{12} & M_{13} & M_{14} & M_{15} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25}\end{array}\right]^{\boldsymbol{T}}=\left[\begin{array}{ll}M_{11} & M_{21} \\ M_{12} & M_{22} \\ M_{13} & M_{23} \\ M_{14} & M_{24} \\ M_{15} & M_{25}\end{array}\right]$

Matrix Scaling

- Just like vector scaling
- Matrix * Scalar = Matrix

$$
\begin{gathered}
(a \mathbf{M})_{i j}=a M_{i j} \\
a \mathbf{M}=\left[\begin{array}{lllll}
a M_{11} & a M_{12} & a M_{13} & a M_{14} & a M_{15} \\
a M_{21} & a M_{22} & a M_{23} & a M_{24} & a M_{25}
\end{array}\right]
\end{gathered}
$$

Matrix Addition

- Only well defined if the dimensions of the 2 matrices are the same
- That is, $\mathrm{m}_{1}=\mathrm{m}_{2}$ and $\mathrm{n}_{1}=\mathrm{n}_{2}$
- Here, M and G are both 2×5

$$
(\mathbf{M}+\mathbf{G})_{i j}=M_{i j}+G_{i j}
$$

$\mathbf{M}+\mathbf{G}=\left[\begin{array}{lllll}M_{11}+G_{11} & M_{12}+G_{12} & M_{13}+G_{13} & M_{14}+G_{14} & M_{15}+G_{15}\end{array}\right]$ $\left[\begin{array}{lllll}M_{21}+G_{21} & M_{22}+G_{22} & M_{23}+G_{23} & M_{24}+G_{24} & M_{25}+G_{25}\end{array}\right]$

Properties of Matrix Addition and Scaling

Addition is Commutative	$\mathbf{F}+\mathbf{G}=\mathbf{G}+\mathbf{F}$
Addition is Associative	$(\mathbf{F}+\mathbf{G})+\mathbf{H}=\mathbf{F}+(\mathbf{G}+\mathbf{H})$
Scaling is Associative	$a(b \mathbf{F})=(a b) \mathbf{F}$
Scaling and Addition are	
Distributive	$a(\mathbf{F}+\mathbf{G})=a \mathbf{F}+a \mathbf{G}$
$(a+b) \mathbf{F}=a \mathbf{F}+b \mathbf{F}$	

The Identity Matrix

- Defined such that the product of any matrix M and the identity matrix I is M
- $\mathbf{I M}=\mathbf{M I}=\mathbf{M}$
- Let's derive it
- The identity matrix is a square matrix with ones on the diagonal and zeros elsewhere

The Identity Matrix

- Defined such that the product of any matrix M and the identity matrix I is M
- $\mathbf{I M}=\mathbf{M I}=\mathbf{M}$
- Let's derive it
- The identity matrix is a square matrix with ones on the diagonal and zeros elsewhere
$\left(\mathbf{I}_{n}\right)_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}$ $\mathrm{I}_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Linear Systems, Matrix Inverses, etc.

- I'm not planning to cover this material in this course
- If there is any interest in going over this, let me know and l'll cover it on Tuesday

Next Time

- Going to cover coordinate systems and transforms, focusing on 2D

