
1

Now Playing:

Liar

Built To Spill

from You In Reverse

Released April 11, 2006

Movie:
For The Birds

Pixar, 2000

Ray Tracing 1

Rick Skarbez, Instructor

COMP 575

November 1, 2007

Announcements
• Programming Assignment 3

(Rasterization) is due THIS Saturday,
November 3 by 11:59pm

• If you do hand in by tonight, +10 bonus

points

• Assignment 3 (texture mapping and ray
tracing) is out, due next Thursday by
the end of class

• Remember that you need to talk to me
about your final project

Programming 2
Recap

• Spherical Coordinates

• Demo on board

• Per-Vertex Normals

• Demo on board

Programming 3 Info
• Test data for part 1 (Lines) is available

• As C/C++ array, or just as a text file

• In both cases, each line has 7 parameters

• (x1, y1, x2, y2, R, G, B)

• This data set anticipates a 512x512

window

• To read the array (line.data), use something

like the following code:

2

Programming 3 Info

• For parts 2 and 3, the program should
respond to user input

• Can do this several ways

• Accept coordinates as command line input

• Prompt for user input while running

• Allow user to click and choose points (like

polygon creation in assignment 1

Programming 3 Info

• For part 3 (line clipping), should display
a window bigger than the clip window

• i.e.

Viewport Clip against this

Assignment 3
Overview

Last Time

• Extended our “camera” to be much
more general

• Arbitrary position / orientation / focal length

• Briefly discussed the software
architecture of a raycaster

• Took a short course feedback survey

• Thanks very much to everyone who

participated!

Today

• Discussing how to implement shadows
and reflections in a raytracer

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

3

Building a Frustum

• So, we have:

• θ, hRes, vRes,

eye, center, Up

• Want to use these to compute
Du, Dv, V0

• These three vectors define the image plane

Ey

e

V0

Dv

Du
The “Right” Vector

• Need a vector that points in the “Du

direction”

• Any ideas?

• Cross the look vector and the up vector

• Du = LookAt x Up

+x

+y

+z

LookAt

Up

Du

Note that Note that LookAtLookAt and and UpUp

should be unit vectorsshould be unit vectors

The “Down” Vector

• So how to we find a vector
perpendicular to two other vectors

• Cross product

• Dv = LookAt x Du

+x

+y

+z

LookAt

Du

Dv

Note that if LookAt and Up
are both unit vectors, then

Du and Dv are also unit

vectors

Finding V0

Eye

+x

+y

+z

V0

Dv

Du

✓
✓

?

LookAt

-Du
hRes

2
-Dv

vRes
2

1

-Du
hRes

2

-Dv
vRes

2

1

Complete Frustum
SpecificationGiven Points:

Given Unit
Vector:

Given FOV

Angle:
Given

Dimensions:
NOTE:

Normalize

Du and Dv!

Du = LookAt x Up
Dv = LookAt x Du

eye, center

θ

vRes, hRes

Up LookAt =
||center - eye||

center - eye

Raycaster System
Overview

For Each
Pixel

Camera Ray

Generates

Linked List of Objects

Sphere

Plane

Etc.

App Camera
Matrix

Test For
Closest

Sphere

Closest Object

Linked List of Materials

Material #1

Material #2

Linked List of Lights

Ambient #1

Point #1

Point #2

Shade()

Material #2
Shade()

Surface Material

Illuminated
By

Pixel Color

4

Shadows

Standard Scene Scene With Shadows

Shadows

• What causes shadows?

• An object lies between the shadowed

surface and the light source

• That is, the second object blocks

photons/rays from reaching the first object

Shadows

No shadow on bunny
Bunny is in darkness

Shadows

• So finding shadows is easy if all rays
are starting at the light sources

• If the ray does not get to a surface, that

surface is in shadow

• But, remember, we’re tracing rays
backward

• Starting at the camera

• This complicates matters a bit

Shadows

• Assume we did our raycasting, and
found that the ray intersected the plane

• Now we want to shade the point

• Which includes determining if it is in shadow

• We can test this with a ray from the
point to the light

And so we begin ray

tracing...

5

Recursive Ray
Casting

Ray Casting

Shade

Ray Traced Shadows

Shade

Ray Tracing

Shade

Shadow Shadow

Recursive Ray
Tracing• Same idea as recursive functions

• To solve one function/ray, do some simple work

to generate inputs for a new function/ray

• Recurse ‘til you’re done

• And just like recursive functions, it means
we have to be very careful programmers

• A small error in calculation or memory

management can lead to catastrophe

• That said, now we can do some really cool
stuff

Implementing
Shadows

• All we do is generate a new ray, starting
at the point and directed along the light
vector

• Test it just like any other ray

• If an intersection occurs, then the point may

be shadowed

Shadow

Ray

Implementing
Shadows

• To be thorough, we need to check the
distance on the intersection

• The object is only in shadow if the t value for

the intersection is less than the t value of the

light

Shadow

Ray

Here the point

is shadowed

Here it is not

Shadows Summary
• Can check if a point is in shadow by

drawing a ray from that point to a light

• If that ray hits an object, the point is in shadow

• This is our first baby step into real ray
tracing

• Shadows are EASY

• Already know the point and vector of the new

ray

• Can use the existing intersection code

Lights and Shadows

• Remember our different kinds of lights?

• Point lights (i.e light bulbs)

• Directional lights (i.e. the Sun)

• Spot lights

• Area lights

How do these cause problems for us
when doing shadows?

6

• Point light sources at an infinite (or near
infinite) distance

• How does this affect our shadow rays?

• Any intersection with a positive t is valid

(generates a shadow)

Directional Lights
• Similar to point lights, but intensity of

emitted light varies by direction

• Need to make sure that the shadow ray is

inside the cone

Spot Lights

Spot Lights

Vector Similarity: S • L

Point Being Shaded
L

• Can test your shadow ray against the
extents of your spotlight

• If |S • L| <= |S • angleMax|, go
ahead

angleMax

S

L

• The most difficult case

• No longer just one shadow ray

• Really, infinitely many shadow rays

• Can address by shooting many shadow rays

for each light

• This is a sampling/reconstruction

problem

• We’ll come back to it later

Area Lights

Lights and Shadows
Summary• Can still use the shadow ray technique

with all the kinds of lights we consider

• Need to do a little bit more work for
some

• Directional lights: intersections at any

distance

• Spot lights: make sure ray is inside cone

• Area lights: need to shoot a whole mess of

rays

Reflection

• Now we’re going to learn how to do
reflections in our ray tracer

• This is one of the classic benefits of ray

tracing

• Why do you think all these images have

mirrored spheres in them?

• Most every other rendering technique has to

use hacks for this

7

Reflection and
Specularity

• Reflection and specularity are really
close

R S

• We’ll use the reflection vector we
computed for our specularity calculation
as the new ray direction

Reflection Vector

Diffuse Specular

E

N

RL

Ray Reflection
N

R E

L

• Define a ray with

• P = intersection point

• V = reflection vector

• Reflection of the eye

vector, to be clear

How to Integrate
This?

• I = (1 - r)Σ[Ia(Ra, La) + Id(n, l, Rd, Ld, a,

b, c, d)

+ Is(r, v, Rs, Ls, n, a, b, c,d)]

• This was our shading equation before:

Ambient

Specular

Diffuse

Lights

• Add another term, say r * (refColor)

• Where r is how reflective the surface is

• [0, 1]

• And refColor is the color from the reflection

ray

Shading + Reflection

• I = (1 - r)Σ[Ia(Ra, La) + Id(n, l, Rd, Ld, a,

b, c, d)

+ Is(r, v, Rs, Ls, n, a, b, c,d)] +

r(refColor)

• So now we have:

Lights

Shading the
Reflection Ray

• So how do we determine the value of
refColor?

• Just treat it exactly like a camera ray

• See if it intersects anything

• If so, shade as normal and, if

necessary, reflect again

• If not, return the background color

8

Recursion

Ray Tracing

Shade

Reflection
Recursions

No Recursion (But With Shadows)

Reflection
Recursions

1 Recursion

Reflection
Recursions

2 Recursions

Reflection
Recursions

3 Recursions

Reflection
Recursions

4 Recursions

9

Reflection
Recursions

5 Recursions

Stopping the
Madness

• Does anyone see the problem here?

• This could go on forever

• Think of 2 mirrors reflecting each other

• This would result in stack overflow and

terribleness

• Need some way to stop it

Stopping the
Madness• Solution: Put a depth limit on the

recursion

• Initialize each camera ray to have a depth of 0

• Every “child” ray has depth = (parent’s depth

+ 1)

• Do not allow any new rays to be created

with depth > maxDepth

• Also, there’s obviously no need to cast
new rays if the reflection coefficient is 0

Reflection Summary
• Reflection adds a great deal of realism

to rendered scenes

• We discussed:

• Generating reflection rays

• Similar to specularity

calculation

• Shading with reflection

• Just add another term

• Preventing infinite recursion

Refraction
• Refraction works just like reflection

• When a ray hits a surface

• Shade as normal

• Figure out if you need to cast a refraction

ray

• If so, calculate the new ray

• Shade it as normal, and add it as yet

another term to our shading equation

Refraction Rays
• Need to store the index of refraction

and a transparency coefficient or each
material

• If the object is transparent, generate a new

ray using Snell’s law

• Continue just as in reflection

n1 sin α1 = n2 sin α2

10

Refraction Example Next Time

• Filling in some of the gaps for how to

build a real ray tracer

• Instantiation of multiple objects

• Some acceleration tricks and
optimizations

• Identifying and fixing some tricky bits

