
1

Now Playing:

California Stars

Billy Bragg & Wilco

from Mermaid Avenue

Released June 23, 1998

Vertex Processing:
Clipping

Rick Skarbez, Instructor

COMP 575

October 2, 2007

Some slides and images courtesy Jeremy Wendt (2005)

Announcements

• Assignment 2 is out today

• Due next Tuesday by the end of class

• Reviewed the OpenGL pipeline

• Discussed classical viewing and
presented a taxonomy of different views

• Talked about how projections and
viewport transforms are used in
OpenGL

Last Time

Today

• Discuss clipping

• Points

• Lines

• Polygons

Rendering Pipeline

• OpenGL rendering works like an
assembly line

• Each stage of the pipeline performs a

distinct function on the data flowing by

• Each stage is applied to every vertex to

determine its contribution to output pixels

Geometry

(Vertices)

Vertex

Processing
Rasterizer

Fragment

Processing
Pixels

2

Vertex Processing

Vertex

Processing

Vertices

Modelview

Transform

Projection

Transform

Clipping & Primitive Assembly

Viewport

Transform

Lighting

Determining What’s
in the Viewport

• Not all primitives map to inside the
viewport

• Some are entirely outside

• Need to cull

• Some are partially inside and partially

outside

• Need to clip

• There must be NO DIFFERENCE to the

final rendered image

Why Clip?

• Rasterization is very expensive

• Approximately linear with number of

fragments created

• Math and logic per pixel

• If we only rasterize what is actually
viewable, we can save a lot

• A few operations now can save many later

Clipping Primitives

• Different primitives can be handled in
different ways

• Points

• Lines

• Polygons

Point Clipping
• This one is easy

• How to determine if a point (x, y, z) is in
the viewing volume (xnear, ynear, znear),
(xfar, yfar, zfar)?

• Who wants to tell me how?

• if ((x > xfar II x < xnear) ||

(y > yfar II y < ynear) ||

(z > zfar II z < znear))

cull the point

else

keep it

Line Clipping

• What happens when a line passes out
of the viewing volume/plane?

• Part is visible, part is not

• Need to find the entry/exit points, and
shorten the line

• The shortened line is what gets passed to

rasterization

3

Line Clipping
Example• Let’s do 2D first

• Clip a line against 1
edge of the viewport

• What do we know?

• Similar triangles

• A / B = C / D

• B = (x2 - x1)

• A = (y2 - y1)

• C = (y1 - ymax)

➡ D = BC / A

➡ (x’, y’) = (x1 - D,
ymax)

(x2, y2)

(x1, y1)

(x’, y’) ???

A

B

C

D

Line Clipping
• The other cases are handled similarly

• The algorithm extends easily to 3D

• The problem?

• Too expensive! (these numbers are for 2D)

• 3 floating point subtracts

• 2 floating point multiplies

• 1 floating point divide

• 4 times! (once for each edge)

• We need to do better

Cohen-Sutherland
Line Clipping

• Split plane into 9
regions

• Assign each a 4-bit tag

• (above, below, right, left)

• Assign each endpoint
a tag

1001 1000 1010

0001 0000 0010

0101 0100 0100

Viewport

Cohen-Sutherland
Line Clipping• Algorithm:

1. if (tag1 == tag2 == 0000)

accept the line

2. if ((tag1 & tag2) != 0)

reject the line

3. Clip the line against an

edge (where both bits

are nonzero)

4. Assign the new vertex a

4-bit value

5. Return to 1

1001 1000 1010

0001 0000 0010

0101 0100 0110

Viewport

N.B.: & is the bitwise
AND operator

Cohen-Sutherland
Example

• What are the vertex codes for these
lines?

Cohen-Sutherland
Line Clipping

• Lets us eliminate many edge clips early

• Extends easily to 3D

• 27 regions

• 6 bits

• Similar triangles still works in 3D

• Just have to do it for 2 sets of similar

triangles

4

Liang-Barsky
Line Clipping• Consider the parametric definition of a

line:

• x = x1 + u∆x

• y = y1 + u∆y

• ∆x = (x2 - x1), ∆y = (y2 - y1), 0 ≤ (u, v) ≤ 1

• What if we could find the range for u and v
in which both x and y are inside the
viewport?

Liang-Barsky
Line Clipping

• Mathematically, this means

• xmin ≤ x1 + u∆x ≤ xmax

• ymin ≤ y1 + u∆y ≤ ymax

• Rearranging, we get

• -u∆x ≤ (x1 - xmin)

• u∆x ≤ (xmax - x1)

• -v∆y ≤ (y1 - ymin)

• v∆y ≤ (ymax - y1)

• In general: u * pk ≤ qk

Liang-Barsky
Line Clipping

• Cases:

1. pk = 0

• Line is parallel to boundaries

• If for the same k, qk < 0, reject

• Else, accept

2. pk < 0

• Line starts outside this boundary

• rk = qk / pk

• u1 = max(0, rk, u1)

Liang-Barsky
Line Clipping

• Cases: (cont’d)

3. pk > 0

• Line starts outside this boundary

• rk = qk / pk

• u2 = min(1, rk, u2)

4. If u1 > u2, the line is completely outside

Liang-Barsky
Line Clipping

• Also extends to 3D

• Just add equations for z = z1 + u∆z

➡ 2 more p’s and q’s

Liang-Barsky
Line Clipping

• In most cases, Liang-Barsky is slightly
more efficient

• According to the Hearn-Baker textbook

• Avoids multiple shortenings of line segments

• However, Cohen-Sutherland is much
easier to understand (I think)

• An important issue if you’re actually
implementing

5

Nicholl-Lee-Nicholl
Line Clipping

• This is a theoretically optimal clipping
algorithm (at least in 2D)

• However, it only works well in 2D

• More complicated than the others

• Just do an overview here

Nicholl-Lee-Nicholl
Line Clipping• Partition the region

based on the first point
(p1):

• Case 1: p1 inside region

• Case 2: p1 across edge

• Case 3: p1 across corner

L

T

R

B

p1

Case 1

L

LT

LR

LB

p1

L

L

Case 2

T
T

TR

LB

p1

L

TB

Case 3

Nicholl-Lee-Nicholl
Line Clipping

• Can use symmetry to handle all other
cases

• “Algorithm” (really just a sketch):

• Find slopes of the line and the 4 region

bounding lines

• Determine what region p2 is in

• If not in a labeled region, discard

• If in a labeled region, clip against the

indicated sides

A Note on
Redundancy• Why am I presenting multiple forms of

clipping?

• Why do you learn multiple sorts?

• Fastest can be harder to understand /
implement

• Best for the general case may not be for the
specific case

• Bubble sort is really great on mostly sorted

lists

• “History repeats itself”

• You may need to use a similar algorithm
for something else; grab the closest match

Polygon
Inside/Outside

• Polygons have a distinct inside and
outside

• How do you tell, just from a list of
vertices/edges?

• Even/odd

• Winding number

Polygon
Inside/Outside:

Even / Odd• Count edge crossings

• If the number is even, that area is outside

• If odd, it is inside

0

2

2

1
0 1

1

1

2

2

2

3

3

4

6

Polygon
Inside/Outside:

Winding Number• Each line segment is assigned a
direction by walking around the edges
in some pre-defined order

• OpenGL walks counter-clockwise

• Count right->left edge crossings and
left->right edge crossings

• If equal, the point is outside

Polygon Clipping

• Polygons are just composed of lines.
Why do we need to treat them
differently?

• Need to keep track of what is inside

Lines Polygons

NOTE:

Polygon Clipping

• Many tricky bits

• Maintaining inside/outside

• Introduces variable number of vertices

• Need to handle screen corners correctly

Sutherland-
Hodgeman Polygon

Clipping
• Simplify via separation

• Clip the entire polygon with one edge

• Clip the output polygon against the next

edge

• Repeat for all edges

• Extends easily to 3D (6 edges instead
of 4)

• Can create intermediate vertices that
get thrown out later

Sutherland-
Hodgeman Polygon

Clipping• Example 1:

Out -> In

Save new clip vertex

and ending vertex

In -> In

Save ending vertex

In -> Out

Save new clip vertex

Out -> Out

Save nothing

Sutherland-
Hodgeman

Polygon Clipping• Example 2:

Start
Clip
Left

Clip
Right

Clip
Bottom

Clip
Top

NOTE:

7

Weiler-Atherton
Polygon Clipping

• When using Sutherland-Hodgeman,
concavities can end up linked

• A different clipping algorithm, the
Weiler-Atherton algorithm, creates
separate polygons

Remember

this?

Weiler-Atherton
Polygon Clipping

• Example:

Out -> In

Add clip vertex

Add end vertex

In -> In

Add end vertex

In -> Out

Add clip vertex

Cache old direction

Follow clip edge until

(a) new crossing found

(b) reach vertex already

added

Weiler-Atherton
Polygon Clipping

• Example (cont’d):

Continue from

cached vertex and

direction

Out -> In

Add clip vertex

Add end vertex

In -> Out

Add clip vertex

Cache old direction

Follow clip edge until

(a) new crossing found

(b) reach vertex already

added

Weiler-Atherton
Polygon Clipping

• Example (cont’d):

Continue from

cached vertex and

direction

Nothing added

Finished

Final Result:

2 unconnected

polygons

Weiler-Atherton
Polygon Clipping

• Difficulties:

• What if the polygon recrosses

an edge?

• How big should your cache be?

• Geometry step must be able to create new

polygons

• Not 1 in, 1 out

Done with Clipping
• Point Clipping (really just culling)

• Easy, just do inequalities

• Line Clipping

• Cohen-Sutherland

• Liang-Barsky

• Nicholl-Lee-Nicholl

• Polygon Clipping

• Sutherland-Hodgeman

• Weiler-Atherton

Any Questions?

8

Next Time

• Moving on down the pipeline

• Rasterization

• Line drawing

