
1

Now Playing:

Still Alive

Jonathan Coulton

from Portal: The Game
Released October 9, 2007

Real Cameras and
Light Transport

Rick Skarbez, Instructor

COMP 575

October 23, 2007

Announcements

• Programming Assignment 2 (3D
graphics in OpenGL) is out

• Due THIS Thursday, October 25 by

11:59pm

• Programming Assignment 3
(Rasterization) is out

• Due NEXT Thursday, November 1 by

11:59pm

Last Time

• Finished our discussions of mapping

• Texture Mapping

• Bump Maps

• Displacement Maps

• Talked about programmable graphics hardware

• Discussed the class project

Today

• Further discussion of real lights and real
cameras

• Easing into ray-tracing

Recap of
Rasterization-Based

Rendering
• Very fast

• Computer games get 30+ frames per

second on commodity hardware

• Not very good (comparatively speaking)

• Need lots of hacks/workarounds to get

effects like shadows, global illumination,

reflection, etc.

2

Recap of
Rasterization-Based

Rendering• Everything in the world is a colored
polygon

• Projects these polygons onto the
“screen” to generate the image seen by
the user

• All processed independently

• One polygon’s color doesn’t depend on

another’s

Hallmarks of
Rasterization

• Very high rendering speed

• Lots of parallelism

• Independence of
vertices/polygons/pixels

• Runs in “assembly line” fashion

• Not very realistic

• We have other options, though...

• Let’s revisit the rendering equation

The Rendering
Equation

• In short, the light out from a point in a
specific direction depends on:

• The light it emits in that direction

• The light incident on that point from every
direction, affected by

• How reflective the material is for that pair
of directions

• How close the incoming direction is to the
surface normal

Jim Kajiya, 1986

Movie Break!
Tin Toy

Pixar, 1988

Available online:

http://v.youku.com/v_show/id_ch00XMTE1OTIw.html

Lights, Cameras, and
Surfaces

• Remember way back at the beginning
of the semester we talked about these?

• Now we’re ready to talk about them again

• How are these connected in the real
world?

• Light!

• More precisely, photons

• Light sources emit photons

• Surfaces reflect & absorb photons

• Cameras measure photons

Lights, Cameras,
Surfaces

3

• The quanta of electromagnetic energy

• “Particles of light”

• Appear to be particles and waves
simultaneously

• We ignore wave behavior (i.e. diffraction)

• We simulate particle behavior

Photons

• We model photons as “rays” of light

• Rays in the mathematical sense

• Defined by a starting point and a
vector

Photons as Rays

• There are several kinds of lights (or
light sources)

• Light bulbs

• The sun

• Spot Lights

• Ceiling Lights

• These are different because they emit
photons differently

Lights Lights
• We’ve already talked an awful lot about

lights

• There are several types:

• Point lights (i.e light bulbs)

• Directional lights (i.e. the Sun)

• Spot lights

• Area lights

• In the real world, just about EVERY light is

an area light

• Emit light evenly in all directions

• That is, photons (rays) from a point light all

originate from the same point, and have

directions evenly distributed over the sphere

Point Lights (i.e. Light
Bulbs)

• Point light sources at an infinite (or near
infinite) distance

• Can assume that all rays are parallel

Directional Lights (i.e.
the Sun)

Earth

4

• Point light sources at an infinite (or near
infinite) distance

• Can assume that all rays are parallel

Directional Lights (i.e.
the Sun)

• Similar to point lights, but intensity of
emitted light varies by direction

• Can think of it as

only emitting rays

over a patch on the

sphere

•

Spot Lights (i.e., well,
Spot Lights)

• Emits light in every direction from a
surface

• Can think of it as a set of point lights, or a

patch on which every point is a point light

Area Lights (i.e.
Ceiling Lights)

Surfaces

• We’ve talked a little bit about surfaces

• In terms of OpenGL lighting

• We’re not going to talk about them in a
lot more detail here

• Just remember that in OpenGL, surfaces

can’t be reflective/refractive

• In the real world, they can be

• Surface materials
can be:

• Dull

• Shiny

• Bumpy

• Smooth

• Transparent

• Translucent...

Surfaces

• So what do surfaces do?

• They selectively react to incoming photons

• Absorb

• Reflect

• Refract

• Fluoresce

• etc.

Surfaces

5

• Surfaces make up the “interesting”
things in a scene, but from a light
transport point of view, they are just
intermediaries

Surfaces
• Almost all cameras work in a similar

fashion

• Use a lens to map rays from the scene (i.e.

the world) onto an image plane

Cameras

Cameras

• Last time we talked about cameras, we
only considered “pinhole” cameras

• Where all light passes through a single point

• i.e. camera obscura

• These do exist in the real world

• But almost all real cameras have lenses

Camera Obscura

Scene

Pinhole

Image
Plane

Pinhole Projection

This is essentially what
we’ve seen in OpenGL

So why do we need
lenses?

• To gather more light

• In an ideal pinhole camera, exactly one ray

would reach each point in the image plane

• To focus the light

• In an ideal pinhole camera, this is not a

problem

• But in a real camera (even a pinhole one),

objects will appear unfocused

6

Pinhole Focus
Problems

Pinhole Size

Projection through a
Lens

Refraction
• Lenses refract light passing through

them

• That is, change the direction of rays

• Refraction is governed by Snell’s law:

• n1 sin(α1) = n2 sin(α2)

• n is the index of refraction for a material

Paraxial (or First-
Order) Optics

• Assumes that angles are small (i.e. the
lens is small and/or any objects are far
away)

➡Can approximate sin(α1) with α1

• Assumes all lenses are spherical

• Assumes all lenses are symmetric
about their optical axes

Paraxial Optics

n
1

sin 〈
1
= n

2
sin 〈

2
n

1
〈

1
Η n

2
〈

2

• Scary-looking math slide

Snell’s Law Small AnglesParaxial Refraction

Thin Lenses
• Don’t need to know all the math from

the last slide

• Just showing it to you

• But we can use that to talk about actual
lenses

• Esp. thin lenses, where a ray can be

assumed to refract at one boundary, and

immediately refract again at the other

boundary

7

Thin Lenses Depth-of-Field

• Real lenses have what is termed depth-
of-field

• The range over which objects in the scene

appear in focus

Depth-of-Field
Examples

Thick Lenses

• Lenses actually have some thickness

• We’re not going to do the math here

Compound Lenses

• In real cameras, there is usually not just
one lens, but a series of lenses

• The entire set is called a compound lens

• This is done to reduce aberrations

introduced by lenses

• We won’t discuss this further

Properties of
Cameras

• There are 2 primary characteristics of a
camera that affect how much light gets
to the film:

• Aperture

• How wide the lens is

• Shutter speed

• How long the film is exposed

• There are trade-offs between the two

8

Aperture Artifacts

• A wider aperture produces a narrower
depth-of-field

Narrower

Wider

Shutter Speed
Artifacts

• A slower shutter speed means the
shutter is open for more time

• This can result in motion blur

• Images are formed by lights, surfaces,
and cameras

• Lights emit rays

• Surfaces change rays

• Cameras capture rays

• Real cameras have lenses

• These introduce various effects to the final

image

Recap Image Plane
• Real cameras have an image plane

behind the lens

• Film cameras project onto film

• Digital cameras project onto a chip

• CCD

• CMOS

• “Virtual cameras”, like in computer
graphics, can have the image plane in
front of the lens

Photographic Film
• Too much detail to cover here

• In short, film is covered with a chemical
that undergoes a reaction when hit with a
photon

• If you are interested, read some of these:

Charge-Coupled
Devices (CCDs)

• Have discrete detectors (photometric
sensors) at pixel (or subpixel) locations

• When you take a picture:

• Each pixel is pre-charged

• The shutter is opened

• Photons “knock off” electrons from the pixels

• The shutter is closed

• Pixels are read and stored

9

CCDs
photosensitive

storage

CMOS
• Same sensor elements as CCD

• But read-out is different

• Uses standard CMOS technology

• Won’t go into details

• Can find a bit more info online if you’re

interested

• http://www.image-designer.com/digital-

camera-ccd.html

Color in Digital
Cameras

• Each sensor only detects, essentially,
the number of electrons that hit it

• Generates a luminance (black & white)

image

• 2 ways to get color

• 3 separate sensor arrays

• 1 each for red, green, blue

• Bayer Pattern

Bayer Patterns

The process of reconstructing the “real” color at

each pixel is called demosaicing

Do you see a

problem with

this?

3 CCD Color

• Uses a beam-splitter to redirect
incoming light to each of 3 CCDs:

What’s better about this?
What’s worse?

Recap

• Real cameras also need a sensing
image plane

• Photographic film in traditional cameras

• CCD or CMOS chips in digital cameras

• Digital cameras need to do something
extra to get color images

• Multiple sensors

• Bayer patterns

10

A Model of the
Universe

A Model of the
Universe

Direct Illumination

• It is perfectly reasonable to try to
implement an algorithm based on the
model discussed so far

• However, it would be VERY inefficient

• Why?

• Many (probably most) light rays in a
scene would never hit the image
plane

A Problem? A Problem?

Direct Illumination

• Instead of shooting rays from the light,
shoot rays from the camera

• Shoot one (or, realistically, many)
rays per pixel

• Can stop when you hit a light and/or a
non-reflective surface

• This is the basis of the ray tracing
algorithm

A Solution A Solution

Ray Tracing

11

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

Ray Casting

1. Generate the rays that are seen by the
eye

• One (or more) for each pixel

• Need to determine ray origin /
directions

2. Figure out what (if anything) those rays
hit

• Compute the nearest intersection

• Ray-object intersections

3. Determine the color of the pixel

•

Ray-Tracing
Components

A Model of the
Universe

Indirect
Illumination

This is also commonly
referred

to as global illumination

With Global Illumination

Direct Illumination vs.
Global Illumination

Direct Illumination Only

• This week and next

• Casting Rays

• Weeks 12 & 13

• Ray Tracing

• Radiosity

• Week 14

• Photon Mapping

Class Schedule

12

• Week 15

• Special Topics (tentative)

• High Dynamic Range (HDR)
Rendering

• Image-Based Rendering

• Suggestions?

• Week 16

• Course / Final Exam Review

Class Schedule Next Time

• Figuring out how to cast rays

• Turning the concepts from today into

concrete math

• Programming Assignment 2 is due

• 11:59pm Thursday

