
1

Now Playing:

Melody Day

Caribou

from Andorra

Released August 21, 2007

Movie:
Knick Knack

Pixar, 1989

Ray Casting

Rick Skarbez, Instructor

COMP 575

October 25, 2007

Announcements

• Programming Assignment 2 (3D
graphics in OpenGL) is due TONIGHT
by 11:59pm

• Programming Assignment 3
(Rasterization) is out

• Due NEXT Saturday, November 3 by

11:59pm

• If you do hand in by Thursday midnight,

+10 bonus points

Last Time
• Reviewed light transport

• Lights

• Materials

• Cameras

• Talked about some features of real cameras

• Lens effects

• Film

Today

• Doing the math to cast rays

2

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

Ray Casting

Ray Casting

• This is what we’re going to discuss
today

• As we saw on the last slide, ray casting
is part of ray tracing

• Can also be used on its own

• Basically gives you OpenGL-like

results

• No reflection/refraction

Generating an Image

1. Generate the rays from the eye

• One (or more) for each pixel

2. Figure out if those rays “see” anything

• Compute ray-object intersections

3. Determine the color seen by the ray

• Compute object-light interactions

Rays

• Recall that a ray is just a vector with a
starting point

• Ray = (Point, Vector)

Rays
• Let a ray be defined by point S and

vector V

• The parametric form of a ray expresses
it as a function as some scalar t, giving
the set of all points the ray passes
through:

• r(t) = S + tV, 0 ≤ t ≤∞

• This is the form we will use

3

Computing Ray-
Object Intersections
• If a ray intersects an object, want to

know the value of t where the
intersection occurs:

• t < 0: Intersection is behind the ray, ignore it

• t = 0: Undefined

• t > 0: Good intersection

• If there are multiple intersections, we
want the one with the smallest t

• This will be the closest surface

r(t) = p + td

The Sphere

• For today’s lecture, we’re only going to
consider one type of shape

• The sphere

• The implicit equation for a sphere is:

• r2 = (x - x0)2 + (y - y0)2 + (z - z0)2

• If we assume it’s centered at the origin:

• r2 = x2 + y2 + z2

Ray-Sphere
Intersections

• So, we want to find out where (or if) a
ray intersects a sphere

• Need to figure out what points on a ray

represent valid solutions for the sphere

equation

Ray-Sphere
Intersections

Implicit Sphere Parametric Ray Equation

Combined

Ray-Sphere
Intersections

Want to solve for the value(s) of t

that make this statement true:

Expand

Rearrange

Ray-Sphere
Intersections

Note that this is in the form

at2 + bt + c = 0

Can solve with the

quadratic formula:

4

• There are three cases:

• No intersection

• 1 intersection

• 2 intersections

• How do we detect them?

• Check the discriminant!

Ray-Sphere
Intersections

• Using the discriminant

• D = b2 - 4ac

• If D = 0, there is one root

• If D > 0, there are

2 real roots

• If D < 0, there are

2 imaginary roots

Ray-Sphere
Intersections

D < 0

D < 0

D > 0

D = 0

Ray-Sphere
Intersections

• So, for the 3 cases

• D < 0: Ray does not intersect the object

• D = 0: One intersection; solve for t

• D > 0: Two intersections

• But we know we only want the closest

• Can throw out the other solution

Ray-Object
Intersections

• We derived the math for sphere objects
in detail

• The process is similar for other objects

• Just need to work through the math

• Using implicit surface definitions makes it

easy

Generating an Image

1. Generate the rays from the eye

• One (or more) for each pixel

2. Figure out if those rays “see” anything

• Compute ray-object intersections

3. Determine the color seen by the ray

• Compute object-light interactions

Generating Rays

• Now, given a ray, we know how to test
if it intersects an object

• But we don’t yet know how to generate the

rays

• We talked a bit about lenses last time,
but an ideal pinhole camera is still the
simplest model

• So let’s assume that

5

Generating Rays
• Recall the pinhole camera model

• Every point p in the image is imaged

through the center of projection C onto the

image plane

• Note that this means every point in the

scene maps to a ray, originating at C

• That is, r(t) = C + tV

• C is the same for every ray, so just

need to compute new Vs

Generating Rays

• Note that since this isn’t a real camera,
we can put the virtual image plane in
front of the pinhole

• This means we can solve for the ray

directions and not worry about flipping the

scene

Generating Rays in
2D

Eye

Once we know this ray,

the rest are easy

This is referred to
as

a “Pencil of Rays”

2D Frustum

• Note that this is the same idea as the
frusta that we used in OpenGL:

Eye

Near Plane

Far Plane

Image Plane

Building a Frustum
• So we need to know the same things

that we did to build an OpenGL view
frustum

• Field of View

• Aspect Ratio

• Do we need near and far planes?

• Except now we need to build the
camera matrix ourselves

Field of View
• Recall that the field of view is how

“wide” the view is

“LookAt”

Unit Vector

+x

+y

θ

θ

2

θ

2
tan

• Not in terms of pixels, but in terms of viewing

angle (θ)

V0

V0 =

6

Finding the Other
Rays• This tells us all we need to know

• At least in 2D

• All the other rays are just “offset” from the

first

“LookAt”

Unit Vector

+x

+y

θ

θ

2
V0

D D

V2

V1V1 = V0 + D
V2 = V1 + D

D =

NOTE: hRes is the

horizontal

resolution

Generating Rays in
2D

• Note that we’re assuming one ray per
pixel

• Can have more

• For all i from 0 to hRes:

Vi = [D V0]

Extending to 3D

• So, this is all we need to know for 2D

• Just generates a single row of rays

• For 3D, need to also know the vertical
resolution

• In the form of the aspect ratio

Quick Aside about
Aspect Ratios

• With our virtual cameras, we can use
any aspect ratio we want

• In the real world, though, some are
most commonly used

• 4:3 (standard video)

• 16:9 (widescreen video)

• 2.35:1 (many movies)

Aspect Ratios
Example 2.35:116:94:3

Cinerama (2.59:1)

Generating Rays in
3D

Eye

+x

+y

+z

Dv =

Du =

V0

Dv

Du

V0 =

7

Generating Rays in
3D

Du = Dv =

V0 =

Vi,j = [Du Dv V0]

A Basic 3D Camera
Matrix

• Assumes:

• Camera on the z-axis

• Looking down -z

• Ideal pinhole model

• Fixed focal length (focal length = 1)

Generating an Image

1. Generate the rays from the eye

• One (or more) for each pixel

2. Figure out if those rays “see” anything

• Compute ray-object intersections

3. Determine the color seen by the ray

• Compute object-light interactions

Bonus Movie:
Portal Half-Life 2 Mod

Available online:
http://www.youtube.com/watch?v=gKg3TUPQ8Sg

Determining Color

• Since we’re not yet talking about tracing
rays

• Really just talking about OpenGL-style

lighting and shading

• Since surfaces are implicitly defined, can

solve Phong lighting equation at every

intersection

Review: Phong
Lighting

• I = Ia(Ra, La) + Id(n, l, Rd, Ld, a, b, c, d)
+ Is(r, v, Rs, Ls, n, a, b, c,d)

• Rsomething represents how reflective the
surface is

• Lsomething represents the intensity of the
light

• In practice, these are each 3-vectors

• One each for R, G, and B

Ambient Diffuse

Specular

8

Phong Reflection
Model:

Ambient Term
• Assume that ambient light is the same

everywhere

• Is this generally true?

• Ia(Ra, La) = Ra * La

• The contribution of ambient light at a point is

just the intensity of the light modulated by

how reflective the surface is (for that color)

Phong Reflection
Model:

Diffuse Term
• Id(n, l, Rd, Ld, a, b, c, d) =

(Rd / (a + bd + cd2)) * max(l • n, 0) * Ld

• a, b, c : user-defined constants

• d : distance from the point to the light

• Let’s consider these parts

Lambert’s Cosine Law
• The incident angle of the incoming light

affects its apparent intensity

• Does the sun seem brighter at noon or

6pm?

• Why?

“Noon” “Evening”

Phong Reflection
Model:

Diffuse Term• We already know how to get the cosine
between the light direction and the
normal

• n • l

• What happens if the surface is facing
away from the light?

• That’s why we use max(n • l, 0)

• Why not just take |n • l|?

Phong Reflection
Model:

Diffuse Term• In the real world, lights seem to get
dimmer as they get further away

• Intensity decreases with distance

• We can simulate that by adding an
attenuation term

• (Rd / (a + bd + cd2))

• User can choose the a,b,c constants to

achieve the desired “look”

Phong Reflection
Model:

Specular Term• Is(r, v, Rs, Ls, n, a, b, c, d) =
(Rs / (a + bd + cd2)) * max(r • v, 0)n *

Ls

• Why r • v?

• Reflection is strongest in the direction of the

reflection vector

• r • v is maximized when the viewpoint vector

(or really the vector to the viewpoint) is in

the same direction as r

• What is n?

• “Shininess” coefficient

9

Generating an Image

1. Generate the rays from the eye

• One (or more) for each pixel

2. Figure out if those rays “see” anything

• Compute ray-object intersections

3. Determine the color seen by the ray

• Compute object-light interactions

Review
• Reviewed the basic ray tracing

algorithm

• Talked about how ray casting is used

• Derived the math for generating camera
rays

• Derived the math for computing ray
intersections

• For a sphere

Next Time

• Extending the camera matrix to be
more general

• Covering some software engineering
notes relating to building a ray tracer

