

Rasterization:

 Line DrawingRick Skarbez, Instructor COMP 575

Some slides and images courtesy Jeremy Wendt (2005) and Eric Bennett (2006)

Announcements

- Assignment 2 is out
- Due next Tuesday by the end of class

Today

- Introduce rasterization
- Talk about some line drawing algorithms
- Discuss line anti-aliasing

Rendering Pipeline

- OpenGL rendering works like an assembly line
- Each stage of the pipeline performs a distinct function on the data flowing by
- Each stage is applied to every vertex to

Rasterization

- In the rasterization step, geometry in device coordinates is converted into fragments in screen coordinates
- After this step, there are no longer any "polygons"

Rasterization

- All geometry that makes it to rasterization is within the normalized viewing region
- All the rasterizer cares about is (x, y)
- z is only used for z-buffering later on
- Need to convert continuous (floating point) geometry to discrete (integer) pixels

Mapping Continuous to Discrete

- Note that there isn't only one "right" way to do this

Line Representation

- We usually think about lines in slopeintercept form:
- $y=m x+b$
- There are some problems with this

Line Drawing

- A classic part of the computer graphics curriculum
- Input:
- Line segment definition
- $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$
- Output:
- List of pixels

Problems with SlopeIntercept Form

- We have the wrong variables
- ($\mathrm{x}_{0}, \mathrm{y}_{0}$), ($\mathrm{x}_{1}, \mathrm{y}_{1}$), not (m, b)
- m is the slope of the line
- $\mathrm{m}=\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right) /\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)$
- What happens if the line is vertical?
- $m=\infty$

Brute Force:

 Pros and Cons- Pros:
- Very simple to implement
- Cons:
- Very slow
- Need to traverse every screen pixel for every line
- Can't handle vertical lines properly
- Requires floating point ops, including round()

Line Algorithm \#1: Brute Force

function DrawLine(LineColor, $\mathrm{x} 0, \mathrm{y} 0, \mathrm{x} 1, \mathrm{y} 1$)
float $m=(y 1-y 0) /(x 1-x 0)$;
float $\mathrm{b}=-\mathrm{x} 0$ * $\mathrm{m}+\mathrm{y} 0$;
ForEach $\mathrm{y}=0$:ImageHeight-1
ForEach $\mathrm{x}=0$:Image Width-1
if $\left(y=\operatorname{round}\left(m^{*} x+b\right)\right)$
$\dot{f}((\mathrm{x}>=\mathrm{x} 0) \& \&(\mathrm{x}<=\mathrm{x} 1))$
Output $[\mathrm{x}, \mathrm{y}]=$ LineColor;

Line Algorithm \#2: Line Traversal

Line Algorithm \#2a: Line Traversal++

- Check m right away
- If $|m|>1$, need to step in y instead of x
- Even better, check whether |x1-x0| or $|y 1-\mathrm{y} 0|$ is bigger
- Fixes the vertical line problem, too

Line Traversal++: Pros and Cons

- Pros:
- Still quite simple to implement
- Much better performance
- $\mathrm{O}(\mathrm{N})$ vs. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Can be pipelined
- Cons:
- Still needs floating point round

Line Algorithm \#2a: Line Traversal++

Line Algoritnm \#3: Incremental Line

Trnumronl
function DrawLine(LineColor, x0, y0, x1, y1)
if($x 0>x 1$) flip ($(x 0, y 0)$, ($x 1, y 1)$);
float $\mathrm{m}=(\mathrm{y} 1-\mathrm{y} 0) /(\mathrm{x} 1-\mathrm{x} 0)$;

```
    #loat y = y0;
```

for ($\mathrm{x}=\mathrm{x} 0$; $\mathrm{x}<=\mathrm{x} 1 ; \mathrm{x}++$)
Output $[x$, round $(y)]=$ Line Color;
$\mathrm{y}=\mathrm{y}+\mathrm{m}$;
Note that we no longer need 'b'

The Need for Speed

- How can we do even better?
- Need to get rid of floating point ops

The Need for Speed

- Still have floating point ' m '
- Still using floating point error
- Comparing to 0.5

Changes from \#4

	Before	After	Finally...
m	$\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$	$y_{1}-y_{0}$	$2\left(y_{1}-y_{0}\right)$
Test Value Subtracte d Value	.5	$.5\left(x_{1}-x_{0}\right)$	$x_{1}-x_{0}$
Va	1.0	$x_{1}-x_{0}$	$2\left(x_{1}-x_{0}\right)$

Line Algorithm \#ち:

 Bresenham's Algorithm- So how do we do it?
- Algorithm \#4 stored the offset from the pixel center
- Bresenham's only stores a decision parameter:
If > 0, go up, else, go across

Bresennams
 Algorithm: Pros and Cons

- Pros:
- Great performance
- Only integer arithmetic
- Cons:
- Cannot be easily pipelined
- Still needs special case for $|\mathrm{m}|>1$

Chaos Theory

Conspiracy Group, Assembly 2006 / SIGGRAPH

Available online:
http://xplsv.tv/movie.php?id=1942

Better Looking Lines

- There are ways to make lines look better:
- Hacky: Just draw wider lines
- Better: Anti-aliasing
- NOTE: This isn't really part of the rasterizer
- Just a good place to talk about it

Line Drawing

- Taked asurnmmary algorithms
- All produce the same output
- Bresenham's algorithm is fastest in most cases
- I would suggest knowing how these work:
- \#2a: Line Traversal
- \#5: Bresenham's
- Tharo aramarathat

How Do They Look?

- So now we know how to draw lines
- But they don't look very good:

- Why not?
- Aliasing

Quick Hack:
 Increase Line Width
 One quick fix may be to add nearby pixels:
 - Say, add the pixels above and below the correct y value

 - Makes lines look a little bit better
 - Does not increase computational complexity

Antialiasing \#1: Supersampling

- Technique:

1. Create an image $2 x$ (or $4 x$, or $8 x$) bigger than the real image
2. Scale the line endpoints accordingly
3. Draw the line as before

- No change to line drawing algorithm

4. Average each 2×2 (or 4×4, or 8×8) block into a single pixel

Antialiasing \#1: Supersampling

- One technique that can be used for antialiasing is supersampling
- Drawing at a higher resolution than will actually be used for the final output

Antialiasing \#1: Supersampling

No antialiasing

2x2 Supersampled

Downsampled to original size

Supersampling

- So why is this a good idea?
- Processing at a higher resolution produces more accurate data
- Less aliasing
- However, it produces high frequency data that cannot be represented at the lower resolution
- Need to filter
- Note: This usually makes lines appear fainter

Filtering Basics

- Filtering is, basically, removing some components from a signal
- i.e. low frequencies (high-pass filter)
- We want to remove high frequencies
- That is, we want a low-pass filter
- Since the high frequencies represent fine/sharp details, low-pass filtering is called smoothing or blurring

Low-Pass Filtering

- Want to smooth changes between neighboring pixels
- Many ways to do it
- 2 Examples:
- Tent: Fast, but not great

- Gaussian: Slow, but very gr $\operatorname{Gaussian}(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\binom{(\cos -\mu)^{2}}{2 \sigma^{2}}}$

Filtering

- Not going to go into any more details right now
- We'll talk about it more in the second half of the semester when we talk about real cameras
- For now, just accept that doing a better job filtering makes your antialiasing better

Next Time

- Finish up anti-aliasing
- Ratio method
- Continuing with rasterization
- Shape and polygon drawing
- Assignment 2 due

