
1

Now Playing:

Big Bird

Eddie Floyd
from The Complete Stax-Volt Singles 

Volume 1 (1959-1968)

Released April 30, 1991

Polygon Drawing
and

Hidden Surface 
Removal

Rick Skarbez, Instructor

COMP 575

October 9, 2007
Some slides and images courtesy Jeremy Wendt (2005)

and Eric Bennett (2006)

Announcements

• Assignment 2 is due today

• Programming Assignment 2 will be out 
today

• Demo/review in class on Thursday

• Due Thursday after fall break (10/25)

• Late drop deadline (for undergrads) is 
next Monday (10/15)

• Talk to me if you have any questions or 

concerns

• Talked about the purpose of the 
rasterization step

• Discussed line drawing

• Presented several algorithms

• Finished up with Bresenham’s algorithm

• Started on line anti-aliasing

• Included a brief aside on filtering

Last Time

Today

• Finish up line anti-aliasing

• Ratio method

• Present several methods for polygon 
drawing

• Discuss hidden surface removal 
algorithms

Rasterization

• In the rasterization step, geometry in 
device coordinates is converted into 
fragments in screen coordinates

• After this step, there are no longer any 
“polygons”



2

Rasterization

• All geometry that makes it to 
rasterization is within the normalized 
viewing region

• All the rasterizer cares about is (x, y)

• z is only used for z-buffering later on

• Need to convert continuous (floating 
point) geometry to discrete (integer) 
pixels

Line Drawing

• A classic part of the computer graphics 
curriculum

• Input:

• Line segment definition

• (x1, y1), (x2, y2)

• Output:

• List of pixels

(x1, y1)

(x2, y2)

How Do They Look?

• So now we know how to draw lines

• But they don’t look very good:

• Why not?

• Aliasing

Antialiasing

Antialiasing

• Essentially 2 techniques:

1. Supersample then filter

• We discussed a simple averaging filter

2. Compute the fraction of a line that should be 

applied to a pixel

• Ratio method

Antialiasing #1:
Supersampling

• Technique:

1. Create an image 2x (or 4x, or 8x) bigger 

than the real image

2. Scale the line endpoints accordingly

3. Draw the line as before

• No change to line drawing algorithm

4. Average each 2x2 (or 4x4, or 8x8) block into 

a single pixel



3

Antialiasing #1:
Supersampling

No 
antialiasing

2x2
Supersampled

Downsampled to
original size

1/42/41/4

1/42/4

Antialiasing #2:
Ratios

100%

0%

0%

75%

25%

0%

50%

50%

0%

Antialiasing #2:
Ratios

00

-(x1-x0)

+(x1-x0)

Polygon Drawing

• After clipping, we know that the entire 
polygon is inside the viewing region

• Makes the problem easier

• Need to determine which pixels are 
inside the polygon, and color those

• Find edges, and fill in between them

• Edges - Connected line segments

• How to fill?

Scan-Line Polygons

• Algorithm:

1. Mark local minima and maxima

2. Mark all distinct y values on edges

3. For each scan line:

1. Create pairs of edge pixels (going from 

left to right)

2. Fill in between pairs

Scan-Line Polygons
• Difficulties:

• Need to handle local maxima/minima 

correctly

• Appear double in the edge pixel list

• Need to handle overlapping pixels correctly

• What to do if a pair of edge pixels map to 

the same pixel?

• Need to handle horizontal lines correctly



4

Scan-Line Polygon 
Example

Polygon
Vertices

Maxima /
Minima

Edge
Pixels

Scan 
Line Fill

Flood Fill

• 4-fill

• Neighbor pixels are only up, down, left, or 

right from the current pixel

• 8-fill

• Neighbor pixels are up, down, left, right, or 

diagonal

Flood Fill

• Algorithm:

1. Draw all edges into some buffer

2. Choose some “seed” position inside the 

area to be filled

3. As long as you can

1. “Flood out” from seed or colored pixels

• 4-Fill, 8-Fill

Flood Fill Algorithm

void boundaryFill4(int x, int y, int fill, int boundary)

{

int curr;

curr = getPixel(x, y);

if ((current != boundary) && (current != fill)) 
{

setColor(fill);

setPixel(x, y);

boundaryFill4(x+1, y, fill, boundary);

boundaryFill4(x-1, y, fill, boundary);

boundaryFill4(x, y+1, fill, boundary);

boundaryFill4(x, y-1, fill, boundary);

}

}

Seed Position

Fill “Color”

Edge “Color”

Flood Fill Example

• 4-fill: Edge
Pixels

Seed

Filled
Pixels

Difficulties with 
Flood-Fill

• Have to worry about stack depth

• How deep can you go?

• How do you choose the start point?

• Which buffer is used?



5

Difficulties with Flood 
Fill

• What happens in this case?

Difficulties with Flood 
Fill

4 Fill: 8 Fill:

Which to Use?

• Scan-line is generally used for 
rasterization

• Flood-fill is generally used in 
applications responding to user input, 
like MS Paint

Done with Polygon 
Drawing

• Need to identify and mark the extents of 
the polygon, then fill in between them

• We discussed 2 algorithms:

• Scan-Line

• Flood Fill

• Any questions?

Continuing Down the 
Pipeline...

• At this point (the end of rasterization), 
we’ve converted all our graphics 
primitives to fragments

• Basically, single pixels

• Now what we have to do is figure out 
which of these fragments make it to the 
screen

• Backface culling

• Depth culling

Hidden Surface 
Removal• Alternatively, visible surface detection

• Need to determine which surfaces are 

visible to the user, and cull the rest

• This came up briefly when we were talking 

about materials

• Some algorithms work on polygons, in 
the vertex processing stage

• Some algorithms work on fragments, in 
the fragment processing stage (i.e. this 
stage)



6

Backface Culling

• Where?

• Object space

• When?

• After transformation but before clipping

• What?

• If normal • toViewer < 0, discard face

• That is, if the polygon face is facing away 

from the viewer, throw it out

Backface Culling

• So what does this buy us?

• Up to 50% fewer polygons to clip/rasterize

• Is this all we have to do?

• No.

• Can still have 2 (or more) front faces that 

map to the same screen pixel

• Which actually gets drawn?

Depth Culling

• Can happen here (fragment processing)

• z-buffering

• Can happen before rasterization

• Painter’s algorithm

Z-Buffering

• Where?

• Fragment space

• When?

• Immediately after rasterization

• How?

• Basically, remember how far away polygons 

are, and only keep the ones that are in front

Z-Buffering• Need to maintain z for all fragments

• Why we project to a volume instead of a 

plane

• Maintain a separate depth buffer, the 
same size and resolution of the color 
buffer

• Initialize this buffer to z=-1.1 (all z is in [-1, 

1])

• As each fragment comes down the 
pipe, test fragment.z > depth[s][t]

• If true, the fragment is in front of whatever 

was there before, so set color[s][t]=frag.color 

and depth[s][t]=frag.z

Z-Buffering Example

z = -0.7

z = 0

z = 0.5

z = -1.1

z = -1.1

z = 0

z = -1.1

z = 0

z = 0.5 z = -1.1

z = -0.7

z = 0

z = 0.5

NOTE: Can draw 
these shapes 
in any order



7

Z-Buffering
• Advantages:

• Always works. The nearest object always 

determines the color of a pixel

• Easy to understand / Easy to code

• Does not require any global knowledge 

about the scene

• Disadvantages:

• Expensive with memory

• Needs a whole extra buffer

• Not really a problem anymore

Painter’s Algorithm

• Really a class of algorithms

• Somehow sort the objects by distance from 

the viewer

• Draw objects in order from farthest to 

nearest

• The entire object

• Nearer objects will “overwrite” farther ones

Painter’s Algorithm

• Does anyone see a problem with this?

• Objects can have a range of depth, not just 

a single value

• Need to make sure they don’t overlap for 

this algorithm to work

Painter’s Algorithm
1. Sort all objects’ zmin and zmax

2. If an object is uninterrupted (its zmin and 
zmax are adjacent in the sorted list), it is 
fine

3. If 2 objects DO overlap

1. Check if they overlap in x

• If not, they are fine

2. Check if they overlap in y

• If not, they are fine

• If yes, need to split one

Painter’s Algorithm

• The splitting step is the tough one

• Need to find a plane to split one polygon by 

so that each new polygon is entirely in front 

of or entirely behind the other

• Polygons may actually intersect, so then 

need to split each polygon by the other

• After splitting, you can resort the list 
and should be fine

Painter’s Example

z = -0.7

z = 0

z = 0.5

Sort by depth:
Green rect
Red circle

Blue tri

0

z = 0



8

Next Time

• More fragment processing

• Texture mapping

• Demo/discussion of programming 
assignment 2

• Written assignment 2 handed back


