

Announcements

- Programming Assignment 1 is out today
- Due next Thursday by 11:59pm
- ACM Programming Contest

Last Time

- Introduced the basics of OpenGL
- Did an interactive demo of creating an OpenGL/GLUT program

Adam Powers

Richard Taylor
Information International, Inc. (III), 1981

ACM Programming Contest

- First regional competition (at Duke) is Oct 27
- Top teams at regionals get a free trip to worlds
- This year, in scenic Alberta Canada
- First meeting is this Thursday (09/20) at 7pm in 011
- All are welcome!

Today

- Review of Homework 1
- Discussion and demo of Programming Assignment 1
- Discussion of geometric representations for computer graphics

Homework 1

- Noticed 2 recurring problems
- Normalized vs. Unnormalized points and vectors
- Matrix Multiplication
points ana vectors in Homogeneous Coordinates
- To represent a point or vector in n-D, we use an ($n+1$)-D (math) vector
- Add a 'w' term
- We do this so that transforms can be represented with a single matrix
poinis ana vectors in Homogeneous Coordinates
- Vectors (geometric) represent only direction and magnitude
- They do not have a location, so they cannot be affected by translation
- Therefore, for vectors, $w=0$
- Points have a location, and so are affected by translations
- Therefore, for points, w != 0
roints ana vectors in Homogeneous
Coordinates
- A "normalized" point in homogeneous coordinates is a point with $w=1$
- Can normalize a point by dividing all terms by w:

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \quad\left[\begin{array}{l}
\frac{x}{\boldsymbol{w}} \\
\frac{y}{w} \\
\boldsymbol{w} \\
\boldsymbol{w}
\end{array}\right]
$$

poinis ana vectors in Homogeneous Coordinates

- A "normalized" vector is a vector with magnitude $=1$
- Can normalize a vector by dividing all terms by the vector magnitude $=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2+\right.$ $z^{\wedge} 2$) (in 3-D)

Matrix Multiplication

- Only well defined if the number of columns of the first matrix and the number of rows of the second matrix are the same
- Matrix * Matrix = Matrix
- i.e. if F is $m \times n$, and G is $n \times p$, then $F G$
$(\mathbf{F G})_{i j}=\sum_{k=1}^{m} F_{i k} G_{k j}$ if $m \times p$

Programming Assignment 1

- Demo

Geometric

 Representations in .Computer Graphics representing objects in computer graphics- As procedures
- i.e. splines, constructive solid geometry
- As tessellated polygons
- i.e. a whole bunch of triangles

Analytic Representations
 - Advantages:

- Can be as precise as you want
- That is, can compute as many points on the function as you want when rendering
- Derivatives, gradients, etc. are directly available
- Continuous and smooth
- Easy to make sure there are no holes

Analytic Representations

- Disadvantages:
- Not generalizable
- Therefore, SLOW!
- Often complicated

Tessellated Polygons

- Advantages:
- Very predictable
- Just pass in a list of vertices
- Therefore, can be made VERY FAST

Tessellated Polygons

- Disdvantages:
- Only know what the surface looks like at the vertices
- Derivatives, gradients, etc. are not smooth across polygons
- Can have holes

Analytic Representations

- Probably the most obvious way to use analytic representations is to just represent simple objects as functions
- Planes: $\mathbf{a x}+\mathrm{by}+\mathbf{c z}+\mathrm{d}=0$
- Spheres: $\left(\mathbf{x}-\mathrm{x}_{0}\right)^{2}+\left(\mathbf{y}-\mathrm{y}_{0}\right)^{2+}\left(\mathbf{z}-\mathrm{z}_{0}\right)^{2}=\mathrm{r}^{2}$
- etc.
- We'll do this when we're ray-tracing

Analytic Representations
 - There ate many more procedural

 methods for generating curves and surfaces- Bézier curves
- B-Splines
- Non-rational Uniform B-Splines (NURBS)
- Subdivision surfaces
- etc.
- We may cover some of these later on

Solid Modeling

- Another reason analytic models are often used in CAD is that they can directly represent solids
- The sign of a function can determine whether a point is inside or outside of an object

Why Triangles?

- So, why are triangles the primitives of choice, and not squares, or septagons?
- Simplest polygon (only 3 sides)
- Therefore smallest representation
- Guaranteed to be convex
- Easy to compute barycentric coordinates

Barycentric Coordinates

- Every triangle defines a (possibly) nonorthogonal coordinate system
- Let \mathbf{a}, \mathbf{b}, and \mathbf{c} be the vertices of the triangle
- Arbitrarily choose a as the origin of our new coordinate system
- Now any point \mathbf{p} can be represented
$\mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})$
or, with $\alpha=1-\beta-\gamma$, as
$\mathbf{p}=\boldsymbol{\alpha} \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$

Barycentric Coordinates

- Why are these so great?
- Easy to tell if a point is inside the triangle
- A point is inside the triangle if and only if α, β, and γ are all between 0 and 1
- Interpolation is very easy
- Needed for shading

Next Time

- Beginning our discussion of lighting and shading

