
1

Now Playing:

Night Light

Miho Hatori

from Urban Renewal Program

Released August 27, 2002

Lighting and Shading

Rick Skarbez, Instructor

COMP 575

September 20, 2007

Announcements

• Programming Assignment 1 is out today

• Due next Thursday by 11:59pm

• ACM Programming Contest

• Meeting tonight at 7pm in 011

• Reviewed Homework 1

• Assigned / Demoed Programming
Assignment 1

• Due next Thursday (9/27) by 11:59pm

• Discussed different ways of
representing geometric objects for
computer graphics

• Procedural

• Tessellated polygons

Last Time

Today

• Programming assignment 1 is out

• Any questions?

• Talking about lighting and shading

• Focusing on OpenGL

Light and Matter
• Review:

• Materials do NOT have color

• Light does

• Material objects appear to have color

because they reflect only certain

wavelengths of light

• How does light interact with matter?

2

Light and Matter

• Specular reflection

Light and Matter

• Diffuse reflection

Light and Matter

• Diffuse Reflection

Light and Matter

• Translucency / Transparency

Lights

• So what are some properties of lights?

• Wavelength (Color)

• Position

• Size

• Intensity

• Distribution of light

Point Lights

• Emit light evenly in all directions

• That is, photons (rays) from a point
light all originate from the same point,
and have directions evenly distributed
over the sphere

3

• Point light sources at an infinite (or near
infinite) distance

• Can assume that all rays are parallel

Directional Lights

• Similar to point lights, but intensity of
emitted light varies by direction

• Can think of it as

only emitting rays

over a patch on the

sphere

•

Spot Lights

Area Lights

• Emits light in every direction from a
surface

• Can think of it as a set of point lights, or a

patch on which every point is a point light

Area Lights

• Real lights have some area

• That’s why we have soft shadows in the real

world

UmbraPenumbra

The Rendering
Equation

• In short, the light out from a point in a
specific direction depends on:

• The light it emits in that direction

• The light incident on that point from every
direction, affected by

• How reflective the material is for that pair
of directions

• How close the incoming direction is to the
surface normal

Jim Kajiya, 1986

The Rendering
Equation

• This is a theoretical model of light
transport

• It’s not actually solvable by
conventional means

• Radiosity and various ray-tracing methods

attempt to approximate it’s actual solution in

various ways

• OpenGL uses a simplified model

4

Light Simplifications

• We must simplify lights for real-time
rendering:

• Single RGB color instead of wavelength

distribution (denoted Lm)

• Intensity is rolled into Lm

• No area lights

• Distribution of light is uniform

• Except for spot lights

Light Simplifications
• We must simplify lights for real-time

rendering: (cont’d)

• No indirect light

• Use an ambient light term

• Really just a hack

• Shadows are hard shadows, or are not

included at all

Phong Reflection
Model

• A simplification of the rendering
equation

• Divided into 3 parts

• Ambient

• Diffuse

• Specular

• The sum of these components
describes the color at a point

Phong Reflection
Model

• Uses 4 vectors to compute the color of
an arbitrary point p

• Normal (n)

• Light (l)

• Viewer (v)

• Reflection (r)

n

l
v

r

p

Phong Reflection
Model

• I = Ia(Ra, La) + Id(n, l, Rd, Ld, a, b, c, d)
+ Is(r, v, Rs, Ls, n, a, b, c,d)

• Rsomething represents how reflective the
surface is

• Lsomething represents the intensity of the
light

• In practice, these are each 3-vectors

• One each for R, G, and B

Ambient Diffuse

Specular

Phong Reflection
Model:

Ambient Term
• Assume that ambient light is the same

everywhere

• Is this generally true?

• Ia(Ra, La) = Ra * La

• The contribution of ambient light at a point is

just the intensity of the light modulated by

how reflective the surface is (for that color)

5

Phong Reflection
Model:

Diffuse Term
• Id(n, l, Rd, Ld, a, b, c, d) =

(Rd / (a + bd + cd2)) * max(l • n, 0) * Ld

• a, b, c : user-defined constants

• d : distance from the point to the light

• Let’s consider these parts

Lambert’s Cosine Law
• The incident angle of the incoming light

affects its apparent intensity

• Does the sun seem brighter at noon or

6pm?

• Why?

“Noon” “Evening”

Phong Reflection
Model:

Diffuse Term• We already know how to get the cosine
between the light direction and the
normal

• n • l

• What happens if the surface is facing
away from the light?

• That’s why we use max(n • l, 0)

• Why not just take |n • l|?

Phong Reflection
Model:

Diffuse Term• In the real world, lights seem to get
dimmer as they get further away

• Intensity decreases with distance

• We can simulate that by adding an
attenuation term

• (Rd / (a + bd + cd2))

• User can choose the a,b,c constants to

achieve the desired “look”

Phong Reflection
Model:

Specular Term• Is(r, v, Rs, Ls, n, a, b, c, d) =
(Rs / (a + bd + cd2)) * max(r • v, 0)n *

Ls

• Why r • v?

• Reflection is strongest in the direction of the

reflection vector

• r • v is maximized when the viewpoint vector

(or really the vector to the viewpoint) is in

the same direction as r

• What is n?

• “Shininess” coefficient

Phong Reflection
Model:

Specular Term

6

Phong Reflection
Model

• So how do we compute these vectors?

• Normal (n)

• Light (l)

• Viewer (v)

• Reflection (r)

n

l
v

r

p

Where do vectors
come from?

• So how do we compute these vectors?

• Viewer (v) = normalize(eyePosxyz - p)

• Light (l) = normalize(lightPosxyz - p)

• Normal (n)

• Reflection (r)
l

n

r
v

p

These are
easy

Reflection Vector

• A reflection of l across n

• Must be in the same plane as n and l

n

l r

p

θ θ

-l

length = n • l

length = 2 * (n • l)

n * 2 * (n • l)

Where do vectors
come from?

• So how do we compute these vectors?

• Viewer (v) = normalize(eyePosxyz - p)

• Light (l) = normalize(lightPosxyz - p)

• Normal (n)

• Reflection (r) = -l + 2 * (n • l) * n
l

n

r
v

p

Normal Vector
• Can be stored with the model

• More likely (at least with OpenGL),
we’re dealing with a model made up of
triangles v3

v2

v1

v3

v2

v1
v2 -v1

v3 -v1

Take the cross product:
n = normalize(cross(v2 - v1, v3 - v1))

Where do vectors
come from?

• So how do we compute these vectors?

• Viewer (v) = normalize(eyePosxyz - p)

• Light (l) = normalize(lightPosxyz - p)

• Normal (n) = normalize(cross(v2 - v1, v3 -
v1))

• Reflection (r) = -l + 2 * (n • l) * n l

n

r
v

p

7

Summing up Lighting

• So that’s how we think about lighting

• Computing the color of a single point on a

surface

• Now we’re going to talk about shading

• Not shadows

• Graphics term: Filling in a polygon with color

Types of Shading

• There are several well-known /
commonly-used shading methods

• Flat shading

• Gouraud shading

• Phong shading

Flat Shading

• Simplest type of shading

• Treat the entire polygon as one point

(usually the center)

• Solve the Phong lighting equations once

• Fill in the whole polygon with that color

Gouraud Shading
• A bit more complicated than flat

shading

• Compute normals at each vertex

• Solve the Phong lighting equations at each

vertex

• Linearly interpolate color inside the triangle

• Gouraud shading is
the default in OpenGL

• Flat shading is also built in

Gouraud vs. Phong
• Gouraud shading is:

• Still very fast

• MUCH nicer looking than

flat shading

• However:

• Specular highlights brighten/fade near

vertices

• The change in linear function is noticeable

at triangle edges

Phong Shading

• Not the same as Phong lighting

• Compute normals at each vertex

• Linearly interpolate normals at each point

inside the triangle

• Solve the Phong lighting equations at each

fragment (pixel)

• Not built into OpenGL

• Can now be done in real-time with

programmable shaders

8

Shading Comparison Lighting in OpenGL
• Need to enable

GL_LIGHTING
GL_LIGHTN //(N = 0, 1, 2, 3, ...)

• Can use:

• Point lights

• Spot lights

• Directional lights

• Ambient lights

Lighting in OpenGL
• Can choose your shading model:

• Flat (GL_FLAT)

• Gouraud (GL_SMOOTH)

• Other functions you might need:

• glLight{fv}

• glLightModel

• glMaterial

• glColorMaterial

• glNormal3f

We’ll demo some
of this on Tuesday

Next Time

• Continuing our discussion of lighting

and shading

• OpenGL demo of lighting/shading
functions

• Introducing stylized shading
techniques

