
UNC Chapel Hill S.M. Pizer

COMP 550: Algorithms & Analysis

Tues/Th 9:30am - 10:45am (FB 007)

On sakai.unc.edu, COMP 550

Stephen Pizer
SN 221-2, 590-6085

pizer@cs.unc.edu; preface subject line with
“COMP 550”

Office Hours: Before/after class,
Weds 2:30-3:30, or by appointment

mailto:pizer@cs.unc.edu

UNC Chapel Hill

COMP 550 Admission Requirements

• The prerequisites of COMP 410 (Data
Structures) and a course in Discrete
Mathematics or Discrete Structures are real

• For credit students only
• If you are waiting for a for-credit slot to open

up, put your name on the waiting list
• If you are a Comp. Sci. grad student, see me to discuss

UNC Chapel Hill

COMP 550 Details

• Homework: Around 7 assignments
• You may work together on designs, but the final algorithms and the

math must be done by yourself

• Quizzes: Around 4
• Midterm and final exams
• Honor code: Give credit where credit is due

• Many of these slides are derived from those of MC Lin

• TA: TBA

UNC Chapel Hill

Textbook & References

 Introduction to Algorithms, 3rd Ed. by Cormen,
Leiserson, Rivest & Stein, MIT Press, 2009

OTHER REFERENCES --
• The Design and Analysis of Computer Algorithms, by

Aho, Hopcroft and Ullman
• Algorithms, by Sedgewick
• Algorithmics: Theory & Practice, by Brassard & Bratley
• Writing Efficient Programs, by Bentley
• The Science of Programming, by Gries

• The Craft of Programming, by Reynolds

UNC Chapel Hill

Solving a Computational Problem

 Problem definition & specification
– specify input, output and constraints

 Algorithm analysis & design
– devise a correct & efficient algorithm
– Analyze its efficiency

 Implementation planning
 Coding, testing and verification

UNC Chapel Hill

Primary Focus

Develop thinking ability

– formal thinking
 (proof techniques & analysis)

– problem solving skills
 (algorithm design and application)

Develop thinking ability

– formal thinking
 (proof techniques & analysis)

– problem solving skills
 (algorithm design and application)

UNC Chapel Hill

What Will We Be Doing

 Devise algorithms for solving interesting
problems!

 Analyze their runtime performance!
 Study core algorithms! and associated

data structures
 Learn algorithmic design techniques!
 Applications in real-world problems

UNC Chapel Hill

 Goals

 Be very familiar with a collection of core algorithms
 Be fluent in algorithm design paradigms:

divide&conquer, greedy algorithms, randomization,
dynamic programming & approximation methods

 Be able to analyze correctness and runtime
performance of a given algorithm

 Be familiar with inherent complexity (lower bounds
& intractability) of some problems

 Be familiar with advanced data structures
 Be able to apply techniques in practical problems

UNC Chapel Hill

My Assumptions
About Your Background

 Comparison sort algorithms: merge, heap, quick
 Data structures: trees, graphs, lists, stacks, queues
 Definition of O(f(n))
 Can do proofs

– of theorems
– of program correctness

 If you do not know what a matrix and matrix
multiplication is, learn it from the web, e.g., Wiki or
http://www.mathsisfun.com/algebra/matrix-
multiplying.html

http://www.mathsisfun.com/algebra/matrix-multiplying.html
http://www.mathsisfun.com/algebra/matrix-multiplying.html

UNC Chapel Hill

Course Overview

Introduction to algorithm design,
analysis and their applications

 Algorithm analysis
 Some advanced data structures
 Sorting & ordering without comparisons
 Algorithm design paradigms

UNC Chapel Hill

Algorithm Analysis

 Asymptotic Notation
 Recurrence Relations
 Probability & Combinatorics
 Proof Techniques
 Inherent Complexity

UNC Chapel Hill

Advanced Data Structures

 Balanced trees
 Graphs

UNC Chapel Hill

Sorting & Ordering

 Comparison sorts you know
– Merge sort
– Heapsort
– Quicksort

 Linear-Time Sort
– bucket sort
– counting sort
– radix sort

 Selection

UNC Chapel Hill

Algorithmic Design Paradigms

 Divide and Conquer
 Dynamic Programming
 Greedy Algorithms
 Graph Algorithms
 Randomized Algorithms
 Approximation Methods (if time allows)

UNC Chapel Hill

Prerequisites

 The materials in the following
chapters. Quick reviews, at most, in
lecture may be given to refresh your
memory.
– Chapter 2.2, Merge-sort algorithm on

pg. 34, chapter 3 through middle of pg
48, chapters 6 through 6.4, 7.1 10,
11.1-11.2

UNC Chapel Hill

Course Roadmap

 Algorithmics basics (1.5)
 Divide and conquer (3)
 Efficiency analysis techniques
 Randomized algorithms (3)
 Sorting and selection (6)
 Balanced trees (3)
 Graph algorithms (3)
 Greedy algorithms (4)
 Dynamic programming (2)
 Special topics (1-2)

UNC Chapel Hill

Algorithmics Basics (1.5)

 Introduction to algorithms, complexity and
proof of correctness (Chapters 1 & 2)

 Asymptotic Notation (Chapter 3.1)

GOAL: Know how to write a problem spec(s), what a
computational model is, and how to measure
efficiency of an algorithm. Distinguish between
upper / lower bounds for an algorithm & what they
convey. Be able to prove the correctness of an
algorithm and establish computational complexity.

UNC Chapel Hill

Divide-and-Conquer (3)

 Designing algorithms (Chapter 2.3)
 Recurrences (Chapter 4)
 Merge-sort and quicksort analysis (Chapters

2.3 and 7)

GOAL: Know when the divide-and-conquer is an
appropriate paradigm, the general structure of
such an algorithm and its variants. Be able to
characterize their complexity using techniques
for solving recurrences. Memorize the common
case solutions for recurrence relations.

UNC Chapel Hill

Randomized Algorithms (3)

 Probability & Combinatorics (Chapter 5)
 Quicksort (Chapter 7)
 Hash Tables (Chapter 11)

GOAL: Know sample space, simple event, compound
event, independent event, conditional probability,
random variables, probability distribution function,
expectation & variance well. Be able to apply them
in the design and analysis of randomized algorithms
and data structures. Understand the average case
behavior vs. worst-case, esp. in sorting & hashing.

UNC Chapel Hill

Sorting & Selection (6)

 Review merge-sort (Ch. 2), heapsort (Ch.
6), Quicksort (Ch. 7)

 Bucket Sort, Radix Sort, etc. (Chapter 8)
 Selection (Chapter 9)

GOAL: Understand the performance of sorting
algorithms listed above and when to use them.
Know why sorting is important, what one can do
with binary heaps and why linear-time median
finding is useful.

UNC Chapel Hill

Balanced Trees (3)

 Binary Search Trees (Chapter 12)
 Red-Black Trees (Chapter 13)

GOAL: Know the fundamental ideas behind
maintaining balance in insertions/deletion.
Be able to use these ideas in other balanced
tree data structures. Understand what they
can represent and why they are useful. Know
the special features of the trees listed above.

UNC Chapel Hill

Graph Algorithms (3)

 Basic Graph Algorithms (Chapter 22)

GOAL: Know how graphs arise, their definition
and implications. Be able to use adjacency
matrix representation of a graph and the edge
list representation appropriately. Understand
and be able to use “cut-and-paste” proof
techniques as seen in the basic algorithms
(DFS, BFS, topological sort, connected
components).

UNC Chapel Hill

Greedy Algorithms (4)

 Greedy algorithms (Chapter 16)
 Minimum spanning trees (Chapter 23)
 Shortest paths (Chapter 24)

GOAL: Know when to use greedy algorithms and their
essential characteristics. Be able to prove the
correctness of an greedy algorithm in solving an
optimization problem. Understand where minimum
spanning trees arise in practice, how do union-by-
rank and path compression heuristics for dynamic
sets improve performance & make them effective.

UNC Chapel Hill

Dynamic Programming (2)

 Dynamic programming (Chapter 15)

GOAL: Know what problem characteristics

make it appropriate to use dynamic
programming and its difference from
divide-and-conquer. Be able to move
systematically from one to the other.

UNC Chapel Hill

 Course Work & Grades

 Homework: 25%
 (total of 7, mostly design & analysis)
 Quizzes: 20%
 (total of 3-5, basic materials)

 Exams: 55%
– Midterm Exam: 1/3 of exam grade, but will be dropped in

favor of final exam grade if final grade is higher

– Final Exam: 2/3 of exam grade, but will count the same as
the midterm grade if the midterm grade is higher

 Active Class Participation: 5% bonus

UNC Chapel Hill

Examinations

 Quizzes: 3-5 throughout the semester
– First will be in class on 26 September

Midterm: In class, October 2013

 Final: December 10, 2013, 8am

All closed book

UNC Chapel Hill

Classes on Video

 Lectures for Th 9/19 and T 9/24 will be
on video, available on the web, and
also played in class

UNC Chapel Hill

Homework Assignments

 Due at the beginning of each class on
the due date given

 No late homework will be accepted
 Lowest score will be dropped
 Can discuss in group, but must

write/formulate solutions alone
 Be neat, clear, precise, formal

– you’ll be graded on correctness,
simplicity, elegance & clarity

UNC Chapel Hill

Communication

 Visit instructor & TAs during office hours,
by appointment, or email correspondence

 All lecture notes and most of handouts are
posted at the course sakai website:

 Major messages are notified by email alias

 Student grades are posted periodically

UNC Chapel Hill

Basic Courtesy

 Write your assignments neatly & formally

 Please do not read newspaper & other
materials or surf the web in class

 When coming to the class late or leaving
early, please take an aisle seat quietly

 Remain quiet, except asking questions or
answering questions posed by instructors
– no whispers or private conversation

THANK YOU!!!

UNC Chapel Hill

How to Succeed in this Course

 Start early on all assignments. DON'T
procrastinate.

 Complete all reading before class.
 Participate in class.
 Think in class.
 Review after each class.
 Be formal and precise on all problems

sets and in-class exams

UNC Chapel Hill

Weekly Reading Assignment

Chapters 1, 2 and 3
(Textbook: CLRS)

UNC Chapel Hill

Review of Three Comparison Sorts
(Assume n>1)

 Heapsort (A,n) invoked by heapsort (A,n)
– Heapify(A,n) /* Heap has A[i]≥A[2i] and A[i] ≥ A[2i+1]
– For i= n by -1 to 2

• Swap A[1] and A[i]; Reheapify(A,i-1)

 Mergesort (A,i,j) invoked by mergesort(A,1,n)
– If i=j, return
– Mergesort(A,i,(i+j)/2); Mergesort(A,1+(i+j)/2);

Merge(A,i,j)

 Quicksort (A,i,j) invoked by quicksort(A,1,n)
– If i<j

• q = partition slot of slots i through j of A under comparison
with A[j] s.t. A[i] through A[q-1] are ≤ A[q] and A[q+1] through
A[j] are ≥ A[q]

• quicksort(A,i,q-1); quicksort(A,q+1,j)

UNC Chapel Hill

Algorithms

 A tool for solving a well-specified
computational problem

 Example: sorting

input: A sequence of numbers
output: An ordered permutation of the input
issues: correctness, efficiency, storage, etc.

Algorithm Input Output

UNC Chapel Hill

Analyzing Algorithms

 Assumptions
– generic one processor, random access machine
– running time (others: memory, communication, etc)

 Worst Case Running Time: the longest time for
any input size of n
– upper bound on the running time for any input
– in some cases like searching, this is close

 Average Case Behavior: the expected
performance averaged over all possible input
– it is generally better than worst case behavior
– sometimes it’s roughly as bad as worst case

UNC Chapel Hill

A Simple Example

INPUT: a sequence of n numbers
OUTPUT: the smallest number among them

1. x ← T[1]
2. for i ← 2 to n do
3. if T[i] < x then x ← T[i]

* Performance of this algorithm is a function of n.

UNC Chapel Hill

Runtime Analysis

 Elementary operation: an operation
whose execution time can be bounded
above by a constant depending on
implementation used.

 Assume all elementary operations can be
executed at unit cost. This is not true, but
they are within some constant factors of
each other. We are mainly concerned
about the order of growth.

UNC Chapel Hill

Order of Growth: Basic Ideas

 For very large input size, it is order of growth
that matters asymptotically.

 We can ignore the lower-order terms, since
they are relatively insignificant for very large
n. We can also ignore leading term’s constant
coefficients, since they are not as important
for the rate of growth in computational
efficiency for very large n.

 Higher order functions of n are normally
considered less efficient.

UNC Chapel Hill

Comparisons of Algorithms

Multiplication
– classical technique: O(nm)
– divide-and-conquer: O(nmln1.5) ~ O(nm0.59)
For operands of size 1000, it takes 40 & 15

seconds respectively on Cyber 835.
 Sorting

– insertion sort: Θ(n2)
– merge sort: Θ(n log n)
For 106 numbers, insertion sort takes 5.56 hrs

on a supercomputer using machine
language and 16.67 min on a PC using C/C++
with merge sort.

UNC Chapel Hill

Why Order of Growth Matters

 Computer speeds double every two
years, so why worry about algorithm
speed?

When speed doubles, what happens
to the amount of work you can do?

UNC Chapel Hill

Effect of faster machines

The number of items that can be sorted in one second
using an algorithm taking exactly n2 time as compared
to one taking n lg n time, assuming 1 million and 2
million operations per second. Notice that, for the n lg n
algorithm, doubling the speed almost doubles the
number of items that can be sorted.

Ops/sec: 1M 2M Gain

n*n alg 1000 1414 1.4

n log n alg 62700 118600 1.9

	COMP 550: Algorithms & Analysis
	COMP 550 Admission Requirements
	COMP 550 Details
	Textbook & References
	Solving a Computational Problem
	Primary Focus
	What Will We Be Doing
	 Goals
	My Assumptions �About Your Background
	Slide Number 10
	Algorithm Analysis
	Advanced Data Structures
	Sorting & Ordering
	Algorithmic Design Paradigms
	Prerequisites
	Course Roadmap
	Algorithmics Basics (1.5)
	Divide-and-Conquer (3)
	Randomized Algorithms (3)
	Sorting & Selection (6)
	Balanced Trees (3)
	Graph Algorithms (3)
	Greedy Algorithms (4)
	Dynamic Programming (2)
	 Course Work & Grades
	Examinations
	Classes on Video
	Homework Assignments
	Communication
	Basic Courtesy
	How to Succeed in this Course
	Weekly Reading Assignment
	Review of Three Comparison Sorts�(Assume n>1)
	Algorithms
	Analyzing Algorithms
	A Simple Example
	Runtime Analysis
	Order of Growth: Basic Ideas
	Comparisons of Algorithms
	Why Order of Growth Matters
	Effect of faster machines

