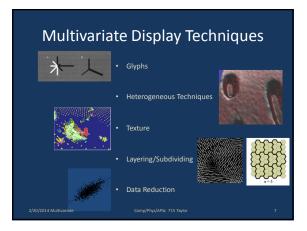

Comp/Phys/APSc 715

Multivariate & Ensemble Visualization Techniques

Administrative

- HW2 due tonight
 - Private posts to the homework page
 - No peeking at image files for other users before turning yours in
- HW4 posting by tonight

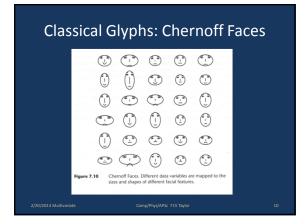
Team Dynamics

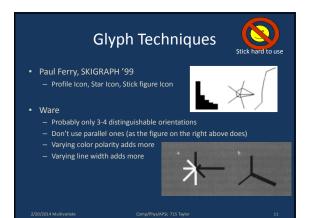

- Working in teams is...
 - Good, because you can do more work
 - Hard, because of scheduling, communication, expectation management
- Scheduling: Right After Class Find Partner
- Communications/Expectation Management – Default: Work together on this at the same time
 - Clearly split the work and provide hard deadlines
 - Everyone participates equally: one member is not supposed to be doing all the work

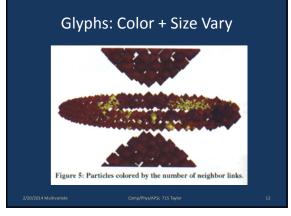
Multivariate Data Display

- At the frontier of data visualization
- More art than science
 - Several combinations can show 2-3 data sets
 Attempting combinations beyond this is difficult
- Perceptual studies can help predict effectiveness

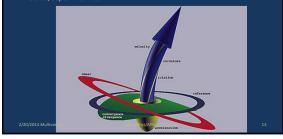
 Avoiding interfering techniques gets you further
 Still need to try it out and see
- Easier in 2D than 3D
- Several techniques shown today, some with characteristics listed




Glyphs


- Single graphical icon displaying multiple variables — Shape, color, other features
- Designed for discrete, non-spatial data
- Can be used to display fields

 Scatter within 2D or 3D space
 Display local characteristics





4

Glyph: Flow Probe

 Wijk, J.J. van, A.J.S. Hin, W.C. deLeeuw, F.H. Post, "Three Ways to Show 3D Fluid Flow." IEEE Computer Graphics and Applications, vol. 14, no. 5, p. 33-39, September 1994.

Characteristics of Glyphs

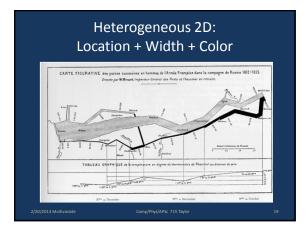
- Preattentive detection rules from before apply – size, orientation, and color coding
- Integral vs. Separable dimensions

 Integral dimensions are perceived holistically (upper)

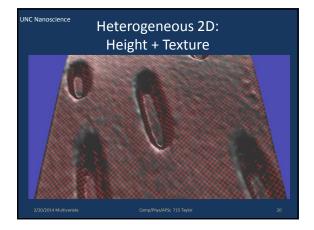
Scharapu	e dimensions perc	cived independe	
	red-green red-green shape height shape color direction of motion color color x,y position	yellow-blue black-white shape width size size shape direction of motion Size, shape, or color	

	Visual variable	Dimensionality	Comment
	Spatial position of glyph	3 dimensions: X, Y, Z.	Colored States of the
	Color of glyph	3 dimensions: defined by color opponent theory.	Luminance contrast is needed to specify all other graphical attributes.
 Attributes: Sirens' Song:	Shape	2–3? Dimensions unknown.	The dimensions of shape that can be rapidly processed are unknown. However, evidence suggests that size and degree of elongation are two primary ones.
	Orientation	3 dimensions: corresponding to orientation about each of the primary axes.	Orientation is not independent of shape. One object can have rotation symmetry with another.
	Surface texture	3 dimensions: orientation, size, and contrast.	Not independent of shape or orientation. Uses up one color dimension.
	Motion coding	2-3? Dimensions largely unknown, but phase may be useful.	
	Blink coding: The glyph blinks on and off at some rate.	1 dimension.	Motion and blink coding are highly interdependent.
	Figure 5:26 ^{/Phys} Graphic	al attributes that may be us	ed in alvoh desian ¹⁵

Number of Displayable Values

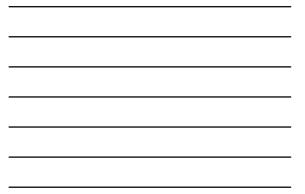

- Many dimensions not independent

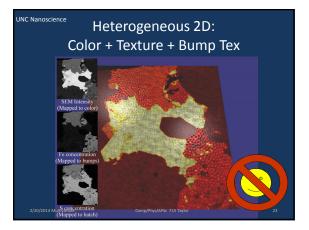
 - Fortunate if you can display 8-dimensional data with color, shape, spatial position (not for glyphs in space), and motion.
- Number of resolvable steps in each dimension - Maybe 4 values for each
- ~4 values for each of 8 channels 6 in spatial data We didn't see more than 3 work together at high density when doing combinations of different techniques

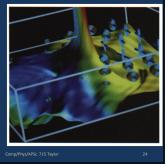


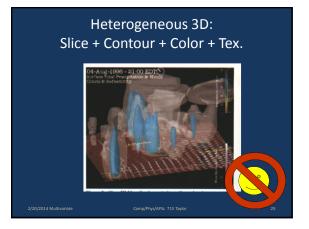
Heterogeneous Techniques

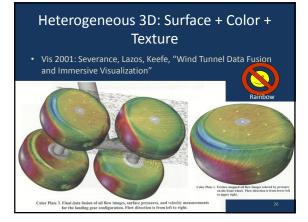
- "Wandering in the desert" - "Simpleton" ideas prove their worth
- Throw a bunch of techniques together
- Hope for the best
 - Works okay for a few data sets
 - We found it hopeless for large numbers of sets





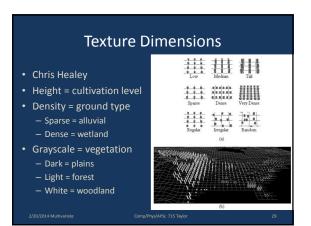


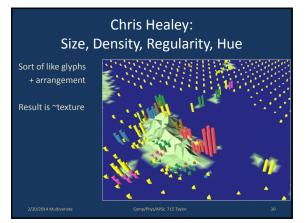

<section-header><section-header><list-item><list-item><section-header>


Heterogeneous 2D: Height + Color + Glyph

Haber, Koh, Lee
 – UIUC

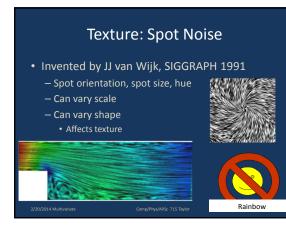
Found in
 – Keller & Keller p. 62

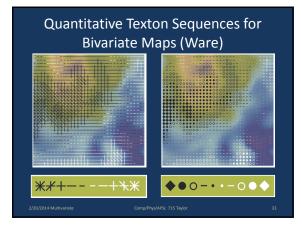


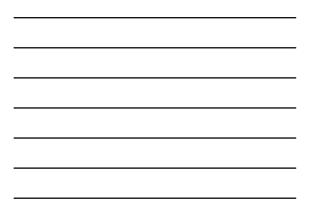




Texture-Based Multivariate 2D

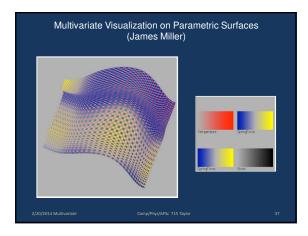

- Varying several characteristics to display data
 - Adjusting size, density, and regularity
 - Adjusting scale, orientation, and contrast
 - Spot Noise: Adjusting orientation and hue/saturation
- Varying a single characteristic to differentiate between multiple layers, intensity in each layer (both texturing and layering technique)
 - Beyond four scalar fields in the same imag
 - Oriented Slivers
 Data-Driven Spots



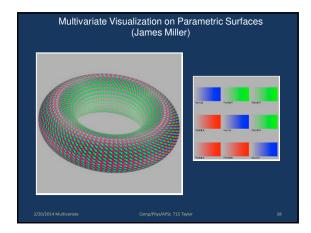


Layer-Based Multivariate 2D

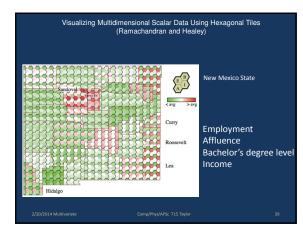
- Subdividing the surface
- Varying a single characteristic to differentiate between multiple layers, intensity in each layer (both texturing and layering technique)

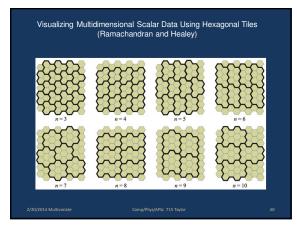

 Beyond four scalar fields in the same image
 Oriented Slivers
 Data-Driven Spots
 Nested and intersecting surfaces
- Layering heterogeneous techniques Crawfis

– Laidlaw


- Urness/Interrante

Attribute Blocks: Visualizing Multiple Continuously Defined Attributes (James Miller) with background





Oriented Slivers: Four Tube Orientations

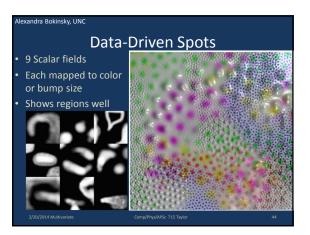
• Four scalar fields

Chris Weigle, UNC

- Here, 4 orientations
 Each mapped to displayed orientation
- Overall intensity shows total amount of material

2/20/2014 Multivariate

Chris Weigle, UNC


• Background color shows another data set

- Reveals dark slivers
 Shows region boundary
- Close-up of 3 data sets

Oriented Sliver Characteristics

- User study shows that 15-degree orientation difference can be easily seen

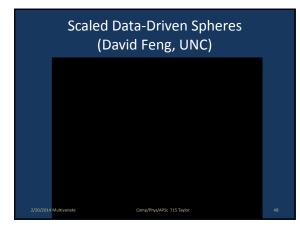
 Enables 7+ data sets to be displayed!
- Russ claims:
 - Enables relative value estimation for all data sets at a point
 - Difficult to see boundary of a region with a particular orientation
 - Easy to see where no data sets are present

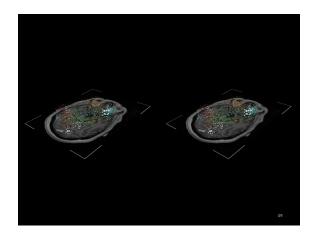
DDS Characteristics

- User studies show
 - At least 9 scalar fields can be shown!
 - Users can attend pairwise to data sets without interference
 Boundaries of shapes can be seen as well as when they are drawn explicitly
- Animation of one or more data sets is very effective
 Develop areas with low relates
 - Reveals areas with low values
 Sweeps over entire region, showing boundaries at high resolution
 - Highlights data set(s) of interest
 - link to videos (show 3a)

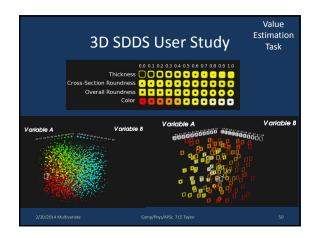
Evaluation of Trend Localization

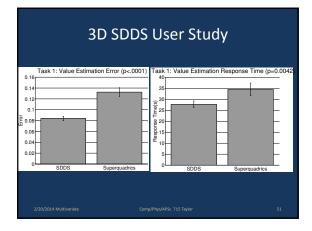
- Mark Livingston, Jonathan Decker; TVCG 2011
 - Strokes (intensity, hue, orientation, width, length);
 DDS; Oriented slivers; Color blend; Attribute
 blocks tested against each other
 - Asked for region with largest trend
 - Had to compare two of the five channels

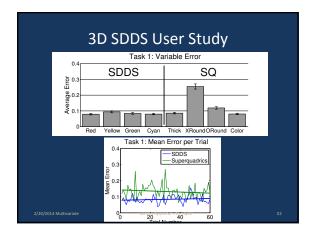


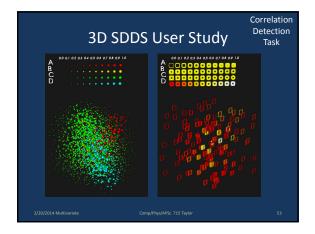

Evaluation of Trend Localization

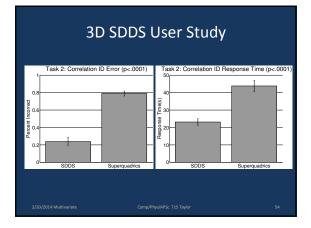
Mark Livingston, Jonathan Decker; TVCG 2011

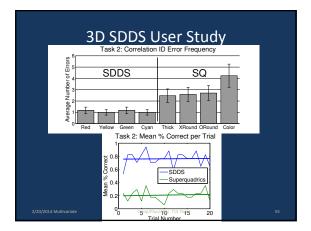

 Also compared against side-by-side ("juxtmap")
 County blocks provided local alignment cues

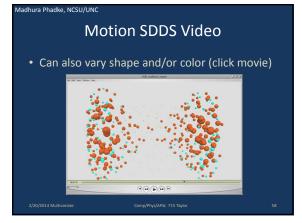






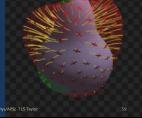


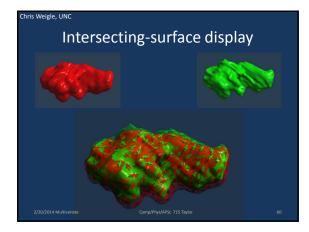


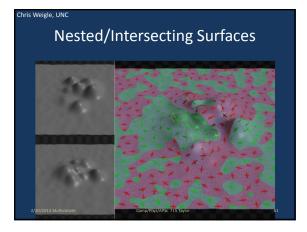


3D SDDS Conclusions

- Layered > Heterogeneous
- Value Estimation:
 Spheres > Superquadrics
 Error ~8% / ~13%
- Correlation Identification:
 Sphere >> Superquadrics
 Error ~20% / ~80%
- Motion seems to help

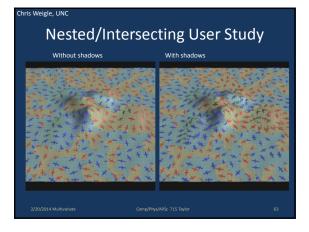

Madhura Phadke, NCSU/UNC			
Motion SDDS			
 VDA: Phadke 2012 Nominal color by ensemble 			
 – Sinusoidal scale over time – Compares regions pairwise 			
2/20/2014 Multivariate Comp/Phys/APSc 715 T			

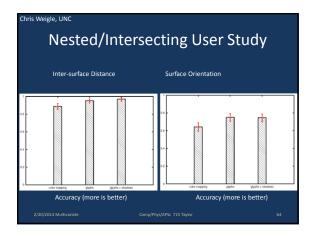


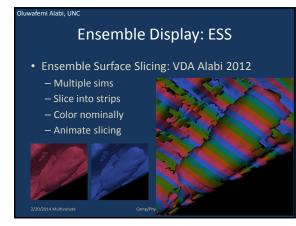


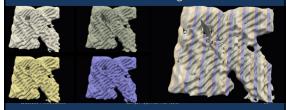
Chris Weigle, UNC Nested/Intersecting Surfaces

- Chris Weigle (UNC) dissertation
 - Inner/outer factoring
 - Transparent outer
 - Colored
 - Surface glyphs
 - Drop linesFollow heat transfer



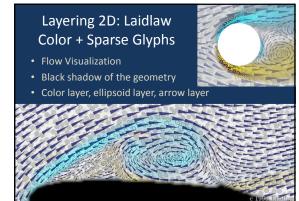


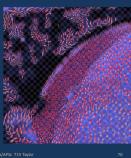




Oluwafemi Alabi, UNC

ESS wildfire example

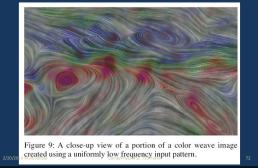

- Four wildfire simulations
- Same in upper left, obviously different peak
- Subtle differences in lower right



Layered 2D: Laidlaw Color + Texture + Sparse Glyphs

- Mouse spinal cord
- Texture underlayer
- Color layer
- Glyphs
 Ellipsoidal
 - Textured

Layered 2D: Texture + Color


- Urness & Interrante, "Effectively Visualizing Multi-Valued Flow Data using Color and Texture"
 - Color each LIC stroke
 - Saturation scaleRound-robin colors

– Vis 2003

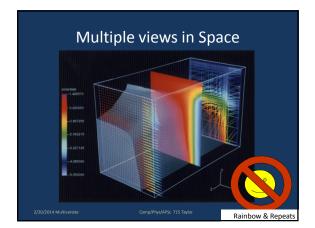
Urness & Interrante Vis 2003 Close-Up

- MR: Line + glyph
- LR: Line + texture

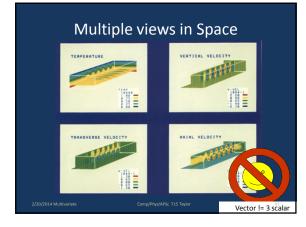
Layering Summary

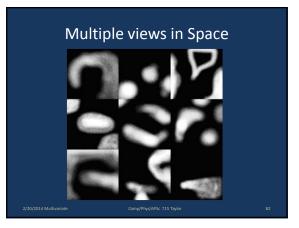
- Layering >> Heterogeneous
- Layering >> Varying texture parameters
- Use sparse layers
- Use distinct display technique for each layer — Similar: discs of different color
 - Similar: Slivers of different orientation
 - Different: Ellipses, arrows
 - Different: Texture vs. line vs. glyph

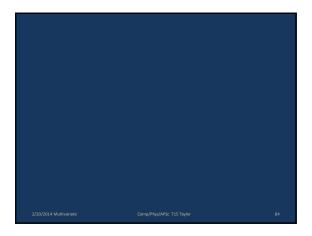
Problem Reduction Techniques


- Dimensional reduction / projection
- Time and space multiplexing
 - Multiple views with different mappings
 - Mapping different fields over time
 - Dynamic Maps
 - Magic Lenses
- Adding computation
 - Smart Particles
 - Cluster analysis / Feature mapping

Dimension Reduction


- Principal-component analysis determines most significant dimensions
 - 2D to 1D shown here


- Project data onto 2D subspace of two largest principal components
 - Color or shape by others



Multiple views in Time

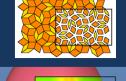
- Cycle data sets through different representations

 Animated
 User controlled
- Overlaid on same spatial location



Dynamic Maps

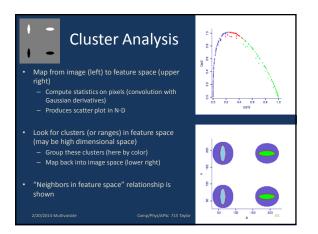
- <u>http://www.geog.le.ac.uk/argus/ICA/LDykes/</u>
 Clicking on 2D (or ND) mapping highlights values
- Column, row, or individual entries in covariance matrix show w
 Map region highlights entries

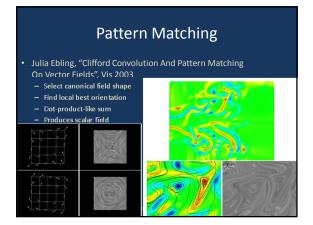


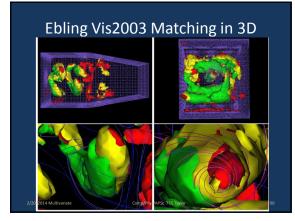
Example Magic Lenses

- Local Scaling Lens

 Adjusts geometry
 - Also could be wireframe




- Gaussian Curvature
 Pseudo-color map
 - Numeric value overlay



Magic Lenses

- Enable viewing a subset of the data sets, and select others to be viewed in certain areas
 - Toolglass and Magic Lenses
 - Eric Bier, Maureen Stone, Ken Pier, William Buxton, Tony DeRose; Xerox Parc; SIGGRAPH 93
 - Filter the data
 - 3D magic lenses: X-ray vision



Interactive Vector Field Feature Identification

- Joel Haniels II, Arik W. Anderson, Luis Gustavo Nonato, Claudio Silva, Utah
- Link to movie

Conclusions

- Several example techniques
- Perceptual analysis of some of them
- Characteristics known for some of them
- Still an open area of research

Run ScalarStack

- NSRG/CISMM Scalar Stack Viewer
- Load Census data
 C:\Program Files (x86)\CISMM\...
- Show Colored Slivers
- Show DDS
- Show Oriented Slivers

References

- Texture Dimensions: Chris Healey (<u>http://www.csc.ncsu.edu/facuity/nealey/HTML_pap</u> ers/djanktoo/planktoo.html)
- Typhoon visualization: Chris Healey (http://www.csc.ncsu.edu/faculty/healey/download .wcs.90.odl)
- Dense Glyphs/Textons: Chris Healey
- Three Icons: Paul Ferry, SKIGRAPH 99: http://pages.cpsc.ucaugary.ca/~jungle/skigraph99/pa pers/ferry.pdf

2/20/2014 Multivariate

ys/APSc 715 Taylor

References

- Spot noise image: Wim de Leeuw:
- Glyph characteristics and use for multidimensional display: Colin Ware's book, "Information Visualization."
- Cluster Analysis: James Coggins, UNC-CH
- Oriented Slivers: Chris Weigle, UNC-CH
- Nested/Intersecting Surfaces: Chris Weigle, UNC.
- Data-Driven Spots: Alexandra Bokinsky, UNC-CH