Comp/Phys/APSc 715

Patterns, Gestalt, Perceived contours, Transparency, Motion, Uncertainty

Example Videos

- Vis 2012: Barakat: <u>ttg2012122392s.mov</u> – Surface-based Structures in Flow Vis
- Vis2012: Gasteiger: <u>FinalVersion.mov</u>
 Several views of flow in cerebral aneurysm

Patterns

- Investigation is often about finding patterns

 That were previously unknown, or
 - That depart from the norm.
- Finding such patterns can lead to key insights

 One of the most compelling reasons for visualization
- Today we look at
 - What does it take for us to see a group?
 - How is 2D space divided into distinct regions?
 - When are patterns recognized as similar?
 - When do different display elements appear related?

Object Perception Stages

Stage 1: Parallel, fast extraction
 Form, motion, texture, color, stereo depth

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item> <text>

Object Perception Stages

- There is feedback!
 - Linear model is a simplification
 - Later stage intentions affect earlier stage responses

Pattern Perception: Gestalt "Laws"

- Gestalt = "pattern"

 School formed by Max Westheimer, Kurt Koffka, and Wolfgang Kohler
- Robust rules easily translate into design principles
 * Provimity
 - * Symmetry
 - * Continuity (and Connectedness)
 - * Continuity (and Connectedness)
 - * Closure
 - SimilarityRelative Size
- * = stronger cues
- Figure and Ground

<text><text><list-item><list-item><image>

Symmetry (2/2)

• Design principle: Make use of symmetry to enable user to extract similarity

Connectedness

Palmer and Rock (1994) argue that this is more fundamental than continuity

Design principle: Positive and negative statement: Connecting two objects can group them even when they are not otherwise similar. Unrelated objects should not be connected, or they will appear to be grouped no matter what.

Closure (1/2)

A closed contour is seen as an objectPerceptual system will close gaps in contours

Relative Size

- The smaller components of a pattern tend to be perceived as the object

 Black propeller on white background
- Horizontal and vertical tend to be seen as objects
- Plays into figure/ground principle

Design principle Make dots the object rather than "cheese grater"

7

- Attempting to present multiple data layers
- Many perceptual pitfalls
 - "WARNING, WARNING, DANGER Will Robinson!"
 - Different layers interfere with each other to some extent
 - Detterne similar is called for more metion, statistical statistics
- Design principle:
 - Make layers differ in at least one significant dimension
 - Try before you but

Visual Grammar of Maps

- Well-known grammar
- Developed over time
- Does it fit your problem? - Use wholesale if so
 - Consider adding animation

and and a start		
1. Closed contour.	S	Geographic region.
2. Colored region.		Geographic region.
3. Textured region.	*	Geographic region.
4. Line.	~	Linear map features such as rivers, roads, etc. Depends on scale.
S. Dot.	•	Point features such as town, building. Depends on scale.
6. Dot on line.	~	Point feature such as town on linear feature such as road
7. Dot in closed contour.	5	Point feature such as town located within a geographic region.
8. Line crosses closed- contour region.	D	Linear feature such as river crossing geographic region.
9. Line exits closed-contour region.	Dr	A linear feature such as a river terminates in a geographic region.
10. Overlapping contour, Postored regions, textured C- //P/04715, Taylor	-	Overlapping geographically defined areas. 28

Visual Instantiation

Form and Contour in Motion

- Contours can be seen in moving dot fields by motion alone
- Rivals static contour detection
 Phase of the motion seems most salient
 Compared to frequency and amplitude
 Patterns of dots moving in synchrony group together

- Design Principle:
 - Consider animation for association of groups
 Works great for data-driven spots (even linear motion)!

10

Motion Design Principles

- Use motion as strong cue for grouping
- Add frame around group of related particles
- Speed around a few cm per second
 - Speed up things that are much slower than this (Show <u>video of beads</u>, use arrows and hide left then play)
 - Slow down things that are much faster (See next slide)

Other Motion Information

- Motion can express causality
 - Launching
 - Delayed Launching
 - Triggering
- Motion of dots on human limbs is immediately recognizable as such
- Motion patterns can express emotion or behavior
 - Happy triangle, excited square, sad circle

Error Bars vs Ambiguation

scatterplot

111

- Olston and Mackinlay, InfoVis 2002
- There is a difference between statistical uncertainty and bounded uncertainty
- Statistical: has an expected value and distribution extends to infinity
 - Bounded: no preferred value,
 just a range of possible values
- Use ambiguation for bounded uncertainty

3/25/2014 Gestalt, Contours, Unce

Three Views on Uncertainty Visualization

• View 1

- Uncertainty is just another data set
- Apply techniques for multivariate visualization
- Show relationship between data and uncertainty
- View 2
 - Uncertain data may take on a range of values
 - Show possible range of data
- View 3
 - Uncertain data should intentionally be obscured
 Actively prevent users from making judgments about uncertain data

/25/2014 Gestalt, Contours, Uncertainty CH C/P/A 715 CH C/P/A 715

Two Classes of Uncertainty **Visualization Techniques**

• Extrinsic

- Additional visualization techniques to show uncertainty
- Glyphs, annotations, volume rendering, animation

• Intrinsic

- Vary visualization technique properties to show uncertainty
- Transparency, Color maps, texture properties, etc.

Fuzzy Spectral Signatures • Bastin et al., Computers & 337-350 Showing fuzzy classifications Graph show thick lines of reflectivity in each band 3

- Geosciences 28 (2002), pp.
- of multi-spectral imagery
- probability that a land cover type produces specific

Showing Uncertainty with Standard 2D Scalar Techniques

- Dungan et al., IGRSS 2002
- Use standard 2D scalar techniques for showing statistical information in remote sensing applications
- Shows uncertainty from different estimates of forest cover

RGB Color Mapping

- Cliburn et al., Computers & Graphics 26, 2002, pp. 931-949
- 20, 2002, pp. 951-949
 Temperature, soil, and precipitation encoded as intensities of red, green, and blue, respectively according to how much each contributes to uncertainty in water balance model

Transparency to Hide **Uncertain Data**

- Cliburn et al., Computers & Graphics 26, 2002, pp. 931-949
- Water balance model uncertainty
- Goals: don't want users to make decisions affecting locations where uncertainty is high
- Make uncertain regions transparent

Broken Contour Lines

 Alex Pang, "Visualizing Uncertainty in Geospatial Data", prepared for Computer Science and Telecommunications

Board, 2001

 Broken-ness of lines indicates uncertainty in location of contours

Kernel-Density Uncertainty

- Feng 2010
- Blurring lines by uncertainty removes false negative to indicate correlations

Kernel-Density Uncertainty (2)

- Feng 2010
- Blurring lines by uncertainty removes false positive to indicate no useful data in cluster

Kernel-Density Uncertainty (3)

- Feng 2010
- Blurring points by uncertainty removes false positive to indicate no outlier
- Adding center-highlighting shows samples

<section-header><text><list-item>

<section-header><section-header><image><image><image><image><image><image>

Approaches to Visualizing
Vector Uncertainty

- Wittenbrink et al., TVCG 2(3), 1996
- Table of glyphs potentially used for showing uncertainty
- Attempt to convey magnitude and angular uncertainty

	$d\theta$	dn
PP	X	X
A Kong	X	
568	X	X
11		X
Ð₽₽	X	X
DAND	E X	X

Error in Vector Fields

Botchen et al., IEEE Vis 2005

Positional Uncertainty in Molecules

- Rheingans and Joshi, Data Visualization 1999Conveying uncertainty in atom positions in
- molecues

Metastable Molecular Visualization

- Schmidt-Ehrenberg, IEEE Vis 2002
- What is the space of possible molecular confirmations?
 - Shows confirmation density
- Similar to notion of electron density

Left and right: 2 confirmations Middle: volume rendering of density Bottom two rings used for alignment

Vibrating Surfaces (3D)

• R. Brown, "Animated visual vibrations as an uncertainty visualization technique", 2004

Point-based Surfaces

- Grigoryan and Rheingans, TVCG 10(5), 2004
- Render geometry as points
- Uncertainty conveyed by random displacement along normal
 - Higher uncertainty = higher range of displacements

Adding Texture to Express Uncertainty • Djurcilov et al., Data Visualization 2001

• Speckles show areas of uncertainty

Risk-based Classification (2D)

- Kniss et al., IEEE Vis 2005
- Delays material classification until rendering
- Importance is inversely proportional to penalty for misclassifying materials in volume

Vibrating Textures (2D)

- Draw attention to uncertain areas.
- Top: bad
- Bottom: good?

Color Maps Indicating Glyph Uncertainty

• Pang et al., The Visual Computer, 13, pp. 370-390, 1997

Glyphs Glyphs Glyphs(1)

<section-header><image><image><image><image><image><image>

<section-header><image><image><image><image>

Uncertainty Annotations Cedilnik and Rheingans, IEEE Vis 2000

 Idea: overlay annotations on top of data and distort according to uncertainty

certainty

Uncertainty in Vector Fields(1)

• Lodha et al., UFLOW, 1996

Uncertainty in Vector Fields(2)

• Lodha et al., UFLOW, 1996

Sonification

- LISTEN library by Lodha et al., IEEE Vis 1996
- Use sound to express uncertainty
 - Use another perceptual channel besides visual
 - Uncertainty of data at probe mapped to pitch which can "show" more values than color map
 - Uses different timbres to display multiple variables
- Auditory perception and processing not understood well
- Good mappings to sound are unknown

Shiping Huang, master's thesis, Worcester Polytechnic Institute, 2005 Show uncertainty by displacement in 3rd dimension Problems: Uncertainty + Parallel

- - Parallel lines no longer parallel in projection
 Non-parallel lines may become parallel in projection

References:

- Edge completion, More perceptual illusions: Penny Rheingans
- The rest of the lecture: Colin Ware, "Information Visualization," chapter 6.

Extra readings

• Blinn, Jim, "Visualize Whirled 2x2 Matrices," IEEE Computer Graphics and Applications 22 (4), July/Aug 2002. pp. 98-102.

Credits

- User studies discussion: Robert Kosara, Christopher G. Healey, Victoria Interrante, David H. Laidlaw, and Colin Ware, "Visualization Viewpoints: User Studies: Why, How, and When?", IEEE CG&A July/August 2003. pp. 20-25.
- Annotation: Gitta Domik
- Protein Models: UNC GRIP project, F.P. Brooks, Jr. Pl.

Credits

- Parallel Coordinates: Fua, InfoVis '99; Wong, Visualization '96
- ConeTree: Robertson, CHI '91; Card, InfoVis '97

Credits

Intrinsic/extrinsic discussion
 – Gershon, CG&A, 8(4), pp. 43-45, 1998