Chapter 4
The Rules of Coding: I
Page

Chapter 4

The Rules of Coding I:

Basic Control Structures

The preceding chapter described the fundamentals of the science of programming – it described (precisely) the behavior we expect from the Java programming language. If someone implemented Java in a way that violated the Axiom of Assignment or any of the rules of inference, we would (justifiably) conclude that the implementation was unsatisfactory.

In the next three chapters we address matters of a much less concrete nature – how the commands and constructs of Java should be used, and how programs should be documented. These are matters of craft rather than science because they reflect judgments about what qualities distinguish a good program from another, even if the programs are known to be equivalent.

This chapter addresses the most basic program components: comments, assignment statements, sequential code, conditional constructs and iterative constructs.

1 Introduction

In the previous chapter we described the mathematical rules of the principal control structures. Those rules can, in principle, be used to show that a program meets its specifications, as given by pre and postconditions. But in practice, writing a program and then using the rules to check whether it meets its specification often turns out to be so difficult as to render the rules useless in any practical sense. It's tempting to conclude that the rules are not much help, and that we must go back to writing programs the way we did before – and with a clear conscience!

That's not the right conclusion. When the rules of programming are difficult to apply, the reason is very likely that the program is poorly written. Thus we advocate writing programs so that the rules can be applied without difficulty. This often involves formulating the assertions for a code construct before writing the code, and then writing the code to establish the hypotheses of a rule of inference. Thus, we advocate writing code to reflect the appropriate rules rather than applying the rules to existing code. Toward that end, we are going to give a host of rules for program style; we call them rules of coding. They are not simply aesthetic. Programs written following these rules should be

• easier to understand,

• easier to debug,

• easier to reason about,

• easier to modify,

• easier to make more efficient, and, when appropriate,

• easier to prove correct.

We believe that all these are terribly important. But note that only one of them (efficiency) is concerned with actual execution. Computer programming is a human activity, and comprehensibility must be a principal concern of any responsible programmer; running the program on a computer is crucial, but a small part of the big picture. In this chapter we will discuss how to write programs that are easy to understand and to which the rules of programming (given in Chapter 3) can be applied.

The rules we put forth will constrain the programs you write — that is, you will no longer write many of the programs you might have written before, because they would break the rules. That is not to say that the rules we give here should never be broken — that claim would be too strong. But we do claim that programs should be written following these rules except when some overriding concern dictates otherwise. The most important concern in writing a program, except for correctness, is that it be easily understood by human readers. It is a bonus that easily understood programs are more likely to be correct.

In this section we'll first list some basic guidelines for program style and then address the use of each of the basic control structures. In the following chapter we'll address method control structures.

Better programs through stronger constraints is hardly a new idea in computer science. The most famous case of such constraint originated many years ago when Edsgar Dijkstra published a letter entitled "GoTo Considered Harmful". In this letter, Dijkstra argued that code written with liberal use of the unconditional transfer (the 'goto' statement) was generally of poorer quality than code that avoided its use. The debate raged for several years — programmers are human and resistant to change, and many used the goto liberally — but there is little disagreement today. Few practitioners advocate doing away with the goto statement altogether, but now it is used by good programmers only in a disciplined way, primarily to emulate a more powerful control structure than is available in the language being used. You'll see little mention of the goto in this book. We don't even bother to tell you to avoid using it, because if you follow our rules, for the programs we address, you will rarely have a need for it.

2 Basic Program Style

In the early days of computing, programming languages reflected machine structure far more than they supported good programming practice. Times have changed; it is now routine for machine hardware to accommodate language translators, making feasible efficient code from languages that support good programming practice. This progress is reflected in the approach of this book and the program style that we will advocate, and to which we hold our students.

3 Program Documentation

3.1 Comments

A program consists of code and documentation. Both are important; programs should be well-conceived and carefully implemented. Documentation should explain what the program does and, for complex tasks, how it works. Any professional organization is likely to have documentation standards; our goal is not to emulate such standards but to adhere to standards that we believe should be included in those of any professional group.

The great lesson to be learned by most beginning programmers is that documentation is hard, but repays the effort. Good documentation may be as hard or harder to write than the code itself — program code has no ambiguities, but ambiguities can arise by the bucketful in careless documentation. Incorrect documentation, of course, is potentially worse than no documentation at all, and no documentation at all is unacceptable. Our emphasis in much of this text is on writing unambiguous documentation, and how it can be used to speed the development of a correct program.

Comments are of two types: informal descriptions of the purpose of code, and assertions about the state of a computation. Statements about the purpose of code are appropriate and encouraged, but such statements should be kept brief. It is good practice, for example, to precede each method definition by a one or two line comment describing its purpose. The description need not be precise; eliminating ambiguity is the job of the pre and postcondition. If you have difficulty describing the method with a one or two line comment, consider whether the method is well-conceived – it should perform a single well-defined task.

The most critical comments in a program or method are pre and postconditions, and assertions that could be used to prove the program's correctness, especially loop invariants. These assertions characterize crucial information about the program state when the computation reaches the assertion. Unlike the informal descriptions of the purpose of code, these assertions are formal, unambiguous, and they are either correct or not. If any combination of input data and circumstance can cause them to be false when the preconditions of the program were true, then the assertion (and therefore the program) is incorrect.

Comments should explain the purpose of the code; assertions should document its effects. Neither should simply echo the code. Thus the code segment

// Set stackCount to 0.

stackCount = 0;

Assert.assert(stackCount == 0,"stack is not empty");

contains a worthless comment and a worthless assertion, whereas

// Initialize stack to empty.

stackCount = 0;

Assert.assert(isEmpty(stack),"stack is not empty");

might well contain exactly the same information (if isEmpty is a well-named method), but in a form that makes both the comment and the assertion useful and appropriate. (We would not hesitate, however, to delete the comment "Initialize stack to empty", since the assertion "IsEmpty(stack);" presumably provides the same information in a concrete form.)

•
When feasible, write comments as checkable assertions.

Assert method calls require boolean expressions that can be evaluated by Java. But the assertions appropriate for a program often involve quantifiers. What's a programmer to do? There are two options. The most effective, but most costly, is to write methods that return a boolean that will make it possible to express the assertion. For example, if a sorting method deserves a comment of the form

// (Aj: lo < j <= i: b[j-1] < b[j])

then one might wish to write a method that could be called by an assert statement:

Assert.assert(isSorted(b,lo,i),"array is not sorted");

Such a tactic is entirely feasible, and may be appropriate when some quantified assertion is repeatedly used to characterize a program’s state. Alternatively, however, one can often integrate the comment with an assertion to perform simple but very effective checks. Thus, if the above quantified assertion was to follow the assignment of a value to b[i],

b[i] = temp;

// (Aj: lo < j <= i: b[j-1] < b[j])

we might include an assertion that checks only that part of the quantified assertion that was just changed:

b[i] = temp;

Assert.assert(b[i-1] < b[i],"array is not sorted");

// and (Aj: lo < j <= i: b[j-1] < b[j])

•
Augment comments that use quantifiers with weaker checkable assertions about recently changed variables.

3.2 Program Format

The format of a program is the layout, or visual appearance, of the program text. Clearly the format of a program does not affect its execution, but it greatly affects how easily it is understood, and consequently it is a part of program documentation.

The layout of program text should reflect the logical organization of the program. This is accomplished by the judicious use of white space, principally in the form of blank lines and line indentation. Many program editors, including Microsoft J++, have one or more automatic indentation commands that indent lines according to the syntactic structure of a program. Specifically, they align and indent code inside control structures (loops and selection) and between { } brackets. This indentation facilitates understanding the structure of a program as well as aiding in the finding syntactic errors (for example, missing close brackets.)

•
Use automatic formatting to provide indentation.

Formatting commands do not insert or remove blank lines in a program; that is the programmer's responsibility. Blank lines should routinely be used to delineate program structures such method definitions, and to divide a program into distinct logical parts, such as the declaration of principal data structures and the main code. Superfluous blank lines should not occur. There are no hard and fast rules here, but the goal is to present the program in a form that facilitates the understanding of its parts as well as the whole.

•
Use blank lines to separate code into logically distinct parts.

3.3 Other forms of documentation

We've treated three basic forms of documentation in this section: program comments, program layout and assertions. But good documentation does not end there – the other topics of this chapter all provide additional documentation tools and affect the ease of understanding of a program. These include, but are not limited to, the choice of identifier names and the choice of control structures.

4 Declarations

Declarations are definitions. Declarations define program entities including variables, constants, methods, and classes. Java and many other languages follow a declare before use rule, which states that identifiers must be declared prior to their use in a program.
 The location of a declaration determines its scope. Declarations outside method definitions are called global; they are accessible by all parts of a class. Global definitions should include only those entities that are pervasive in the class: physical constants, and of course, the class and instance variables that define the class and object state.

•
Declare identifiers that are used throughout a class at the beginning, making them global identifiers.

•
Physical and mathematical constants should be declared as global constants; e.g.

public final double PI = 3.1416;

•
Values that do not change during execution and are properly viewed as program parameters are appropriately declared as global constants. These values are often referenced throughout the class. These might include for example, upper bounds on arrays, sentinel values, and common message strings.

•
The variables that constitute the class state (defined as static) and object state must be defined as global so that their values are preserved outside the class methods.

The proper use of global constants and program parameters largely eliminates the use of literal values in a program. For example, a payroll program written to accommodate a standard 40-hour work week should include a global constant such as

public final int STD_WEEK = 40;

References to the work week should then use the constant STD_WEEK rather than the literal value 40. Using the constant has the combined effect of making the program easier to change (a different standard work week can be accommodated simply by changing the single definition of STD_WEEK) and simultaneously making the program easier to read (“Does this value 40 refer to a work week or something else?"). The presence of literal values (sometimes referred to derisively as magic numbers) in a program generally indicates a lack of sophistication of the programmer.

Using global variables for purposes other than global constants and class or instance variables is generally inappropriate. In particular, global variables should not be used as a way of avoiding parameters.

All declarations (of constants, variables, and methods) should be accompanied by a comment explaining their role in the program. Each variable of a program should have a single distinct and well-defined role. Re-using variables to economize on declarations and space is foolish. All names should be mnemonic and should follow the guidelines outlined in Chapter 1.

•
Each variable, constant and method of a program should have a single distinct and well-defined role, and its name should reflect that role.

Informally, the scope of an identifier is the union of portions of a program in which the variable is known, or accessible. Method declarations are routinely global so as not to interrupt other code with the method definition, but declarations of non-global variables and constants should have the smallest feasible scope. One consequence of this rule is that declarations of non-global variables and constants occur close to where the identifiers are used.

•
Except for global identifiers, place declarations to minimize scope.
4.1 Restricting the range of variables

Some programming languages, although not Java, allow variables to be declared with restricted ranges; these are called subrange types. For example, in Turing

var x: int

var c: char

defines an integer variable x and a character variable c allowing x to take on any representable integer value and c to take on any character value. But the declarations

var x: 0..20

var c: 'a'..'z'

create variables with restricted ranges. An error will result if any action tries to assign to x an integer less than 0 or greater than 20, or assign to c a character other than a lowercase letter. Restricting the range of a variable provides both documentation and a shield against unexpected behavior. Either virtue would justify its use whenever possible.

Since Java does not implement subrange types directly, we have two alternatives. First we could strategically place assertions of the form

Assert.assert(0 <= x && x <= 20, "x out of range");

Assert.assert('a' <= c && c <= 'z', "c out of range");

into the program in appropriate locations to make sure x and c do not stray outside their specified ranges. Alternatively, and far better, we could create our own class of restricted range integers and characters as we will illustrate in Chapter 7.

•
Declare variables to have restricted ranges whenever feasible.

An extreme case of a restricted range occurs when the value of an identifier will not change. This is not an uncommon occurrence because the scope of Java identifiers can be restricted by the program structure, and sometimes what is conceived as a temporary variable is assigned only a single value. In such a case it is appropriate to use a constant rather than a variable. For example,

// swap x and y if x < y.

if (x < y)

{

final int temp = x;

x = y;

y = temp;

}

•
Declare values that will not change as constants.

5 Single Entrance-Single Exit Code

As a rule, each block of code (each segment of sequential code, each conditional statement, each loop, each method and each program) should have a single entrance point and a single exit point.
 The effect of this constraint is to simplify the description of the state associated with each point in the program code. Without the constraint, the state of the program at each statement must reflect all possible ways of reaching that point.

We will consistently write single entrance-single exit code except in one specific circumstance. The single entrance-single exit discipline implies that methods that return values should have exactly one return statement; that is, the last statement executed by all invocations of the method should be the same. We permit more than one return statement to be used in a method if the following two conditions are satisfied:

1.
The structure of the method code is a tree. This occurs when the code is a conditional statement, possibly with nested conditional statements, and also when the code consists of a section of code that terminates in such a conditional statement.

2.
Any execution of the method follows a path through the tree that terminates in a return statement.

Any code that satisfies these conditions can easily be made into one with a single return statement by declaring an additional variable and, if the variable is named x, replacing each occurrence of

return expression;

by

x = expression;

and adding the statement

return x;

as the last line of the method. But also required may be conditional code to bypass some sections of the method code. In general, it is all right to end the method and return the value as soon as the appropriate return value is known. The use of multiple return statements is shorter and we consider it to be no less clear.

•
Write single-entrance single-exit code except for methods that obey the above constraints.

6 Sequential Control

The default control structure is sequential control — unless something causes a 'transfer of control', program instructions are executed in the order in which they appear in the program. If we use single-entry, single-exit code blocks and avoid the use of goto statements, every program consists of a sequence of sequentially executed code blocks, each of which can be viewed as a high-level instruction. At first glance one might think there is not much to discuss about sequential code, but in fact there are several criteria, or principles, that, when violated, diminish the readability of programs. They are not independent; usually they are mutually supportive, although occasionally they are in conflict. We will treat each of them.

•
Write code sections to read from top to bottom.

Understanding a program usually starts by reading the main method. Unfortunately, in a language that follows the ‘declare before use’ rule, as does Java, the main method is often at the bottom of the listing of the main class. That is followed by a reading of the definitions of the identifiers used in the main method; these definitions usually occur before the main method. The hopping from one section to another makes for an awkward process, and the awkwardness is multiplied if it is continued in the parts of the program that must be understood. So far as possible, programs and their parts should be written to be read as narratives, from the top to the bottom. This principle is supported by many of the other principles that we list.

•
Write code to exhibit dependencies, and document lack of dependencies.

The sequential control structure is convenient and well-adapted to humans; we generally process sequentially. But it has a disadvantage with programs. When program instructions must be listed sequentially, sometimes the order of instructions is crucial and sometimes it is not important. One can imagine a different language that would permit the programmer to bracket sets of instructions for which instruction order is immaterial; such a language would make it possible to specify exactly which instructions must be executed before others. Our languages aren't generally like that, no doubt because the machines on which they are executed are not. Consequently, communicating with the reader places on the programmer the burden of distinguishing between the times that instruction order is important and when it is not. Careful name choices can make it evident that order is crucial, as in the following segment.

// Segment 1

ReadInput (inData);

Process(inData,Results);

PrintResults(Results);

In contrast, the following segment provides no clear help to the reader, even though its syntactic structure is identical:

// Segment 2

Step1 (Array1);

Step2 (Array1, Array2);

Step3 (Array2);

In cases in which order dependencies cannot be made clear by careful choice of method and data names, clarifying comments are appropriate.

•
Keep related things together.

The Principle of Proximity asserts "Related things should be kept together." Two applications of this principle are particularly important in programming:

• The statements that perform a task should be grouped together.

• Declarations should appear with the statements that use them.

It is sometimes the case that program statements can be moved about quite freely within a program. One example occurs when several data structures must be initialized prior to executing an algorithm. The initialization code for the data structures might very well be correct if it were 'merged' into one group, but adhering to the principle of proximity dictates that each of the initializations be written as a separate group of statements. Statements should be grouped first according to tasks, and then references to a variable should be grouped as tightly as feasible. Adhering to this principle often reduces the need for the reader to think about several things at once.

If one draws a box around all the statements that perform each task, well-organized code will have boxes that follow sequentially or are nested, but do not overlap. A common manifestation of this principle, of course, is the packaging of a block of code as a method.

•
Keep the scope and span of variables small.

Recall that informally, the scope of a variable is the union of portions of a program in which the variable is known, or accessible. The span of a variable is the distance, or number of lines of code, from the first occurrence of the identifier to the last one, in which the variable name appears. Adhering to the Principle of Proximity will keep both the scope and the span of variables small.

The principle of proximity also encourages initializing variables as part of their declaration when that is appropriate. Note, however, that you should not initialize variables gratuitously. For example, if a variable x is to receive an input value before its use, then initializing x in its declaration is not only wasteful, it is also foolish. First, it eliminates the possibility of an error message that the uninitialized variable x had been accessed. Such a message might well alert you to a programming error. Second, it misleads the reader, who reasonably concludes that the initial value is necessary for proper execution.

7 Conditional statements

Every programming language has one or more control structures for conditional execution ("sometimes you do it, and sometimes you don't"). These structures are commonly known as selection statements, or conditional statements. They come in various forms, principally if statements and switch statements. In Java, the main facility is built around an if construct, with variations. A switch statement also exists but is of limited usefulness. (We have not yet addressed the proper use of the switch statement.)

Conditional execution occurs in two forms. In the most basic, a segment of code is executed or skipped depending on the outcome of a test. A more general form executes exactly one or at most one code segment selected from several possibilities; the choice of which segment is executed depends on the outcome of one or more tests.

The choice of which form of the conditional statement to use is important because it serves as program documentation: the structure of the code should match the structure of the computation.

7.1 Basic rules for choosing a conditional execution structure:

When a single task is either to be done or not, the correct structure is

if (b) {task code}

In the most general case, a subset of some collection of actions is to be executed. If a test must be made for each of the possible actions, the proper form is a sequence of if statements:

if (b1) {A1}

if (b2) {A2}

if (b3) {A3}

This structure is very flexible in that it can result in any subset of the actions A1, A2 and A3 being executed. This form is appropriate only when more than one of the actions can be performed. It should not be used when choosing from alternatives (i.e., when only one action is to be performed) because more appropriate control structures are available.

Our abstract representation of a sequence of tests and conditional actions makes no hint about the presence or absence of dependencies among the various actions. In some cases, the order of the statements may be immaterial, but that may not be the case, as when, for example, execution of action A1 can affect the result of the test b2. Thus the order of the statements may be critical, and when that is the case, the dependencies and the required sequentially should be well-documented.

Executing a subset of a collection of tasks is not a common task. More commonly, a single task, or at most one task, is selected for execution from a collection. If there is one task, then a single construct of the form

if (b1)

{

A1

}

is appropriate. If there are only two possible tasks, A1 and A2, and exactly one is to be executed, the correct structure is

if (b1}

{

A1

}

else

{

A2

}

This form requires that the (implicit) condition for A2 is the negation of the condition for A1.

7.2 The cascaded (or chained) if statement

If exactly one task is to be selected from a collection of more than two tasks, a cascaded, or chained, if form is appropriate. For a collection of five actions, the construct takes the following form:

if (b1)

{

A1

}

else if (b2)

{

A2

}

else if (b3)

{

A3

}

else if (b4)

{

A4

}

else

{

A5

}

A second form of the cascaded if does not include the final else clause. This form causes at most one action to be taken; no action is taken if none of the conditions apply:

if (b1)

{

A1

}

else if (b2)

{

A2

}

else if (b3)

{

A3

}

else if (b4)

{

A4

}

Both forms of the cascaded if statement are easily understood because the tests, or conditions, are evaluated sequentially in the order given; the action taken is that associated with the first test that succeeds, or the final clause when the final else is present. Note that the tests b1, b2, b3, ... need not be independent; thus, b1 might imply b2. The precise condition for the execution of A3, for example, is the conjunction !b1 && !b2 && b3. Note also that b3 will not be evaluated unless both b1 and b2 have failed. After any test succeeds and the corresponding action is taken, all other tests are skipped. The two code structures given above can be viewed graphically as trees; the form with the else is on the left.

[image: image1.wmf]A5

 A2

b1

b2

b3

b4

A1

A3

A4

T

F

T

F

T

F

T

F

 A2

b1

b2

b3

b4

A1

A3

A4

T

F

T

F

T

F

T

F

Graphical representations of the cascaded if structures. The structure on the left includes an else clause; the structure on the right does not.

These cascaded, or chained constructions are the most useful forms of selection: they are widely applicable; they represent a sequential decision process that is often a natural way of thinking about a problem, and the structure clearly communicates the message that at most one of the actions will be taken.

7.3 Nested Conditionals

Sometimes several tests are applied before any is action is taken, but the test to be applied at any stage is affected by the outcomes of previous tests. For example, the following code will make exactly two decisions before any action is taken. The second test, ether b2 or b3, is chosen according to the outcome of the first test b1.

if (b1)

{

if (b2)

{

A1

}

else

{

A2

}

else

{

if (b3)

{

A3

}

else

{

A4

}

}

This code can be graphed as a balanced tree:

[image: image2.wmf]b1

b2

b3

A1

A2

A3

A4

T

b2

T

b2

T

b2

F

b2

F

b2

F

b2

While this code is natural for many processes (the game of 'Twenty Questions' is one example), it brings with it a problem of all nested structures: as the level of the nesting increases, it becomes harder to understand. Consequently, when faced with a situation that appears appropriate for a nested conditional, it is appropriate to consider using a cascaded structure that will yield the same behavior. In the present example, there are four possible actions, exactly one of which will be performed. It can be re-written as a cascaded if in any of several ways, one of which is shown below. Short circuit evaluation is critical here because for example, if b1 is false, b2 may be undefined and we must avoid the b2 test.

if (b1 && b2)

// SC eval

{

A1

}

else if (b1 && !b2)
// SC eval

{

A2

}

else if (!b1 && b3)
// SC eval

{

A3

}

else if (!b1 && !b3)
// SC eval

{

A4

}

This code, while straightforward, contains many unnecessary tests. In the following we have eliminated the redundant tests but included them as part of the documentation by stating them as comments.

if (b1 && b2)
// SC eval

{

A1

}

else if (b1) // and not b2

{

A2

}

else if (b3) // and not b1

{

A3

}

else // if not b1 and not b3

{

A4

}

Making the redundant tests comments rather than executable is not likely to produce a noticeable reduction of execution time unless some of the tests require substantial time.

7.4 Changing the form of conditional statements

The form of a conditional statement with several possible outcomes can be changed considerably. There is no rule about which form is best, except that forms that are easiest to understand often reflect the structure of the problem at hand. The programmer should consider alternatives when coding selection structures and choose one that is both appropriate and well-structured. For example, consider the following code, which is adopted from a text on Pascal, but has been changed to Java syntax. As a kindness to the author, we'll not give his name. The author was describing good formatting practice (specifically, how indentation should reflect program structure). He wrote:

"If you can't avoid writing a compound if of the following form, use this layout:"

// Original version.

if (b1)

if (b2)

if (b3)

{

A1

}

else

{

A2

}

else

{

A3

}

else

{

A4

}

While the layout is indeed appropriate to the form, such a deeply nested structure is plainly difficult to understand, and you can always avoid writing a selection statement in the above form. It's not possible to say what form is best without knowing more details, but the following is equivalent in almost every respect to the form given above, except that it may be more understandable.

// Modified version 1.

if (b1 && b2 && b3) // SC eval

{

A1

}

else if (b1 && b2) // and not b3 – SC eval

{

A2

}

else if (b1) // and not b2

{

A3

}

else

{

A4

}
Re-arranging the order of the tests often makes things easier to understand. The deeply nested program given above is also equivalent to the following.

// Modified version 2.

if (!b1)

{

A4

}

else if (!b2)

{

A3

}

else if (!b3)

{

A2

}

else

{

A1

}

Note further that since tests need not be exclusive, re-arranging the cases may simplify the tests.

Other equivalent forms of the same deeply nested program can be created, and may be more appropriate. For example, you might wish to consider the re-writing the code so that the actions occur in the order A3, A2, A1, A4. The final choice of which version should be used will depend on which is most clear and which outcomes are most likely, but in practice, this is not usually a difficult process.

· Favor a cascaded selection structure over nested structures.

Occasionally a problem that can be solved by a cascaded selection statement is most naturally solved with a more primitive form.

Example:

Assume the built-in maximum method is not available, and consider the problem of assigning a variable named max the largest of two, three and four values. One approach simply lists the conditions for each value to be the maximum, given the outcomes of previous tests.

Set max to the larger value of variables a and b:

if (a >= b)

max = a;

else

max = b;

Set max to the largest value of variables a, b and c:

if (a >= b && a >= c)

max = a;

else if (b >= c) // since a is not largest

max = b;

else // since neither a nor b is largest

max = c;

Set max to the largest value of variables a, b, c and d:

if (a >= b && a >= c && a >= d)

max = a;

else if (b >= c && b >= d) // since a is not largest

max = b;

else if (c >= d) // since neither a nor b is largest

max = c;

else

// since neither a nor b nor c is largest

max = d;

The above strategy is correct and not too difficult to understand, and the way to generalize it to more variables is clear. Nevertheless, it is somewhat clumsy, and the opportunity for typing errors in the long conditions is substantial. Moreover, it is not possible to write executable assertions for the code unless one begins by assigning a dummy value to the variable max.

In contrast, the following approach accomplishes the same goal, is easier to understand, and easily generalizes to any number of values. Its clarity is reflected in the assertions that can be written if one is so inclined. You may recognize that it uses the same technique as would be used to find the largest entry of an array.

max = a;

if (b > max)

max = b;

Assert.assert(a<=max && b<=max && (max==a || max==b), "max error");

// max is larger of a and b.

if (c > max)

max = c;

Assert.assert(a<=max && b<=max && c<=max &&

(max==a || max==b || max==c), "max error");

// max is largest of a, b, and c.

if (d > max)

max = d;

Assert.assert(a<=max && b<=max && c<=max && d<=max &&

(max==a || max==b || max==c || max==d), "max error");

// max is the largest of a, b, c, and d.

End of Example

7.5 Avoiding use of the null statement (a special case):

Suppose you are writing an error routine and wish to express the following:

if the input is normal then do nothing

otherwise signal an error

You might be tempted to write the following (which is syntactically and semantically correct):

if (input_normal) // empty statement

else

signalError();

Don't ever! The following is better in every respect:

if (!input_normal)

signalError();

The code will be further improved by defining the test input_error to be the negation of the test input_normal:

if (input_error)

signalError();

· Avoid the use of null actions.

We have described many forms of conditional statements, and how the various forms can be converted one to the other. It is rare that the choice between these forms is arbitrary; most commonly, the structure of the problem causes one of the forms to be most appropriate. Consider the choice of form as an important part of the program documentation.

· Choose the conditional control structure that best reflects the logical structure of the decisions.
8 Loops

Loops and recursion are the muscle of programming. Without them, programming and computers would be so weak as to be unimportant and uninteresting. We'll study recursion in a later chapter; here we'll discuss loops. Loops cause programmers to stumble.

Some programming languages, such as Pascal, have two distinct classes of loops, classified according to the mechanism that causes the loop to terminate. Event-controlled loops, or indefinite loops, execute the loop body repeatedly until some termination condition occurs. Count-controlled loops, or definite loops, execute the loop body a number of times calculated before the loop begins execution. In Java, all loops are event controlled, although the for loop has the added feature of an automatic increment.

8.1 While loops

The while(b){C} structure is the event-controlled loop of Java; it is the most powerful, and the most difficult to write. Much of the difficulty stems from the fact that a while loop can be written in so many ways; as a consequence, no matter what part of a loop is written first, the remaining code can often be written to accommodate what is in place. The result is often an ad hoc structure that is difficult to understand. We begin with a simple example to illustrate the point.

Example:

Consider the problem of finding the sum of the entries of an array that precede the first zero entry in an integer array b[0...n]. For example, if the first 4 entries of an array b[0...n] are 4,-3,5,0, the value for this array would be (4 + (-3) + 5) == 6. Because the fourth entry is 0, only the first three entries contribute to the sum. We are given (as part of the precondition) that the first entry is non-zero, and that some entry of the array is equal to 0.

The precondition that at least one zero entry exists, and that b[0] is non-zero, is formalized as follows:

Assert.assert(b[0] != 0, "b[0] is 0");

// and (E j: 1 <= j <= n): b[j] == 0)

The goal of the program segment to be written is to assign the value of the variable sum so that the following postcondition is satisfied:

//post: (Et: 0 <= t <= n: sum = (Sum j: 0 <= j < t: b[j])

//

and b[t] == 0 and (Aj: 0 <= j < t: b[j] != 0))

A loop structure can be written in a number of ways to accomplish this task, but the natural forms are all based on an exit condition that tests for a zero entry in the array, and a loop body with two commands:

• add the value of an array entry to the variable sum, and

• increment the loop index.

Even if we restrict the exit condition to

if (b[i] == 0) break;

and the two loop body commands to

i++;

and

sum = sum + b[i];

the following code segments show the two commands in the loop body can be performed in either order, and that the exit statement can be put in any of the three possible positions within the loop body, simply by initializing the loop appropriately. Thus, even with these constraints on the actual instructions used, the loop body can be written any of 3*2 == 6 ways, and then made to work by using appropriate initializations! And of course the number of possible programs increases greatly if one allows the use of b[i+1] in either the exit condition or the accumulation. Are these programs all equally good? We think not. Below are the six 'simplest' programs, along with their loop invariants. All the programs have the same preconditions and postconditions.

To simplify the assertions, we define two predicates: sumTo and nonZero, both based on the loop index i. The predicate sumTo(i) asserts that sum contains the sum of all entries in b[0...i]. The predicate nonZero(i) asserts that the elements b[0...i] are all nonzero.

sumTo(i) == (-1 <= i <= n) &&

sum = (Sum j: 0 <= j <= i: b[j])

nonZero(i) == (-1 <= i <= n) &&

 (Aj: 0 <= j <= i: b[j] != 0)

With these predicates, the original postcondition is implied by

Assert.post(sumTo(i-1) && nonZero(i-1) && b[i] == 0, "sum error");

// Version 1

sum = 0;

i = 0;

while(true)

{

// INV:

Assert.inv(sumTo(i-1) &&

nonZero(i-1),

"sum error");

if (b[i] == 0) break;

sum = sum + b[i]

i++;

}

// Version 2

sum = b[0];

i = 0;

while(true)

{

// INV:

Assert.inv(sumTo(i) &&

nonZero(i-1),

"sum error");

if (b[i] == 0)break;

i++;

sum = sum + b[i];

}

// Version 3

sum = 0;

i = 0;

while(true)

{

sum = sum + b[i];

// INV:

Assert.inv(sumTo(i) &&

nonZero(i-1),

"sum error");

if (b[i] == 0) break;

i++;

}

// Version 4

sum = 0;

i = 0;

while(true)

{

sum = sum + b[i];

i++;

// INV:

Assert.inv(sumTo(i-1) &&

nonZero(i-1),

"sum error");

if (b[i] == 0) break;

}

// Version 5

sum = b[0];

i = 0;

while(true)

{

i++;

// INV:

Assert.inv(sumTo(i-1) &&

nonZero(i-1),

"sum error");

if (b[i] == 0) break;

sum = sum + b[i]

}

// Version 6

sum = 0;

i = -1;

while(true)

{

i++;

sum = sum + b[i];

// INV:

Assert.inv(sumTo(i) &&

nonZero(i-1),

"sum error");

if (b[i] == 0) break;

}

Note that the three statements within the loop brackets are the same in each of the programs; the programs differ only in the order of these statements and the initialization of the loops. Are all these programs equally good? We think not. The following two warts are evident:

It is unattractive to increment the value of i after it is initialized but before it is used. This occurs in versions 5 and 6.

It is unattractive to add b[i] to the variable sum each time through the loop before checking for the exit condition b[i] == 0. This occurs in versions 2, 3 and 6.

These may be unattractive, but is there any real substance to the objections? Another criterion we might use is the ease with which the program could be changed to accommodate revised specifications. Two changes seem most likely:

The distinguished value 0 might be changed to, for example, -1, or 999.

The distinguished value might be permitted to occur in b[0].

These are both modest changes in the specification, and all six programs can be altered to meet them. But the change required by the programs differs, both in type and severity. Below is a table of how the programs can be changed most easily to meet any of the four possible specifications, which we will label with the letters A through D:

A:
the original specification.

B:
The distinguished value is changed from 0 to a different value.

C:
The distinguished value 0 may occur in b[0]

D:
The distinguished value is not 0, and it may occur in b[0].

Changing the distinguished value (cases B and D) requires changing the exit test. Additional changes required by the programs are classified as follows:

OK
No change required.

init:
The loop initialization code must be changed.

loop:
The loop structure must be changed.

final:
"Finalization" code must be added after the loop.

Below is a table of the changes required by each of the programs. (All of the programs work for the original specification.)

Spec A
Spec B
Spec C
Spec D

Prog 1
OK
OK
OK
OK

Prog 2
OK
final
OK
final

Prog 3
OK
final
OK
final

Prog 4
OK
OK
loop
loop

Prog 5
OK
OK
init
init

Prog 6
OK
final
OK
final

These criteria suggest that version 1 is the most attractive; it exploits the preconditions to avoid unnecessary assignments and tests, and it accommodates natural changes in specification.

We have exhibited six programs that illustrate that in this simple case we can write the statements of the loop body in any order and still construct a correct program. Clearly there are many more correct programs to accomplish the task; for example, the number of correct programs that could be written would increase greatly if we permitted the use of

if (b[i+1] == 0) break;

and

sum = sum + b[i-1];

And those programs would still not include horrors such as the following, which also works (with a slightly altered postcondition), but which might earn its writer a few years in some special programmer's purgatory.

sum = b[0] + b[1];

i = 2;

while(true)

{

if (b[i-1] == 0) break;

sum = sum + b[i];

i++;

}

// post:

Assert.post(sumTo(i-1) && b[i-1]==0, "sum error");

The development of this version is understandable; the writer first wrote the initialization code, exploiting the precondition to reduce the number of executions of the loop body. The loop body was then written to accommodate the initialization. The test must occur first in the loop body and must test b[i-1]. If the exit is not taken, then it is safe to add b[i]. Was the result a win? Certainly not if anyone has to read the code!

Our conclusion is that there are far more correct programs than good ones
, and our goal should be to learn to write the good ones. The problem, of course, is that there is little guidance available for writing loops. We cannot give foolproof advice, but we believe we can describe a way of approaching the writing of loops that will generally result in good code.

8.2 Writing loops

As we noted earlier, the while(b){C} structure is the most powerful loop structure, and the most difficult to write. Much of the difficulty stems from the fact that an event-controlled loop can be written in so many ways, and often a bad start is compensated for by writing the remaining code to accommodate what is in place. Writing better loops requires that we take an orderly approach, and make decisions in an order that will produce good code.

We first note that every loop can be viewed as part of a larger loop structure consisting of a loop embedded in some surrounding sequential code, as illustrated below. We have used comments to show the locations of the various assertions.

// Loop structure precondition

loop initialization code
// Loop precondition

while(true)

{

loop body code, part 1

// loop invariant

if (exit condition) break; // Exit test.

loop body code, part 2
}

// Loop postcondition

loop finalization code
// Loop structure postcondition

Note that a loop structure has four segments of code:

•
loop initialization code. This precedes the opening while,

•
loop body code that precedes the exit test,

•
loop body code that follows the exit test, and

•
loop finalization code. This follows the closing loop bracket.

Any of these code segments may be empty, although to be useful, the loop body must contain some code other than the exit test.

The writing of a loop begins with a conception of the pre and postconditions of the code segment and an algorithm to be implemented with a loop structure. These pre and postconditions are for the entire loop structure, and they are often different from what will eventually emerge as the pre and postconditions for the loop itself. Thus we begin with an understanding of the task to be accomplished by the loop structure, including the initialization and finalization code. Then, although the details will usually not be understood, we will conceive how the state of the computation should change with each execution of the loop body, and how we can judge when the task will be finished. With these in hand, we can describe the steps in writing an event-controlled loop as follows:

1. Write the pre and postconditions for the loop structure.
2. Write the exit test. (This will often require choosing an index variable.) The exit condition should be a 'natural' one, but it should be chosen to be as strong as possible. For example,

if (i == n) break;

is preferred to

if (i >= n) break;

(Note that when the loop terminates, the state of the computation will be specified by the conjunction (the and of) the exit condition and the loop invariant. Choosing a strong exit condition may allow the use of a weaker loop invariant. This may make it easier to construct a satisfactory loop invariant.)

After completing step 2, we have chosen (or at least guessed at) the loop structure pre and postconditions and an exit condition. Our program looks like this. Shading indicates what has been completed.

// Loop structure precondition

loop initialization code
// Loop precondition)

while(true)

{

loop body code, part 1

// loop invariant

if (b) break;

loop body code, part 2
}

// Loop postcondition

loop finalization code
// Loop structure postcondition

The next step in loop construction is:

3. Write the loop invariant. This requires that you describe carefully what each execution of the loop body is accomplishing, often as a function of a loop index variable. Recall from the rules of programming that the exit condition together with the invariant must provide enough information to establish the loop structure postcondition.

4. Write the loop finalization code. This will provide a first test of whether the invariant and exit condition are adequate. This code segment is empty if

inv and b => Loop structure postcondition

but often there is some segment F of code such that

{inv && b} F {loop structure postcondition}

// inv && b

F // loop finalization code

// Loop structure postcondition

This step may require some adjustment of the loop invariant, but the usual result is that you will better understand how the loop will work.

5. Write the loop body. The requirement for this step is that the loop body maintain the invariant. This can initially be written as code C such that

// invariant && !b

C

// invariant

This step often requires strengthening the invariant. For example, in some cases an additional bookkeeping variable will facilitate an efficient solution, and the bookkeeping variable will become an important part of the invariant. But notice that strengthening the invariant will not invalidate what you've done in previous steps because you will be strengthening the assertion inv && b that holds on exit.

Note that in this step we have deliberately avoided any concern about what part of the loop body precedes and follows the exit test. At the end of this step, we know the sequence C of statements in the loop body, and that the exit test can be placed prior to the first statement of C (and also prior to the assertion “inv && !b”).

6. Write the loop initialization code to establish the invariant.

// Loop structure precondition

E

// Invariant

We now, in fact, should have a working loop structure that can be written in the form

// Loop structure precondition

E

(From step 6.)

while(true)

{

// invariant
(from step 3)

if (b) break;
(from step 2)

C

(from step 5)

}

F

(from step 4)

// Loop structure postcondition

But we may be able to make the code both smaller and more elegant if the initialization code E and the loop body code C have statements in common. When this is the case, we can often eliminate the duplicate statements from E by 'rotating' the code of the loop body so that some of the statements of C also serve to help establish the invariant. This may result in the exit condition being positioned at any point in the loop body. Thus the final step in writing the loop is:

7. Adjust the position of the exit statement within the loop body to eliminate redundant operations in the initialization code.

Summary:

In writing an event-controlled loop, the parts of the loop should be written in the following order:

1. The pre and postconditions for the loop structure.

2. The exit statement for the loop. This determines when the loop will terminate.

3. The loop invariant. This characterizes how the loop will work.

4. The loop finalization code. This shows that the postcondition can be established.

5. The loop body. This shows that the invariant can be maintained.

6. The loop initialization code. This establishes the invariant for the first time.

7. Eliminate overlap between the loop body and the initialization code by doing an ‘end around shift’ of the loop body code.

Finally, of course, we should inspect the loop to determine whether we expect it to work, particularly for the special cases that may arise. What is the smallest number of times the loop body may be executed, and how does the loop work when that is the case? What are the possible ways that the termination condition can arise, and are all of them handled properly by the finalization code? You'll get your code working faster if you ask these questions before you bother running it.

Example:

Consider the problem of locating a value in a sorted array.

We begin by formulating a rough sketch of an algorithm. Binary search is a well-known and efficient method of searching sorted arrays. Informally, this algorithm begins by comparing the middle element of a sorted subarray with the value sought, called the search key. If the value is found, it terminates with a success; otherwise, it restricts further search to the half of the list that may contain the value. Termination occurs with success if the value is found, and with failure if it is not found.

This problem is suitable for an event controlled loop because the number of values we compare with the search key cannot be determined beforehand.

Step 1: We formalize the problem by writing a pre and postcondition. We use the program variable key to hold the value sought, and b[0..n] to represent the sorted array. The variable named mid will hold the index of the value "in the middle" of the part of b being searched. Since only that value is ever examined, if key occurs in b[0...n], the value of mid will eventually be set to the index of the value. We've chosen a postcondition that uses mid == -1 to report that the search failed.

// pre: 0 <= n && (Ai: 0 <= i < n: b[i] <= b[i+1])

// The array b[0...n] is nonempty and sorted in non-decreasing order.

// post: b[mid]==key || (mid == -1 && (Ai: 0 <= i <= n: b[i] != key))

// Either mid is the index of the value key, or the key value does not

// occur in b[0...n] and mid is set to -1.

Step 2: Choose the exit condition. To restrict the search to a subarray of b[0...n], we'll use the values lo and hi to denote the part of the array in which key might occur. Initially, lo==0 and hi==n. A successful search is terminated when b[mid] == key. An unsuccessful search is signaled when the part of the array in which the key might occur is empty; this occurs when lo == hi + 1. Thus our loop should terminate either when the value is found (b[mid] == key) or when lo == hi+1. A compound condition made of these two conditions must be written carefully, however, since the computation of mid from lo and hi might give a value outside the array if lo == hi + 1. Short circuit evaluation will make the test safe if we test the array bounds to determine that lo <= hi before evaluating b[mid]. We therefore write the exit condition as follows:

if (lo == hi+1 || b[mid] == key) break;
// SC eval

Note that we've used a compound exit condition, but we've made it as strong as possible by using lo == hi+1 rather than lo > hi.

We now have the code

// loop structure pre: 0 <= n and (Ai: 0 <= i < n: b[i] <= b[i+1])

while(true)

{

...

if (lo == hi+1 || b[mid] == key) break;
// SC eval

...

}

...

// loop structure post:

//
b[mid] == key || (mid == -1 && (Ai: 0 <= i <= n: b[i] != key))

Step 3: Formulate an invariant. The loop must assure us that the part of the array being searched is the only part that might contain the value key. This produces the following invariant:

invariant:

((Ei: 0 <= i <= n: b[i] == key) => (Ei: lo <= i <= hi: b[i] == key))

and

((lo != hi+1) => (0 <= lo && lo <= mid && mid <= hi && hi <= n))

(If key is a value in b[0…n], then key is a value in b[lo…hi],

and

if lo…hi is not an empty range, then mid lies in the range lo…hi.)

Step 4: Write the finalization code. This turns out to be quite easy. The precondition for this code is the invariant conjoined with the exit condition; the postcondition is the postcondition of the loop structure. The exit condition assures us that either lo == hi+1 or b[mid] == key, and the invariant guarantees that if key is in the array b[0...n], then key is located in b[lo..hi]. Thus if lo == hi+1, then the invariant assures us that the key value does not occur in b[0..n], and assigning the value -1 to mid establishes the postcondition. If lo != hi+1, then the exit condition assures us that b[mid] == key, and the postcondition holds.

if (lo == hi + 1)

mid = -1;

//
b[mid] == key || (mid == -1 && (Ai: 0 <= i <= n: b[i] != key))

Step 5: Write the loop body to maintain the loop invariant. This can be done by first reducing the size of the subarray being searched, and then re-computing the middle index. If b[mid] < key, then the part of the array where key may lie is the subarray b[mid+1…hi], and if b[mid] > key, then the part of the array where key may lie is the subarray b[lo…mid-1]. These implications hold so long as the value mid lies in the range lo…hi. Thus if we are assured that lo <= mid && mid ≤ hi, we can reduce the range of the search by setting either lo to mid+1, or hi to mid-1. We can now write the loop body:

// invariant:

// ((Ei: 0 <= i <= n: b[i] == key) => (Ei: lo <= i <= hi: b[i] == key))

// &&

// ((lo != hi+1) => (0 <= lo && lo <= mid && mid <= hi && hi <= n))

//
&& !(b[mid] == key || lo == hi+1));

Assert.assert(lo <= mid && mid <= hi && b[mid] != key, "lo/hi error");

if (b[mid] < key)

// if key is in the subarray, it is in the upper half.

lo = mid + 1;

else

{

// if key if in the subarray, it is in the lower half.

hi = mid – 1;

}

mid = (lo + hi) / 2;

Assert.assert (lo == hi + 1 || (lo <= mid && mid <= hi), "mid error");

// invariant:

// ((Ei: 0 <= i <= n: b[i] == key) => (Ei: lo <= i <= hi: b[i] == key))

// &&

// ((lo != hi+1) => (0 <= lo && lo <= mid && mid <= hi && hi <= n)));

Step 6: Next, we write the loop initialization code to establish the invariant before entering the loop. This is easily done.

lo = 0;

hi = n;

mid = (lo+hi) / 2;

This gives us:

// precondition: b[0…n] is sorted by <=, and 0 <= n.

lo = 0;

hi = n;

mid = (lo+hi) /2 ;

while(true)

{

// invariant:

// ((Ei: 1 <= i <= n: b[i] = key) => (Ei: lo <= i <= hi: b[i] = key))

// and

// ((lo != hi+1) => (1 <= lo && lo <= mid && mid <= hi && hi <= n));

if (lo == hi+1 || b[mid] == key) break;

// SC eval

Assert.assert(lo <= mid && mid <= hi && b[mid] != key,

"lo/hi error");

if (b[mid] < key)

// if key is in the subarray, it is in the upper half.

lo = mid + 1;

else

{

// if key if in the subarray, it is in the lower half.

hi = mid – 1;

}

mid = (lo + hi) / 2;

Assert.assert (lo == hi + 1 || (lo <= mid && mid <= hi), "mid error");

}

if (lo == hi + 1)

mid = -1;

// loop structure post:

//
b[mid] == key || (mid == -1 && (Ai: 0 <= i <= n: b[i] != key))

Step 7: Now it's clear that the last statement of the loop body is the same as one of the statements of the initialization. Thus, we can rotate the loop body statements and eliminate the statement that assigns a value to mid from the loop initialization, giving the final version:

// precondition: b[0…n] is sorted by <=, and 0 <= n.

lo = 0;

hi = n;

while(true)

{

mid = (lo+hi) /2 ;

Assert.assert (lo == hi + 1 || (lo <= mid && mid <= hi), "mid error");

// invariant:

// ((Ei: 1 <= i <= n: b[i] = key) => (Ei: lo <= i <= hi: b[i] = key))

// and

// ((lo != hi+1) => (1 <= lo && lo <= mid && mid <= hi && hi <= n));

if (lo == hi+1 || b[mid] == key) break;

// SC eval

Assert.assert(lo <= mid && mid <= hi && b[mid] != key,

"lo/hi error");

if (b[mid] < key)

// if key is in the subarray, it is in the upper half.

lo = mid + 1;

else

{

// if key if in the subarray, it is in the lower half.

hi = mid – 1;

}

}

if (lo == hi + 1)

mid = -1;

// loop structure post:

//
b[mid] == key || (mid == -1 && (Ai: 0 <= i <= n: b[i] != key))

End of Example

As the foregoing example shows, careful application of the method we advocate can produce a working program. But we expect you may find it tiresome, and we suspect you will resist using the method conscientiously, so perhaps we should be content with less. Toward that end, we urge the following:

The first piece of code of a loop to be written should be the exit condition.

Our view is that choosing a clean, clear exit statement is the single thing you can change in your programming habits to produce better loops. The change will be even better if you make the exit condition as strong as possible.

8.3 For Loops (Counter-controlled)

The for loop in Java is a special case of the while loop that includes two additional features. First, the for loop allows a controlled variable (a counter) to be defined and whose scope is restricted to the loop body. And second, the for loop provides an easy way to perform an automatic increment of the controlled variable at the end of the loop body. Use a for loop whenever you need a counter in a loop, for example when going through an array, element by element. A for loop can be made nonterminating by simply leaving out the boolean expression. The following two loops both search the array b looking for key and setting found to either the index of the first element of b that contains key, or to –1 if key is not found. The first uses a compound exit in the for statement; the second uses a nonterminating for with a break. Note that since the value of the controlled variable is needed outside the loop, it cannot be defined in the for statement.

int i;

for (i = 0; i < b.length && b[i]!=key; i++) // SC eval

{}

if (i == b.length)

found = -1;

else

found = i;

int i;

for (i = 0; ; i++)

{

if (i==b.length || b[i]==key) break; // SC eval

}

if (i == b.length)

found = -1;

else

found = i;

9 Writing Program Assertions

Throughout the text we will emphasize program assertions. Writing these assertions is challenging, and it's important to make the task as manageable as possible. The following are some guidelines.

1. Don't write assertions that, if not true, will cause a compile or runtime error. Those assertions are redundant. We 're writing assertions as a supplement to the checks provided by the system, not to replace them. Thus we need not assert in a Java program that a local variable is initialized prior to use, because if that assertion is false, it will be detected (generally, at compile time). Similarly, we need not assert that types are compatible; if they are not, the syntax checker will stop us in our tracks. We may, on the other hand, assert that x != 0 prior to dividing by x, but only if that seems an appropriate reminder for the reader.

We have also chosen not to assert that the results of computations are representable; for example, that the sum of two integers is less than the largest integer that Java can represent. These assertions can be important, but we will direct our efforts at more fundamental problems.

2. When appropriate, include assertions that are Java checkable as cheap 'reality checks'. Even when a quantified assertion is appropriate, a Java checkable assertion may provide much of the same information. Simple checkable assertions are used by many professional programmers during program development.

3. Put as much of an assertion into a Java checkable form as possible.

4. To facilitate reading assertions, write them consistently. For example, P. J. Plauger, the author of many books of programming, and a major force in the development of C and C++, says that he never uses the relations > or >=. Thus, rather than write

x > y

he will take care to write

y < x

Similarly, if two inequalities hold regarding x such as

z < x && x < y

avoid writing

x < y && z < x

because the second form does not read as easily as the first one.

5. When appropriate, consider implementing a predicate as a boolean method to make the predicate Java checkable.

10 A Final Caveat

We have tried to describe an orderly way of writing code, but life is rarely straightforward. Good code, as with good prose or poetry or mathematical proofs, is rarely simply written; it is written and re-written and re-written again. Writing assertions along with the code will provide additional guidance; formulating the assertion will force you to think more carefully about your program, and an assertion that is awkward to write often points us to code that can be improved.

We have one final word of advice. It is common to advocate writing 'robust' or 'bullet-proof' code, meaning code that cannot be made to bomb. That is an admirable goal for a final programming product, but not necessarily for components. We advocate writing code that will fail catastrophically when it does not act the way you expect. Thus, for example, we advise against initializing local variables at the time of declaration if the initialization is not necessary; we prefer that any unintended access of such a variable alert us to unexpected behavior. Our emphasis on assertions reflects this attitude; assertions should provide only additional opportunities for abnormal termination. Our goal is to find the bugs before someone else finds them for us.

Finally, while we have given a host of rules and guidelines, a caveat is appropriate — it's a nasty world out there, and we would be foolish to claim that our advice applies to every situation. But we do advise that these rules and guidelines should be broken with care, and only after considering the alternatives and understanding the consequences.

11 Summary

This chapter provided guidelines for writing programs using the basic tools and control structures of Java.

We advocate using comments to report the state of a program. Sometimes these comments, or parts of them, can be checked automatically at run time by the assert statements.

•
When feasible, write comments as assert statements.

•
Augment comments involving quantifiers with weaker checkable assertions about recently changed variables.

Careful formatting of programs makes them more easily understood.

•
Use the Java format command (if available in your Java system) to provide indentation.

•
Use blank lines to separate logically distinct parts of the code.

The names used for program entities can be an important part of program documentation.

•
Each variable, constant and method of a program should have a single distinct and well-defined role, and its name should reflect that role.

Identifiers should be defined at a location that corresponds to their role in a program.

•
Declare identifiers that are used throughout a program structure at the beginning, making them global identifiers.

•
Except for global identifiers, place declarations to minimize scope.

Another documentation technique restricts the values that can be assumed by variables.

•
Declare variables to have restricted ranges whenever feasible.

In some languages, such as Pascal, this can be done directly. But in Java, it requires creating a separate "restricted range" class.

•
Declare values that will not change as constants.

Well-constructed code is written to facilitate understanding and reduce confusion.

•
Write single-entrance single-exit code.

•
Write code sections to read from top to bottom.

•
Write code to exhibit dependencies, and document lack of dependencies.

•
Keep related things together.

•
Keep the scope and span of variables small.

· Favor a cascaded selection structure over nested structures.

· Avoid using null actions in conditional constructs.

· Choose the conditional or iterative control structure that best reflects the logical structure of the decisions.
Writing indefinite loops is the most difficult task of “programming in the small”. The task can be made less error-prone by developing indefinite loops in the following order:

1. Write the pre and postconditions for the loop structure.
2. Write the exit condition.
3. Write the loop invariant.
4. Write the loop finalization code.
5. Write the loop body.
6. Write the loop initialization code to establish the invariant.

7. Adjust the position of the exit statement within the loop body to eliminate redundant operations in the initialization code.

The principal rule is for writing event controlled loops is (once you have informally formulated the pre and postconditions of the loop structure):

Write the exit condition first!

Finally, write your code so that the effects of errors will be noticeable.

· Write code to fail catastrophically when it acts unexpectedly.

Exercises:

1. Rewrite the following in a cascaded if... then ... else form:

if (b1)

{

if (b2)

{

A1

}

}

else

{

if (b3)

{

A2

}

else

{

A3

}

}

a. to minimize testing if A1 is the action most likely to be performed and A3 is least likely.

b. to minimize testing if A3 is the action most likely to be performed and A2 is least likely.

2. In our example of writing binary search, we chose the exit condition to be

if (lo == hi + 1 || b[mid) == key) break; // SC eval

Write the code that would result if the precondition assured us that n ≥ 1, and we chose instead to terminate when the subarray was reduced to having a single entry, that is

if (b[mid] == key || lo == hi) break;

Is short circuit evaluation required for this statement?

Chapter 4: Rules of Coding I: Basic Control Structures

1The Rules of Coding I:

Basic Control Structures
1
1
Introduction
1
2
Basic Program Style
2
3
Program Documentation
3
3.1
Comments
3
3.2
Program Format
4
3.3
Other forms of documentation
5
4
Declarations
5
4.1
Restricting the range of variables
6
5
Single Entrance-Single Exit Code
7
6
Sequential Control
8
7
Conditional statements
9
7.1
Basic rules for choosing a conditional execution structure:
10
7.2
The cascaded (or chained) if statement
11
7.3
Nested Conditionals
13
7.4
Changing the form of conditional statements
14
7.5
Avoiding use of the null statement (a special case):
17
8
Loops
18
8.1 While loops
18
8.2
Writing loops
23
8.3
Summary:
27
8.4
For Loops (Counter-controlled)
31
9
Writing Program Assertions
32
10
A Final Caveat
33
11
Summary
33
12
Exercises:
36

word count: 11 482
� This rule does not apply to method definitions within a class definition. Methods can be defined in any order and used by other methods with no restrictions. This avoids the problem of having to explicitly handle methods that are called before they are defined (called a forward reference).

�This constraint rules out many uses of the goto statement that lead to unstructured code.

�Throughout, we will refer to the set of boolean expressions that represent the conditions (or tests) as b1, b2, ... , and the set of possible actions (or tasks) as A1, A2,...

� There actually is a subtle difference between the three forms. The original and modified version 2 will work correctly whether or not short circuit evaluation is used; the modified version 1 may fail without short circuit evaluation. For example, if b2 is undefined whenever b1 is false, then, in the version 1 code segment, the boolean expression b1 && b2 && b3 must be evaluated with short circuit evaluation. Recall from the previous chapter that we denote those tests whose correctness depends on short circuit evaluation by the comment // SC eval.

�And of course there are far more incorrect ones than correct ones!

© 2001 Donald F. Stanat & Stephen F. Weiss

Printed on 9/4/01 at 12:35 PM

_1022668691.doc

A5

 A2

b1

b2

b3

b4

A1

A3

A4

T

F

T

F

T

F

T

F

 A2

b1

b2

b3

b4

A1

A3

A4

T

F

T

F

T

F

T

F

_1022669211.doc
[image: image1.wmf]b2

[image: image2.wmf]b2

[image: image3.wmf]b2

[image: image4.wmf]b2

[image: image5.wmf]b2

[image: image6.wmf]b2

A4

A3

A2

A1

b3

b2

b1

T�

T �

T �

F �

F �

F�

