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ABSTRACT

A city’s architecture gives physical form to the needs and aspira-
tions of its residents. This fact is reflected in the complexity, varia-
tion and beauty of many cities. Current techniques for creating the
architecture of virtual cities range from hand crafting by artists to
highly automated procedural methods. In this paper we describe
an efficient flexible capture and reconstruction system for the auto-
matic reconstruction of large scale urban scenes. The system can be
both backpack and vehicle mounted allowing the capture of interior
or less accessible areas as well as large outdoor scenes.

Index Terms: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Tracking; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis—Sensor Fusion

1 INTRODUCTION

In the last years there is an increasing interest in the automatic gen-
eration of 3D models of entire cities. For example GoogleEarth and
Microsoft VirtualEarth have started providing 3D models for a few
points of interest. These models are currently captured with laser
range scanning and then manually edited to achieve a higher visual
quality and to correct for erroneous measurements. Alternatively
3D models are crafted by artists. As the level of realism of the ar-
chitecture increases so do the labor costs and processing time. We
propose an efficient capture system to capture the 3D-geometry of
existing cities through computer vision techniques, leveraging the
architectural properties inherent in existing urban environments to
add realism. The system is able to deliver 3D reconstructions of
large urban scenes with near real time.

In a previous project we recorded video of a city from a vehi-
cle mounted camera system which included a highly accurate and
expensive ($150K) unit that combines a global positioning system
(GPS) unit with an inertial navigation system (INS). With this sys-
tem we recorded and reconstructed the geometry of most of Chapel
Hill, NC as well as other locations. However, the high cost of this
system makes its deployment on a wider scale impractical.

This paper focuses on a lower cost ($13K) system we developed
to record omnidirectional video of urban scenes as well as GPS and
inertial measurements of the system’s movements. The system is
modular and man portable, able to record both from a backpack
mounting for interior areas and from an automobile for exterior
recording. We reduced cost by utilizing consumer off the shelf sen-
sors which, while less expensive, have significantly lower accuracy
that poses a challenge to generating accurate geometric reconstruc-
tions and require new algorithmic solutions.

We break the problem of reconstructing the geometry of a scene
from video into two parts. In the first part we perform structure
from motion (SfM), simultaneously estimating the camera’s motion
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and a set of salient 3D point features in the scene. These salient fea-
tures are richly textured regions of the scene that can be uniquely
and automatically identified, such as the corners of windows or
doors. The second part uses the known camera poses to perform
dense depth estimation, where we estimate the distance from the
camera center to the scene for each pixel in the video. Combin-
ing depth information with the camera poses and images from the
video, we generate textured 3D models.

In the remainder of the paper we review related existing systems
for the reconstruction of cities from images, introduce our 3D city
reconstruction system in detail, and explain the SfM process using
only video data. We then describe our initial algorithmic SfM so-
lutions for combining video data with other sensor types and the
related challenges. Afterwards we discuss our dense geometry es-
timation and show the results of dense estimation from video only.

2 BACKGROUND

Recently, many research groups have been working to reconstruct
urban environments from video. There is a large body of work in
reconstruction from aerial imagery [11, 15, 30]. In recent years
ground based sensors have attracted a lot of interest. Some ap-
proaches rely on active sensors such as LIDAR to recover depth
information which is then aligned to images to form textured mod-
els [5, 10, 14, 27]. While these systems can create highly accurate
3D models, they are relying on active sensors which are typically
more expensive than passive sensors like cameras. In this paper
we focus on the reconstruction from video only or video combined
with other passive sensors such as GPS and inertia sensors.

Active sensor systems and aerial reconstruction methods typi-
cally measure the sensor position highly accurately during the ac-
quisition with additional sensors. Our proposed camera based sys-
tem does not deliver camera poses or only rough estimates of the
camera position. Accordingly we need to use the video data itself
to measure the camera motion. There are two main classes of ap-
proaches to estimating the camera motion from video only. The first
estimates the scene structure and camera motion directly from the
measurements in a incremental process. It relies on the substantial
work in multiview geometry [3, 13, 20, 21]. The second class of
approaches uses the extended Kalman filter (EKF) to estimate the
camera pose as the filter’s state [2, 26].

We have developed a real time 3D reconstruction system for
urban environments [23]. The system leverages the parallel pro-
cessing power of modern graphics processors to achieve real time
performance while simultaneously achieving high accuracy. Cam-
era poses are calculated in the system using measurements from
SfM and a highly accurate GPS-INS system fused with an EKF.
The GPS-INS system used, while highly accurate, is too large for
man portability and too costly for deployment on a wide scale. For
these reasons we are working to extend this work using low-cost,
lightweight, commodity sensors.

In the 4D Atlanta project [24], Schindler et al.reconstruct the
geometry of Atlanta based on historical photographs. Cornelis et
al. [9] have created a city modeling system where the buildings
are modeled as ruled surfaces perpendicular to the ground plane.
The ground is a ruled surface defined based on the known geome-
try between the systems’s cameras and the wheels of the collection
vehicle.



Figure 1: Backpack recording system (left). Rigid sensor head (right).

3 CAPTURE SYSTEM DESIGN

The recording system is designed to support three sensors, a
Point Grey Research Ladybug omnidirectional camera, a Garmin
consumer-grade GPS receiver with Wide Area Augmentation Sys-
tem (WAAS) capability, and an inertial sensor—a 3DM-G by Mi-
crostrain. The Ladybug is a multi-camera system consisting of six
cameras of which five form a ring with optical axes roughly paral-
lel to the ground plane when mounted and the sixth cameras optical
axis pointing upwards. Each individual camera in the ring has a
wide field of view covering roughly 73 degrees horizontally and
89 degrees vertically and a resolution of 1024× 768 pixel with a
capture rate of 30Hz. When combined with the upward pointing
camera, these provide video coverage of most of the sphere about
the camera unit, except for the area directly below the camera. The
GPS unit is accurate to approximately five meters under optimal
conditions meaning many visible satellites, no or low multipath er-
ror etc. In practice this is highly unusual in urban environments and
errors on the scale of 10 or more meters are more typical due to
the urban canyon effect where very little of the sky is visible to the
GPS receiver because of surrounding buildings. Finally the 3DM-G
provides an absolute orientation measurement accurate to +/- 5 de-
grees. The complete backpack recording system is shown in Figure
1.

We use a small form factor desktop computer with striped RAID
drives to handle the video data rate and the amount of data cap-
tured over time. The system is capable of recording 15 frames per
second uncompressed generating approximately 240 GB per hour
of video. The sensors and computer are powered by a DC power
supply and NiMH battery pack which support at least two hours of
recording time. This is sufficient to capture several city blocks by
simply walking around. When vehicle-mounted the system can be
powered from an inverter and AC supply making the limiting fac-
tor the available storage space of 1.5 TB in the recording system’s
RAID drives.

The system can simply be converted from backpack to vehicle
mount by disconnecting the sensor pod and connecting it to a car
top mounting. Connecting the sensors together as a rigid system
allows them to be extrinsically calibrated to each other yet convert-
ible from backpack to vehicle mounted modes of operation. The
collection system also doubles as a compute platform. Many of
the algorithms we have developed rely on the parallel computing
power of modern graphics processing units (GPUs). A relatively
inexpensive desktop computer with a high-end graphics card pro-
vides the required computing power for a near real time reconstruc-
tion speed. In the future we aim for online reconstruction of ur-
ban environments using commodity sensors. However, currently
recording the video data and other sensors data to disk takes most
of the computer’s bus bandwidth leaving little remaining for online
reconstruction processing.

4 3D RECONSTRUCTION FROM VIDEO, GPS AND INERTIA
DATA

In the previous section we described our mobile capture in detail
which captures the data for the processing part of our system. The
processing system performs two steps. First it estimates the camera
using the video data or the video data jointly with the GPS and
inertia data. Next the proposed system uses the camera poses and
the video data to estimate the dense 3D scene geometry as a textured
mesh. We will now discuss in more detail the two approaches to
camera pose estimation (SfM), one which uses only video data as
input and the other which is based on the extended Kalman filter
(EKF) and fuses video data with GPS and inertial data.

The first step in both SfM methods is to extract the corresponding
positions of salient features in multiple consecutive images. Salient
features are typically corners in the image, dots or other geomet-
ric structures which have a high image gradient in two orthogonal
directions in the image. These features can be uniquely identified
and their corresponding positions tracked from frame to frame. We
use the KLT tracking [18] because it generates accurate and stable
correspondences over many frames of video. The system uses a fast
implementation of the KLT-tracker on the graphics card [25]. The
KLT-tracker delivers 2D tracks for the video.

4.1 Vision Only Reconstruction
Our purely video based monocular video system for 3D scene re-
construction takes the 2D feature tracks as its input. Using two
images of the moving camera with five correspondences we es-
timate the relative camera motion using the five point method of
Nistér [20] together with RANSAC [12]. The resulting camera
poses and 2D correspondences are used to triangulate an initial set
of 3D features. In addition to the triangulated 3D feature position
we calculate the covariance of each feature which measures the cer-
tainty with which we know the feature position. Please note that
each feature’s covariance is independent of all other features it only
depends on the certainty of the camera poses and the certainty of
the features position in the images.

For a proper initialization it is critical that the camera moved
sufficiently to observe depth dependent motion of the salient fea-
tures tracked. The problem of the reasoning about the sufficient
camera motion has been addressed by the use of uncertainty infor-
mation [16, 17, 4]. Based on the results in [4], we employ a test that
examines the shape of the confidence ellipsoids of reconstructed 3D
points in order to determine the quality of the scene geometry.

Consider two corresponding image points x′ and x′′ with associ-
ated covariance matrices C′ and C′′. The uncertainty ellipsoid Cxx
for the corresponding 3D scene point X is then obtained as shown in
Figure 2. By measuring the ‘roundness’ of this ellipsoid (i.e, the ra-
tio of its smallest and largest axes), it is possible to obtain a measure
of the accuracy of the reconstruction. Given the covariance matrix
Cxx and the homogeneous vector X =

[
XT

0 Xh
]T, the covariance ma-

trix for the distribution of the corresponding Euclidean coordinates
may be obtained as

Ce = JeCxxJT
e (1)

where the Jacobian Je is given by

Je =
1
x
[I3×3−

X0

Xh
] (2)

Using the singular value decomposition of Ce, a measure of the
roundness of the confidence ellipsoid is then obtained as

R =

√
λ3

λ1
(3)

where λ1 and λ3 denote the largest and smallest singular val-
ues respectively. By setting a threshold value for the roundness



Figure 2: Initialization of the confidence ellipsoid of a 3D point.

(T ≈
√

1/10), it is then possible to eliminate points for which the
uncertainty ellipsoid is stretched in the depth direction. This leads
to a robust system initialization. After this initialization the sys-
tem knows the position of the first two cameras up to a similarity
transformation.

Afterwards each new frame is processed by first calculating the
camera pose using RANSAC and the three-point camera pose esti-
mation method [22]. This method uses three known, non-collinear,
3D features and their 2D image projections to estimate the pose of
the camera. Our system uses the 2D feature tracks and the known
3D points from the initialization to estimate the new cameras pose.
Once the new camera pose is calculated additional 3D features are
triangulated from new 2D tracks and their initial uncertainties are
calculated. After initializing points, all previously existing 3D fea-
ture positions and uncertainties are updated using an independent
EKF for each feature. This ensures that as additional 2D measure-
ments of a 3D feature are received the SfM method incorporates
this information into the 3D feature estimates in a recursive, ef-
ficient manner. Finally we can perform a bundle adjustment [1]
on the total camera path and 3D feature estimates to improve their
accuracy. An example of a textured 3D model generated from geo-
metric, video only structure from motion can be seen in Figure 4.

4.2 Multi-Sensor Fusion
To perform SfM using vision and other sensors a model is required
of how the measurements from each of the sensors contribute to
the scene structure and camera motion estimate. Each of the sen-
sors gives measurements in its own coordinate system, with dif-
fering units and accuracies. The camera returns images with units
of pixels, the GPS returns position measurements in latitude and
longitude and the inertial unit returns orientation as a quaternion
representing orientation with respect to the earth.

We have chosen to model the set of sensors as a rigid body where
measurements from the various sensors contribute to the estimate
of the body’s pose. An extended Kalman filter (EKF) estimates
the pose of the body over time and the position of the salient 3D
scene features. The EKF includes a state, state uncertainty model,
process model and a measurement model. The state consists of the
sensor system’s position, velocity, orientation and rotation rate and
the 3D position of each of the features being estimated. The state
uncertainty model represents how accurately the filter has estimated
its state and is encoded in a covariance matrix which includes both
the expected accuracy of each state variable and also how those
variables effect each other, e.g. the uncertainty in velocity is related
to the uncertainty in position.

The process model describes the expected motion of the rigid
sensor system and scene features between measurements (frames).
Our process model uses a constant velocity, meaning that between
measurements we assume that the body moves in a straight line in
a rectangular coordinate system. We assume that scene features are
static and consider moving features outliers to our model.

The measurement model generates expected measurements from
the EKF state. For example, if a feature is at homogenous position

X , the camera extrinsics are represented by the 3×4 projection ma-
trix P and the camera’s intrinsics are represented by the 3×3 matrix
K then the expected homogenous feature measurement is its projec-
tion x̂ = KPX . GPS measurements are modeled simply combining
the current sensor system position estimate and the translation from
the center of the sensor system to the GPS unit. Similarly, orienta-
tion measurements from the inertia sensors are generated by com-
bining the rotation of the sensor system and the rotation from the
sensor system coordinate frame to the orientation sensor’s coordi-
nate frame.

The EKF breaks time into discrete intervals between measure-
ments. Between measurements the uncertainty in the state grows
due to the inherent inaccuracy in the process model. Based on the
predicted state, the EKF generates a set of predicted measurements
for each of the sensors as described above. In the correction phase
of the EKF the predicted measurements are compared to the mea-
surements from the sensors and the system state is updated based
on their difference. The EKF weighs both the estimated accuracy
of the state from the covariance matrix and the accuracy of the mea-
surements to arrive at its update. A complete derivation and expla-
nation of the EKF equations are beyond the scope of this paper. We
suggest [6] for a more complete discussion on Kalman filtering.

A few problems exist in using the EKF to fuse vision based mea-
surements with other sensors. The EKF assumes that the time each
of the sensor measurements was taken is known. This doesn’t seem
like too much of an impediment until one considers that each sen-
sor has its own clock with either its own estimate of local time or
only a relative measure of time between its measurements. Each of
these clocks also has varying accuracy. Each measurement may be
assigned a time stamp based on the CPU clock when it arrives in
a register on the CPU. However this ignores bus, operating system
and other sources of delay. A typical solution for this would be the
use of an external hardware trigger. These are not typically avail-
able in low cost commodity sensors and so measurement time align-
ment remains a challenge in our current work. One approach is to
generate independent estimates of the system state over time from
each of the sensors. Then correlation of the relative state change
along the lines of [7] can be used to find an alignment between
them in time.

Using only video and GPS for SfM has its own problems.
Monocular vision-based SfM estimates cannot provide an absolute
scale, orientation of world position because they are incremental
in nature. To fuse vision with GPS using an EKF the vision mea-
surements must be related to a single coordinate frame (typically
that of the earth). This is done by initializing the EKF state with
appropriate position, velocity, orientation and rotation rate param-
eters. Initial position and velocity are set easily enough by using
the GPS measurements. Orientation and rotation rate are slightly
more complicated since we do not have an absolute measure of ei-
ther. We can estimate the sensor system’s position utilizing any one
of many monocular SfM algorithms and GPS measurements which
are aligned in time. Given three position measurements from both
vision and GPS when the sensor system is moving along a curve we
can uniquely align the vision based poses and GPS measurements.
This process is shown in Figure 3. We use the iterative closest point
algorithm of [29] to align the two paths. From this we can derive an
initial absolute orientation and rotation rate of the sensor system.

4.3 Dense Estimation

Structure from motion yields camera poses and a set of point fea-
tures but we aim for a dense 3D model of the city’s architecture. To
generate the textured 3D model we use multi-view stereo matching
between many images to give us depth information for each image
in the video sequence. The depth information is the distance from
the camera center to the scene for each pixel in an image. Com-
bining this with the known camera poses gives the geometry of the



Figure 3: Alignment of vision based camera path and GPS. Left:
camera path and measurements. Middle: camera path scaled to
match GPS. Right: vision and GPS camera paths aligned using ICP.

Figure 4: Video only 3D reconstruction with the back pack system

scene. We use a real time plane sweeping stereo algorithm which
can be implemented efficiently on the GPU [8, 28].

Due to the small local computational effort in plane sweeping
stereo it tends to generate noisy depth maps. Our system uses the
redundancy of successive depth maps and combines their informa-
tion to eliminate noise and achieve a higher accuracy. This fusion
process [19] looks for consensus between the various depth maps
about the location of a pixel in a chosen reference view. If the depth
maps are in agreement as to the position of the feature imaged in
the reference view’s pixel then the depth is stored in the final fused
depth map. However, if the depth maps are inconsistent then no
depth is outputted into the final depthmap. Finally, a mesh is gen-
erated for each reference view using the fused depth maps and the
texture from the reference view is applied to generate the final 3D
model of the scene.

5 CONCLUSION

In this paper we have described our work on a mobile 3D city re-
construction system. We described the capture and reconstruction
system and the related challenges for vision only SfM and fusion
of video data with other sensors for 3D city reconstruction. Much
work remains to be done in algorithms to fuse commodity GPS,
video and inertial sensor data to automatically construct the archi-
tecture of an immersive virtual city environment.
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