
Touch Sensing on Non-Parametric Rear-Projection Surfaces:

A Physical-Virtual Head for Hands-On Healthcare Training

Jason Hochreiter∗ Salam Daher † Arjun Nagendran ‡ Laura Gonzalez § Greg Welch ¶

University of Central Florida

ABSTRACT

We demonstrate a generalizable method for unified multitouch de-
tection and response on a human head-shaped surface with a rear-
projection animated 3D face. The method helps achieve hands-on
touch-sensitive training with dynamic physical-virtual patient be-
havior. The method, which is generalizable to other non-parametric
rear-projection surfaces, requires one or more infrared (IR) cam-
eras, one or more projectors, IR light sources, and a rear-projection
surface. IR light reflected off of human fingers is captured by cam-
eras with matched IR pass filters, allowing for the localization of
multiple finger touch events. These events are tightly coupled with
the rendering system to produce auditory and visual responses on
the animated face displayed using the projector(s), resulting in a re-
sponsive, interactive experience. We illustrate the applicability of
our physical prototype in a medical training scenario.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Animations, Artificial, Aug-
mented, and Virtual Realities; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality; I.3.8 [Com-
puter Graphics]: Applications

1 INTRODUCTION

Touch sensing for interactive computer graphics is typically imple-
mented on surfaces that can be mathematically parameterized via
analytical equations, such as flat/planar surfaces or spheres. We
present a method for unified multitouch detection and response on a
non-parametric surface with rear-projected animated content. Sim-
ilar to [3] our method comprises infrared (IR) cameras, projectors,
IR light sources, and a rear-projection surface. IR light from below
the surface passes through the surface, reflects off the human fin-
gers back through the surface, and is captured by cameras (below
the surface) with matched IR pass filters. This allows for the local-
ization of multiple finger touch events over the surface. The touch
events are tightly coupled with the rendering system to produce a
highly responsive interaction.

While the method is generalizable to other non-parametric sur-
faces, we illustrate the applicability of our physical prototype
in a medical training scenario using a human head-shaped sur-
face. Touch events on the surface prompt graphical and audio
responses—for instance, a participant can open the patient’s mouth
by spreading the lips using her fingers (Fig. 1), and certain actions
result in the patient speaking. Additionally, we devised a medi-
cal training scenario incorporating these features. Our approach
is complementary to existing approaches: As with human patient

∗email: jhochrei@cs.ucf.edu
†email: salam@knights.ucf.edu
‡email: arjun@cs.ucf.edu
§email: Laura.Gonzalez@ucf.edu
¶email: welch@ucf.edu

Figure 1: Our touch-sensitive physical-virtual head for hands-on
healthcare training. The prototype comprises a translucent head-
shaped shell with a digital projector, IR light sources, and cameras
underneath. Left: No touch. Right: A nurse diagnosing a potential
stroke uses her fingers to pull the lips apart to inspect the gums.

actors and robotic mannequins, our approach offers a direct hands-
on paradigm without the need for a head-worn display (HWD) or a
separate virtual content display. Like virtual patients, we are able to
present abnormal physical findings that can be diagnosed via visual
appearance, either passively (just look) or interactively (touch).

In Section 2, we present a brief introduction to existing touch
sensing and projection techniques on non-parametric surfaces. Our
proposed method relies on the construction of a lookup table relat-
ing points in various coordinate spaces, which are detailed in Sec-
tion 3. We provide a description of our prototype in Section 4 and
its applicability to a stroke assessment scenario in Section 5. Fi-
nally, we discuss potential extensions to this approach in Section 6
and provide a brief summary in Section 7.

2 RELATED WORK

A number of methods exist for touch sensing on various surfaces.
Capacitive sensing approaches [6, 8, 17] are popular though they
typically assume flat surfaces. Conductive materials can be molded
to fit more complex surfaces [17], however the density of the capac-
itive elements must be sufficiently high compared to the complexity
(spatial frequency) of the surface. In any case, capacitive methods
would interfere with the projected imagery.

Computer vision approaches use either visible or IR light to de-
tect touch events. One class of methods uses frustrated total in-
ternal reflection [9, 19, 21, 22], but such methods cannot handle
surfaces with arbitrary curvature and discontinuities. Hands and
fingers that interact with a surface reflect IR light through the mate-
rial; this light can be used directly for touch sensing [2, 3, 13, 24].
Touch sensing has been performed on planar and parametric non-
planar surfaces, such as spheres [2, 3], in this manner. When ex-
tending this technique to arbitrary surfaces, it can be challenging to
find an appropriate mapping between detected touch events and 3D
coordinates on the surface. Moreover, it may be difficult to provide
uniform or smoothly varying IR illumination across the surface.

Geometric registration techniques have been explored on para-
metric planar surfaces using linear methods, nonlinear methods,
and piecewise linear methods [12]. Piecewise linear methods have
also been applied to parametric nonplanar displays. For non-
parametric display surfaces, one approach involves finding a map-
ping between projected imagery and the viewer’s eye, represented

69

IEEE Virtual Reality Conference 2015
23 - 27 March, Arles, France
978-1-4799-1727-3/15/$31.00 ©2015 IEEE

CAM2—2D camera space: touch events are detected and localized within
the imagery obtained by each camera.

PRO2—2D projector space: this space is used to compute a mapping be-
tween touch coordinates and projector coordinates. This allows for rendering
via pixel shaders and aids in computation of the sparse 3D touch space.

TCH3—sparse 3D touch space: computed via points projected on the sur-
face, the sparse 3D touch space serves as an intermediary between touch
events detected by the infrared cameras and actual points on the 3D model
being projected onto the surface.

GFX3—dense 3D graphics space: during rendering, 3D vertices on the
model can be adjusted in response to touch or other events.

Figure 2: Descriptions of the various coordinate spaces of the proposed method. Touch events detected in the 2D camera space (CAM2) are
converted to projector coordinates (PRO2) and 3D graphics coordinates (GFX3), as needed. This method is general to any non-parametric
surface; we show imagery of the physical-virtual head only for the purpose of illustration.

using a camera located at the intended location of the viewer.
Our work here is specifically motivated by medical training. As

part of a growing desire to leverage the best of virtual and physical
aspects of medical training, researchers have developed physical-
virtual patients (avatars and agents) [11, 23, 18]. Kotranza and
Lok [10] explored a Mixed Reality (MR) paradigm aimed at re-
alistic breast exams. The trainee stands over a prone physical
mannequin that includes a physical breast simulator—a rubberized
breast that provides the feel of breast skin, tissue, and underlying
breast masses, and contains twelve pressure sensors to detect the
user’s touch. Through an HWD the trainee sees a virtual patient
overlaid on the mannequin and breast simulator, with a dynamic
face and gown continuously rendered via camera-based tracking of
a physical gown on the mannequin. Chuah et al. [5] have since sur-
veyed existing research and formalized the idea of physicality for
embodied conversational agents.

Here, we present a computer vision based method employing IR
light to achieve tightly coupled touch sensing and rendering capa-
bilities on a rear-projection surface. This approach will support a
wide range of physical-virtual medical training scenarios involving
touch including diagnostic, therapeutic, and comfort touch.

3 COORDINATE SPACES

In conventional touch systems, the geometric relationship between
the coordinate spaces of the input device (touch) and the output
device (display) can usually be modeled by a parametric function,
such as a 6D rigid transform or a homography. Our situation differs
in two respects: the 3D touch and 3D graphics spaces correspond-
ing to the physical surface are discretely sampled, and the relation-
ship between the spaces cannot be described by a parametric func-
tion. As such, we use a lookup table to directly link the coordinate
spaces. This has the additional benefit of decoupling the render-
ing and touch temporally so that rendering events can be carried
out independently (at a higher rate than) the touch events. In total,
we have four types of coordinate spaces: 2D spaces corresponding
to the cameras, 2D spaces corresponding to the projector, and 3D
spaces corresponding to both the touch sensing and rendering on
the 3D physical surface. We describe these four spaces next.

CAM2: Using the touch sensing system (Section 4.2.1) touch
events are detected and localized as 2D (x,y) coordinates in the 2D
camera space (CAM2). Each camera capable of imaging the touch
event records its position within its coordinate space.

PRO2: A detected touch event must trigger an appropriate
graphical response in the rendering system, requiring a mapping be-
tween camera coordinates and 2D (u,v) projector coordinates in the
2D projector space (PRO2). To obtain these mappings, we project

white circles with a radius of 13 pixels across a grid of (u,v) pro-
jector coordinates, with 11 pixel spacing in each dimension, on a
black background. Each IR camera segments the circle and records
its centroid. In total we captured 11706 such circles. This provides
a direct mapping between a projector pixel and pixels within all
cameras. The resolution of the mapping is impacted by the number
of circles projected; we perform cubic interpolation on the CAM2
to PRO2 correspondences to provide sufficient resolution.

TCH3: In a typical multiple view geometry scenario, some
form of feature matching provides correspondences between the
different views. As our rear-projection surface is both uniform in
color and smooth, it exhibits few features; it is therefore difficult
to find correspondences via feature matching approach. Instead,
we can use each of the aforementioned projected circles as manual
“features,” treating their detected positions in each camera’s im-
agery as corresponding points. These correspondences are triangu-
lated in three-dimensional space, resulting in 3D (X ,Y,Z) vertices
in the sparse 3D touch space (TCH3). Together with the 3D po-
sitions of the cameras as obtained through calibration (described in
Section 4.1), this provides a three-dimensional model of the entire
setup, as shown in Fig. 4.

GFX3: While TCH3 is a 3D triangulated point cloud of the sur-
face, providing correspondences between points imaged by cam-
eras and 3D locations on the surface, its resolution is limited both
by the number of circles projected and by the imaging resolution
of the cameras. Because the rendered and projected effects need
to be relatively dense we create a separate renderable 3D model
of the surface as a collection of vertices (X ′

,Y ′
,Z′) in a dense 3D

graphics space (GFX3) as described in Section 4.1. We use TCH3
as an intermediary between camera pixels in CAM2 and the 3D
model in GFX3. Specifically we use an iterative closest point algo-
rithm (implementation by Per Bergström [4]), estimating a rotation
and translation matrix that relates the high resolution 3D model of
the surface in GFX3 to the space of the triangulated point cloud in
TCH3. From here, we backproject all 2D pixels within each cam-
era image plane (CAM2) and find the corresponding 3D points on
the model (GFX3). When a touch is detected within a particular
camera, the associated 3D position on the graphical model is thus
available as a constant-time lookup.

3.1 Lookup Table

A lookup table relating the coordinates of I IR cameras, P projec-
tors, the sparse 3D touch space, and the dense 3D graphics space
will have 2I+2P+3+3 columns: an (x,y) coordinate for each IR
camera, a (u,v) coordinate for each projector, an (X ,Y,Z) coordi-
nate within the sparse 3D touch space, and an (X ′

,Y ′
,Z′) coordinate

70

Cameras (CAM2) Projectors (PRO2) TCH3 GFX3
Row C1 · · · CI P1 · · · PP Sparse 3D touch space Dense 3D graphics space

1 (x,y)C1

1 · · · (x,y)CI

1 (u,v)P1

1 · · · (u,v)PP
1 (X ,Y,Z)TCH3

1 (X ′
,Y ′

,Z′)GFX3
1

2 (x,y)C1

2 · · · (x,y)CI

2 (u,v)P1

2 · · · (u,v)PP
2 (X ,Y,Z)TCH3

2 (X ′
,Y ′

,Z′)GFX3
2

...
...

. . .
...

...
. . .

...
...

...

n (x,y)C1
n · · · (x,y)CI

n (u,v)P1
n · · · (u,v)PP

n (X ,Y,Z)TCH3
n (X ′

,Y ′
,Z′)GFX3

n

Table 1: Example correspondence lookup table; each row contains correspondences among all coordinates it contains.

within the dense 3D graphics space. Each row of the table consists
of points that correspond directly to one another in the aforemen-
tioned coordinate spaces. Every camera pixel and projector pixel
appears in the table.

An illustration of the general format and dimensions of an exam-
ple lookup table relating coordinates within I cameras, P projec-
tors, the sparse 3D touch space, and the dense 3D graphics space
is shown in Table 1. For example, suppose the user touches a re-

gion on the surface that is imaged at position (x,y)C1

1 in camera

C1 and at position (x,y)C2

1 in camera C2. The corresponding en-

try (x,y)C3

1 might be “empty” to indicate that camera C3 is unable
to image this particular location due to the camera’s position and

viewing angle. The entry (u,v)P1

1 in the same lookup table row
indicates the corresponding coordinate in the space of projector
P1: a projection at this coordinate would appear at the location of
the user’s touch on the surface. Likewise, the corresponding co-
ordinate (X ,Y,Z)TCH3

1 stores the 3D position of this point in the
sparse triangulated point cloud obtained from the camera imagery,
and (X ′

,Y ′
,Z′)GFX3

1 stores the 3D position of this point within the
graphical model. In the lookup table, these correspondences are
stored within the same row, and a point in any of the coordinate
spaces can be used as an index.

4 PROTOTYPE

We adapt the methodology for touch detection and graphical re-
sponse on non-parametric surfaces on a 3D physical-virtual hu-
man head. Our prototype rig (Fig. 3) contains four Point Grey
Blackfly monochrome cameras with IR filters (780nm), two IR il-
luminators (850nm), and one AAXA P300 pico projector. We use
monochrome cameras with removable IR filters so that the cameras
can capture imagery of the projections on the surface, which appear
in the visible light spectrum, to build the CAM2 to PRO2 corre-
spondences in the lookup table. Once this preprocessing stage is
complete, the IR filters are reinserted so that the cameras can detect
touch events in the IR spectrum.

Figure 3: In our prototype rig, we used four IR cameras, two IR
light sources, and a projector.

4.1 Setup

Camera, projector, and IR light placement: we place our cam-
eras and projectors in positions that allow for sufficient visual cov-
erage of the head surface (see Fig. 4). Likewise, we position the IR
illuminators to provide ample lighting for touch detection.

Camera calibration: we calibrate the IR cameras using a stan-
dard checkerboard calibration approach in OpenCV. Each camera is
calibrated individually; their computed intrinsics are used as initial
estimates for subsequent stereo camera calibration among all pairs
of cameras. As a result, we obtain relative position information be-
tween all cameras. To simplify operations, we take one camera to
be the origin of the sparse 3D touch space.

Figure 4: The sparse 3D touch space (TCH3) of our physical setup,
which links touch events to the dense 3D graphics space (GFX3),
shown on the right for comparison. The IR cameras are shown as
cubes; the colored face of each cube represents the orientation of
that particular camera.

Dense 3D information: photogrammetric techniques are used to
generate a dense scan of the surface using overlapping photographs
from all angles around it. To provide suitable features, a colored
checkerboard is projected onto the surface (Fig. 5b). This greatly
improved the accuracy of the scan, as the shell is of a uniform color
(Fig. 5a). The photographs are sent to Autodesk 123D Catch, a free
software package that converts a collection of photographs of an
object into a dense 3D mesh [1]. The resulting mesh is cleaned,
scaled and aligned using physical measurements of the rig.

The model obtained via 123D Catch is very dense and not easily
textured or animated (Fig. 5c). Based on the dense mesh, we gener-
ate a lower density one that uses quads with an edge flow topology
instead of triangles, which is more suitable for animation as the
use of quads minimizes artifacts generated by subdivision during
smoothing. The nature of quads makes them the basis of edge-loop
modeling used here (Fig. 5d) [15].

Poles are vertices with three or five or more edges; they are po-
sitioned at specific locations to reduce artifacts during animation.
For our head shell, eyeballs and inner mouth geometry are created
and attached to the mesh by merging vertices using Maya [14]. The

71

Figure 5: Developing an animatable 3D mesh from the head surface. (a) Head surface with no projection. (b) Head surface with colored
checkerboard projected to aid photogrammetry. (c) Resulting dense mesh from 123D Catch; this mesh is not suitable for texturing or
animation. (d) Final retopologized mesh with face texture (GFX3). This mesh is more appropriate for animation.

mesh is textured using one unwrapped image and then rigged using
a combination of bones and blendshapes for various animations.

The animated 3D model is exported to Unity3D [20] and posi-
tioned in a scene with scene size matching the maximum resolution
of the projector (1920×1080 pixels) as described in the manufac-
turer’s manual. A virtual camera whose field of view, position, and
rotation approximately match the rear projector’s intrinsic and ex-
trinsic parameters is created, using information from the manufac-
turer’s specification sheet and measurements from the rig. As in
the physical rig, it is located underneath the surface. The resulting
rendered view from the camera is sent as imagery to the projector.

4.2 Run Time

Image acquisition, touch detection, and rendering are all executed
on separate threads. For each camera, one thread continuously cap-
tures new imagery, while a second thread segments potential touch
events in this imagery into contours. A single thread processes the
contours from all cameras and assigns confidence scores to them,
with higher scores corresponding to likelier touch events.

On average, the touch sensing thread assigns confidence scores
to potential touches across the four cameras of our prototype rig at
40 to 60 frames per second, while the rendering thread sends images
to the projector at 60 to 80 frames per second.

4.2.1 Touch Sensing

Initially, each camera captures imagery of the surface when no
touch events are occurring. New imagery captured by the cam-
eras is compared to these background images, thresholded, and seg-
mented into contours. Each camera contour is converted via the
lookup table into a corresponding projector contour in the 2D pro-
jector space, where it is evaluated and scored. In order to assign a
confidence score for a potential touch event, we consider the degree
to which multiple cameras agree on the event as well as the relia-
bility of each camera in imaging the particular region of the surface
on which the potential event is occurring.

A region of high intensity that does not correspond to an actual
touch may appear in a camera’s imagery, e.g., if the user’s hand
hovers close to the surface. These erroneous events must be dis-
carded. We combine the projector contours of each camera into a
single matrix with the same resolution as the projector. We declare
cameras as “agreeing” on a touch event when their projector con-
tours have sufficiently similar positions and sizes. We sum up the
ratios of the area of c cameras agreeing on a projector contour to the
area of the entire contour, weighted by empirically obtained values
wa[c] for c ∈ {1,2,3,4}, and normalized by the sum of the weights.

Each camera images various regions of the surface with varying
amounts of distortion. A camera with a better “view” of a particular
region should have its contributions weighted higher than one with
a comparatively less accurate view. The CAM2 to TCH3 correspon-
dences in the lookup table provide rays connecting each camera’s
position and a 3D position on the surface, passing through a given
pixel in the camera’s image plane. We compute the surface normal
at this point of intersection. Regions that have surface normals that
are nearly parallel to the camera ray are locally “flat” when imaged
by that camera and should appear with minimal distortion; potential

touch events that occur in such regions are more reliable. Regions
with surface normals nearly orthogonal to the camera ray will be
highly distorted when imaged by that camera. Hence, the dot prod-
ucts between surface normals and camera rays form a measure of
“viewing” confidence. These dot products are precomputed for all
pixels of all camera image planes. At run time, we aggregate these
dot products for the segmented contours within camera imagery and
weight the respective camera contributions accordingly.

These two measures are added together as an overall confidence
score. Projector contours with a sufficiently high confidence are
accepted as touch events.

4.2.2 Rendering

Accepted touch events are sent to Unity in two forms, using the
lookup table to perform the necessary coordinate conversions. First,
a monochrome mask image in 2D projector space is created where
touch events are represented as white pixels. This is sent to a pixel
shader, which renders the touch event in a different color. The touch
event is also converted to dense 3D graphics space and sent to Unity
for the activation of blendshapes. If touch occurs near a region with
an associated blendshape—including the upper and lower lips, the
upper and lower eyelids for both eyes, and the nose—the blend-
shape is activated. As the touch position varies over the surface,
each blendshape updates accordingly. In this way, a human partici-
pant can use her fingers to “spread” the lips of the model, revealing
the gums (Fig. 1). If the touch event triggers an audio response, a
bone animation is triggered that opens and closes the mouth. Fi-
nally, a shader in Unity renders the buffers for the mesh in reverse
order so that the eyeballs and mouth bag are rendered correctly.

4.3 Evaluation

During normal operation of our system, touch events detected in
the camera space are mapped (via the lookup table) to the graph-
ics space, and the graphical effect is rendered based on the results.
To assess the detection accuracy of our prototype we effectively
reversed this process for a large number of samples (over 600).
Specifically, we projected a grid of visual targets—a set of con-
centric circles with a “crosshair” at the center—onto the head shell,
one at a time. A user was instructed to touch each visual target
with a small wand as carefully and precisely as possible, and the
detected location of each touch event in PRO2 and the correspond-
ing 3D position in GFX3 (found via the lookup table) were both
recorded. The collected data allows for visual and quantitative com-
parisons between points in the projector space and corresponding
transformed points from the touch space.

The positions of the projected circles and user touches are shown
in Fig. 6. The mean distance between the projected circles and the
detected touch events in projector space is 16.7 pixels with a stan-
dard deviation of 12.5 pixels, which corresponds to a mean 3D dis-
tance in the dense 3D graphics space of 4.3mm and standard devia-
tion of 4.3mm (same as mean). In general, the largest errors corre-
spond to highly curved regions of the shell—such as the nose—and
to a portion of the shell which is largely parallel to the projector’s
principal axis. In such regions a small pixel displacement in projec-
tor space can result in a comparatively large displacement in phys-

72

500 600 700 800 900 1000 1100 1200
200

300

400

500

600

700

800
Projector error (pixels)

x (pixels)

y
 (

p
ix

e
ls

)

Projected circles Detected touch

150
200

250
300

350
400

50

100

150

200

250

0

50

100

150

y (mm)

x (mm)

3D error (mm)

z
 (

m
m

)

Projected circles
Detected touch

Figure 6: Errors between a user’s touch and the touch location detected by the system. Left: errors in 2D projector space (average 16.7 pixels
with a standard deviation of 12.5 pixels). Right: errors in 3D model space (average and standard deviation of 4.3mm).

ical 3D coordinates. If we ignore the points with the top 10% error
the mean distance in projector space is 13.2 pixels with a standard
deviation of 6.5 pixels, which corresponds to a mean 3D distance
in the dense 3D graphics space of 3.2mm and standard deviation
of 1.7mm. Because the errors are static, we could potentially factor
corrections into our lookup table if needed. However we would first
attempt to improve the camera/projector placement to minimize er-
ror sensitivities in the regions with higher accuracy requirements.

It is worth noting that while we attempted to touch the surface
carefully/precisely during this experiment, there is undoubtedly
noise introduced by our inability to know whether or not our touch-
ing was indeed centered on the circle. In fact for finger touches
in general it is not clear what being “centered” means as fingers
pressed onto a surface are not circular. In the end what matters is
the user’s perception of where they are touching and how the graph-
ical content responds, all in the context of the application.

5 APPLICATION TO STROKE ASSESSMENT

We have demonstrated our touch-rendering methods using a
physical-virtual head in a medical training scenario. Specifically
we chose a stroke scenario to illustrate the capabilities of our pro-
totype for assessment of patients. The American Stroke Associa-
tion (ASA) suggests the FAST mnemonic for early stroke recogni-
tion and survival: Face drooping, Arm weakness, Speech difficulty,
and Time to call emergency services [16]. At a receiving center, a
healthcare provider will perform a neurological and a psychomotor
assessment that includes examining the patient for an asymmetric
smile, lid lag, irregular pupils, garbled speech, the ability to show
teeth, numbness or difficulty sensing touch. At present, healthcare
providers are trained in medical and nursing schools to recognize
these findings. Training consists of task trainers and standardized
patients. The use of simulation for stroke training is currently lim-
ited, possibly due to the limitations of current simulator technology,
which has not been designed with stroke related focal neurologic
assessment in mind [7]. Most human patient simulators do not have
the capability to respond and exhibit typical stroke symptoms, such
as smile asymmetry, visual gaze, and sensation awareness.

While a trained human actor would be unable to simulate facial
droop and lid lag in a realistic manner, our prototype rig, shown
in Fig. 7, is capable of exhibiting many of the visual and audi-
tory symptoms of a stroke. Moreover, as the physical-virtual pa-
tient head can respond to touch events, a healthcare practitioner
can follow the aforementioned neurological and psychomotor as-
sessments. Compared to a two-dimensional avatar or a non-touch-
sensitive robot, this could afford a more natural and engaging train-

ing experience. To this end, we apply our physical-virtual head as a
simulated “patient” in a stroke assessment training scenario. Blend-
shapes that control the opening and closing of the graphical model’s
eyes and lips are created and linked to the touch system so that the
trainee can examine the simulated patient by physically interacting
with it. Various regions of the graphical model are semantically de-
fined: the forehead, chin, left and right eyes, left and right cheek,
and nose. A detected touch event, once converted into the dense 3D
graphics space, can be classified as belonging to one of these parts
of the face, and a prerecorded sound file identifying the location of
the touch can be triggered. In this way, the healthcare provider can
test for sensory function by touching different locations on the head
and asking the patient to indicate where touch is perceived. Bone
animations in the jaw are activated when the patient speaks. As
appropriate, other graphical responses—such as closing eyes and
smiling—can be triggered manually.

Figure 7: Example stroke scenario. The patient’s mouth and eye are
“drooping” on her left side, and she is unable to smile. Animated
blendshapes still function properly on the drooping mouth. Fig. 1
shows similar interactions on a healthy patient.

6 FUTURE WORK

The proposed technique can be extended to handle multiple projec-
tors, allowing for touch sensing and rendering on larger surfaces.
The lookup table can be expanded to provide correspondences in
the additional coordinate spaces of these projectors. The primary
difficulty concerns the blending of projected imagery in regions of
overlap, as these regions can have arbitrary shapes, sizes, and ori-
entations with respect to the non-parametric surfaces. If multiple
projectors can “cover” a particular section of the surface, it may be
the case that one projector can do so with less distortion or bright-
ness falloff depending on its position and orientation. There are
also tradeoffs to consider regarding the number of projectors used
and their positioning: limiting the number of projectors and amount
of overlap can help reduce the complexity of the overall system, but
this may reduce the brightness (and contrast) in certain regions.

To prevent the need for time-consuming recalibration, we are
considering automatic continuous self-calibration methods. Con-

73

stant updates to the lookup table should improve correspondence
accuracy and increase the overall reliability of the system.

We are also investigating the ability to sense proximity/contact
with objects beyond fingers/hands, both passive (e.g., medical in-
struments) and active (e.g., a wand with an IR LED in the tip).

Finally, from an application standpoint, we are working to apply
these methods to an entire physical-virtual body. We are investigat-
ing different translucent skin materials to simulate a tactile feeling
closer to that of human skin. The material we are considering ap-
pears to be simultaneously opaque enough to support the formation
of a projector image and transparent enough to pass IR light in both
directions, thus maintaining our ability to achieve optically-based
touch sensing on a skin-like surface.

7 CONCLUSION

We have presented a generalizable approach for touch detection on
non-parametric rear-projection surfaces using IR cameras. We de-
veloped a prototype using a human head-shaped surface on which
a projector displays a graphical model of a head. Touch events on
the surface prompt visual and auditory responses in the model. We
demonstrated an example application scenario where touch events
and resulting graphical updates could be used to train a healthcare
professional in stroke assessment.

A primary goal of our approach is a very direct touch-graphics
architecture/approach to ensure the appropriate semantic response
of the interactive graphics application while minimizing the per-
ceived latency. Toward this end our method includes pre-calibration
steps to populate a lookup table that is used during run time to di-
rectly map points in the 2D camera space to the 3D graphics space,
as well as decoupled touch and rendering spaces/processes to allow
each to proceed at an appropriate rate.

We analyzed the accuracy of our prototype using a reverse-touch
approach in which we chose a 2D projector point, attempted to
touch that point, and assessed how well the detected touch event
mapped back into the projector space. The results revealed greater
static error (mismatch) in regions where camera/projector-surface
normals are closer to being parallel (ill-conditioned). We should be
able to reduce this error by various means, including better cam-
era/projector placement and the use of dense correction factors.

We look forward to extending our methods to a full human body
surface with multiple projectors and cameras, and evaluating more
extensive medical training scenarios incorporating hands-on full-
body diagnostic, therapeutic, and comfort touch.

ACKNOWLEDGEMENTS

This work was supported in part by the USA Office of Naval Re-
search (Dr. Peter Squire, Award N000141410248), the UCF Inter-
active Systems and User Experience Research Cluster of Excel-
lence (Prof. Joseph LaViola Jr.), and Florida Hospital (USA).

REFERENCES

[1] Autodesk 123D Catch — 3d model from photos. http://www.

123dapp.com/catch. Accessed: 2014-09-02.

[2] H. Benko. Beyond flat surface computing: challenges of depth-aware

and curved interfaces. In Proceedings of the 17th ACM international

conference on Multimedia, MM ’09, pages 935–944, New York, NY,

USA, 2009. ACM.

[3] H. Benko, A. D. Wilson, and R. Balakrishnan. Sphere: multi-touch

interactions on a spherical display. In Proceedings of the 21st annual

ACM symposium on User interface software and technology, UIST

’08, pages 77–86, New York, NY, USA, 2008. ACM.

[4] P. Bergström. Iterative closest point method. http://www.

mathworks.com/matlabcentral/fileexchange/

12627-iterative-closest-point-method. MATLAB

Central File Exchange. Accessed 2014-09-18.

[5] J. H. Chuah, A. Robb, C. White, A. Wendling, S. Lampotang, R. Kop-

per, and B. Lok. Exploring agent physicality and social presence for

medical team training. Presence: Teleoperators and Virtual Environ-

ments, 22(2):141–170, 2013/09/29 2013.

[6] P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technology.

In Proceedings of the 14th annual ACM symposium on User interface

software and technology, UIST ’01, pages 219–226, New York, NY,

USA, 2001. ACM.

[7] M. J. Garside, M. P. Rudd, and C. I. Price. Stroke and TIA assessment

training: A new simulation-based approach to teaching acute stroke

assessment. Simulation in Healthcare, 7(2):117–122, 2012.

[8] J. Gu and G. Lee. Touchstring: a flexible linear multi-touch sensor

for prototyping a freeform multi-touch surface. In Proceedings of the

24th annual ACM symposium adjunct on User interface software and

technology, UIST ’11 Adjunct, pages 75–76, New York, NY, USA,

2011. ACM.

[9] J. Y. Han. Low-cost multi-touch sensing through frustrated total in-

ternal reflection. In UIST ’05: Proceedings of the 18th annual ACM

symposium on User interface software and technology, pages 115–

118, New York, NY, USA, 2005. ACM.

[10] A. Kotranza and B. Lok. Virtual human + tangible interface = mixed

reality human an initial exploration with a virtual breast exam patient.

In Virtual Reality Conference, 2008. VR ’08. IEEE, pages 99–106,

March 2008.

[11] P. Lincoln, G. Welch, A. Nashel, A. State, A. Ilie, and H. Fuchs. An-

imatronic shader lamps avatars. Virtual Reality, pages 1–14, 2010.

10.1007/s10055-010-0175-5.

[12] A. Majumder and M. S. Brown. Practical Multi-projector Display

Design. A. K. Peters, Ltd., Natick, MA, USA, 2007.

[13] N. Matsushita and J. Rekimoto. Holowall: designing a finger, hand,

body, and object sensitive wall. In Proceedings of the 10th annual

ACM symposium on User interface software and technology, UIST

’97, pages 209–210, New York, NY, USA, 1997. ACM.

[14] 3D animation software, computer animation software — Maya —

Autodesk. http://www.autodesk.com/products/maya/

overview. Accessed: 2014-09-02.

[15] K. L. Murdock and E. Allen. Edgeloop Character Modeling for 3D

Professionals Only. John Wiley & Sons, Inc., 2006.

[16] Warning signs of stroke. http://www.stroke.org/site/

DocServer/TIA.pdf?docID=405. Accessed: 2014-09-18.

[17] J. Rekimoto. Smartskin: an infrastructure for freehand manipulation

on interactive surfaces. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’02, pages 113–120, New

York, NY, USA, 2002. ACM.

[18] D. Rivera-Gutierrez, G. Welch, P. Lincoln, M. Whitton, J. Cendan,

D. A. Chesnutt, H. Fuchs, and B. Lok. Shader Lamps Virtual Pa-

tients: the Physical Representation of Virtual Patients. In Studies in

Health Technology and Informatics, Volume 173: Medicine Meets Vir-

tual Reality 19, Studies in Health Technology and Informatics, pages

372–378. IOS Press, 2012.

[19] A. Roudaut, H. Pohl, and P. Baudisch. Touch input on curved surfaces.

In D. S. Tan, S. Amershi, B. Begole, W. A. Kellogg, and M. Tungare,

editors, CHI, pages 1011–1020. ACM, 2011.

[20] Unity – game engine. http://unity3d.com/. Accessed: 2014-

09-02.

[21] N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues,

S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen. Mouse 2.0: multi-

touch meets the mouse. In Proceedings of the 22nd annual ACM sym-

posium on User interface software and technology, UIST ’09, pages

33–42, New York, NY, USA, 2009. ACM.

[22] F. Wang, X. Cao, X. Ren, and P. Irani. Detecting and leveraging fin-

ger orientation for interaction with direct-touch surfaces. In Proceed-

ings of the 22nd annual ACM symposium on User interface software

and technology, UIST ’09, pages 23–32, New York, NY, USA, 2009.

ACM.

[23] G. Welch, D. Rivera-Gutierrez, P. Lincoln, M. Whitton, J. Cendan,

D. A. Chesnutt, H. Fuchs, B. Lok, and R. Skarbez. Physical mani-

festations of virtual patients. Simulation in Healthcare, 6(6):488, De-

cember 2011.

[24] A. D. Wilson. Touchlight: An imaging touch screen and display for

gesture-based interaction. pages 69–76. ACM Press, 2004.

74

