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Abstract

We demonstrate a generalizable method for unified multitouch detection and
response on various nonparametric and parametric surfaces to support interactive
physical–virtual experiences. The method employs multiple infrared (IR) cameras,
one or more projectors, IR light sources, and a rear-projection surface. IR light
reflected off human fingers is captured by cameras with matched IR pass filters,
allowing for the detection and localization of multiple simultaneous finger-touch
events. The processing of these events is tightly coupled with the rendering system to
produce auditory and visual responses displayed on the surface using the projector(s)
to achieve a responsive, interactive, physical–virtual experience. We demonstrate the
method on two nonparametric face-shaped surfaces and a planar surface. We also
illustrate the approach’s applicability in an interactive medical training scenario using
one of the head surfaces to support hands-on, touch-sensitive medical training with
dynamic physical–virtual patient behavior.

1 Introduction

Touch sensing for interactive computer graphics applications is typically
implemented on surfaces that can be mathematically parameterized via ana-
lytical equations, such as planar surfaces or spheres. We present a method for
unified multitouch detection and response on nonparametric surfaces with
rear-projection animated content. Similar to work by Benko, Wilson, and
Balakrishnan (2008), our method comprises infrared (IR) cameras, projectors,
IR light sources, and a rear-projection surface. IR light from below the surface
passes through it, reflects off the user’s fingers back through the surface, and is
captured by cameras below the surface with matched IR pass filters. This allows
for the localization of multiple finger-touch events over the surface. Detection
of the touch events is tightly coupled with the rendering system to produce a
highly responsive interaction.

The presented method is generalizable both to nonparametric and to para-
metric rear-projection surfaces. We demonstrate the use of the proposed
method in allowing for touch sensing on two nonparametric human head
surfaces and one planar surface. Furthermore, we illustrate the applicability of a
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Figure 1. Our touch-sensitive physical–virtual head for hands-on healthcare training. The prototype comprises a translucent head-shaped shell

with a digital projector, IR light sources, and cameras underneath. Left: No touch. Right: A nurse diagnosing a potential stroke uses her fingers to

pull the lips apart to inspect the teeth and gums.

physical prototype in a medical training scenario using
one of the head-shaped surfaces we refer to as the
physical–virtual patient head. Touch events on this
surface prompt graphical and audio responses—for
instance, a participant can examine the patient’s teeth
and gums by spreading the lips using her fingers (see
Figure 1), and certain actions result in the patient speak-
ing. Our approach is complementary to existing training
interfaces and will support a wide range of physical–
virtual medical training scenarios involving touch,
including diagnostic, therapeutic, and comfort touch.
As with human patient actors and robotic mannequins,
our method offers a direct hands-on paradigm without
the need for a head-worn display (HWD) or a sepa-
rate virtual content display. Like virtual patients, our
physical–virtual patient head can present abnormal phys-
ical findings that can be diagnosed via visual appearance,
either passively (just visually) or interactively (through
touch).

Our proposed method relies on the construction of
a lookup table relating points in various coordinate
spaces. We have demonstrated an initial application of
this method on a human head-shaped surface (Hoch-
reiter, Daher, Nagendran, Gonzalez, & Welch, 2015).
Here, we present an extension of this approach that
provides a more efficient mechanism for scanning the
3D geometry of a surface and eliminates the need for
external photogrammetry. Moreover, we have simpli-
fied the overall representation and relationships between
the coordinate spaces of the cameras, the projectors,

the surface, and the 3D model projected onto the sur-
face. We include a projector calibration routine that is
incorporated into the 3D graphics rendering system, a
step which originally required manual approximation.
Finally, we illustrate how the proposed method gener-
alizes to three rear-projection surfaces, both parametric
and nonparametric.

2 Related Work

A number of methods exist for touch sensing on
various surfaces. Capacitive sensing approaches (Dietz
& Leigh, 2001; Gu & Lee, 2011; Rekimoto, 2002) are
popular, though they typically assume flat surfaces. Con-
ductive materials can be molded to fit more complex
surfaces (Rekimoto, 2002); however, the density of the
capacitive elements must be sufficiently high compared
to the complexity (spatial frequency) of the surface.
In any case, capacitive methods would interfere with
projected imagery.

Computer vision approaches use either visible or IR
light to detect touch events. One class of methods uses
frustrated total internal reflection (Han, 2005; Roudaut,
Pohl, & Baudisch, 2011; Villar et al., 2009; Wang, Cao,
Ren, & Irani, 2009), but such methods cannot handle
surfaces with arbitrary curvature and discontinuities.
Hands and fingers that interact with a surface reflect IR
light through the material; this light can be used directly
for touch sensing (Benko, 2009; Benko et al., 2008;
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Matsushita & Rekimoto, 1997; Wilson, 2004). Touch
sensing has been performed on planar and paramet-
ric nonplanar surfaces, such as spheres (Benko, 2009;
Benko et al., 2008), in this manner. When extending
this technique to arbitrary surfaces, it can be challenging
to find an appropriate mapping between touch events
detected by a camera and 3D coordinates on the sur-
face. Moreover, it may be difficult to provide uniform or
smoothly varying IR illumination across the surface.

Geometric registration techniques have been explored
on parametric planar surfaces using linear methods,
nonlinear methods, and piecewise linear methods
(Majumder & Brown, 2007). Piecewise linear methods
have also been applied to parametric nonplanar dis-
plays. For nonparametric display surfaces, one approach
involves finding a mapping between projected imagery
and the viewer’s eye, represented using a camera located
at the intended location of the viewer.

Our work here is specifically motivated by medical
training. As part of a growing desire to leverage the best
of virtual and physical aspects of medical training, we
have previously developed both avatar and agent-based
physical–virtual patients (Lincoln et al., 2010; Rivera-
Gutierrez et al., 2012; Welch et al., 2011). Kotranza and
Lok (2008) explored a Mixed Reality (MR) paradigm
aimed at realistic breast exams. The trainee stands over a
prone physical mannequin that includes a physical breast
simulator—a rubberized breast that provides the feel of
breast skin, tissue, and underlying breast masses, and
contains twelve pressure sensors to detect the user’s
touch. Through an HWD, the trainee sees a virtual
patient overlaid on the mannequin and breast simulator,
with a dynamic face and gown continuously rendered
via camera-based tracking of a physical gown on the
mannequin. Chuah et al. (2013) have since surveyed
existing research and formalized the idea of physicality
for embodied conversational agents.

3 Correspondences

In conventional touch systems, the geometric rela-
tionship between the coordinate spaces of the input
device (touch) and the output device (display) can usu-

ally be modeled by a parametric function, such as a 6D
rigid transform or a homography. Our situation differs
in two respects: the 3D touch and 3D graphics spaces
corresponding to the physical surface are discretely
sampled, and the relationship between the spaces can-
not be described by a parametric function. As such,
we construct and use a lookup table to directly link
the coordinate spaces. This has the additional bene-
fit of temporally decoupling the rendering and touch
systems so that rendering events can be carried out inde-
pendently and at a higher rate than the processing of
touch events. In total, we have three types of coordinate
spaces: I 2D spaces for the cameras, P 2D spaces for
the projectors, and one 3D space for rendering on the
physical surface. We describe these three spaces next.

3.1 Coordinate Spaces

3.1.1 CAM2. Using the touch sensing system
(described in the Touch Sensing section), touch events
are detected and localized as 2D (x , y) coordinates in
the 2D camera space (CAM2). Each camera capable
of imaging a touch event records the event’s position
within its coordinate space.

3.1.2 PRO2. A detected touch event must trig-
ger an appropriate graphical response in the rendering
system, requiring a mapping between 2D (x , y) cam-
era coordinates and 2D (u, v) projector coordinates in
the 2D projector space (PRO2), which represents the
2D image sent to the projector. To obtain these map-
pings, we employ a structured coded light approach
using pattern images of white circles, discussed next.

3.1.3 GFX3. In a typical multiple view geome-
try scenario, some form of feature matching provides
correspondences between the different views. As our
rear-projection surfaces are both uniform in color and
smooth, they exhibit few features; it is therefore dif-
ficult to find correspondences via a feature matching
approach. Instead, we use the white projected circles
from the structured coded light patterns as manually
generated “features,” as their detected positions within
each camera’s imagery are corresponding points. These
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Figure 2. Descriptions of and relationships among the various coordinate spaces of the proposed method. Touch events detected in the 2D

camera space (CAM2) are converted to coordinates in the 2D projector space (PRO2) and coordinates in the 3D graphics space (GFX3), as

needed. Correspondences in CAM2 are triangulated in 3D space to form GFX3, which is then textured. At run time, GFX3 is rendered in 2D and

sent to the projector (PRO2). This method is general to any nonparametric surface; we show imagery of the physical–virtual patient head only for

the purpose of illustration.

correspondences are triangulated in three-dimensional
space using data from camera calibration, resulting in
3D (X , Y , Z ) vertices in the 3D graphics space (GFX3).
Together with the 3D positions of the cameras and pro-
jectors obtained through calibration (described in the
Setup section), this provides a 3D model of the entire
setup (shown in Figure 6 for the physical–virtual patient
head).

By interpolating the camera correspondences, we
can make this 3D vertex point cloud arbitrarily dense.
We backproject all 2D pixels within each camera image
plane (CAM2) and find the corresponding 3D points
on this dense mesh. When a touch event is detected
within a particular camera’s imagery, the associated
3D position on the surface is thus available through
a constant-time lookup. The dense mesh is simplified
and retopologized for animation purposes to create a
3D graphical model (GFX3), as described in the Setup
section.

Figure 2 shows a summary of these coordinate spaces
and their relationships.

3.2 Structured Coded Light

We employ the use of structured coded light (Salvi,
Pagès, & Batlle, 2004) for two purposes: to obtain a
three-dimensional model of the surface and to obtain
correspondences among projector pixels, camera pixels,
and the three-dimensional coordinates of the surface.
First, we create a series of binary-coded images such
that a given pixel is assigned a unique identifier based
on the sequence of binary values for that pixel across
all pattern images. We sequentially project these images
onto the surface and capture imagery with each camera.
We decode the patterns within each camera’s imagery
to obtain the identifiers for the projected pixels, which
establishes a bidirectional correspondence between
camera and projector pixels. Then, using the results
of camera calibration, we triangulate these points in
3D space to obtain the 3D model and projector-to-3D
correspondences.

Initially, we experimented with patterns using binary-
coded rectangular stripes. However, we encountered
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illumination artifacts along the boundaries of these
stripes—particularly across regions of high curvature
on the rear-projection surfaces—making accurate local-
ization of the stripes challenging. To address this, we
created patterns of binary-coded white circles on a black
background. First, we project the “full” pattern con-
taining all possible white circles that appear throughout
the pattern images. By detecting the circles present
within each camera’s capture of this image and storing
their positions, we simplify the detection of circles when
processing subsequent pattern captures, as we need con-
sider only these locations and check for the presence of
predominantly white or black pixels.

Creating patterns with a large number of small cir-
cles provides more correspondences than patterns with a
smaller number of larger circles at the cost of decreased
reliability. It is important to note that the sizes and
shapes of the circles vary across a nonparametric sur-
face, particularly in regions with high curvature; the size
of the projected circles must be sufficiently observable
across the entire surface. To generate additional corre-
spondences without decreasing the size of the circles,
we also created phase-shifted patterns—duplicate copies
of pattern images shifted in one or both of the spatial
dimensions by some amount (Salvi et al., 2004).

If the projection image extends beyond the bound-
aries of the surface, some circles may appear on other
objects, resulting in erroneous points. We filter out
decoded points that are significantly far away from the
others. Next, we triangulate the decoded points and
tessellate them into quads, filtering out any quads with
drastically different surface normals than their imme-
diate neighbors. Both of these filtering steps happen
automatically. To form a dense, smooth mesh, we apply
cubic interpolation to the projector-3D correspon-
dences. We then use this dense mesh to create very
dense correspondences among all camera pixels, all pro-
jector pixels, and the 3D points of the mesh, as discussed
in the Lookup Table section.

For the physical–virtual patient head, we projected
40 pattern images and obtained 1588 reliable vertices
out of a maximum of 2304. We then applied cubic
interpolation to form a mesh with 70511 vertices (see
Figure 3).

Figure 3. The resulting structured coded light scan for the

physical–virtual patient head after interpolating to 70511 vertices.

3.3 Lookup Table

To generate camera-to-3D and projector-to-3D
correspondences, we backproject all CAM2 and PRO2
pixels to rays and find their points of intersection on the
dense mesh. To generate dense projector-to-camera cor-
respondences, we take each projector pixel and find the
corresponding 3D coordinate on the surface, which we
then forward project onto each camera’s image plane.
We use this same process to generate dense camera-
to-projector correspondences. As a result, we can
create a lookup table storing correspondences between
all camera pixels, projector pixels, and 3D graphics
coordinates.

A lookup table relating the coordinates of I IR cam-
eras, P projectors, and the 3D graphics space will have
2I + 2P + 3 columns: an (x , y) coordinate for each IR
camera, a (u, v) coordinate for each projector, and an
(X , Y , Z ) coordinate on the surface model. Each row of
the table consists of points that correspond directly to
one another in the aforementioned coordinate spaces.
Every camera pixel and projector pixel appears in the
table.

An illustration of the general format and dimensions
of an example lookup table relating coordinates within
I cameras, P projectors, and the 3D graphics space
is shown in Table 1. For example, suppose the user
touches a region on the surface that is imaged at posi-
tion (x , y)C1

1 in camera C1 and at position (x , y)C2
1 in
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Table 1. Example Lookup Table with Correspondences among I Cameras, P Projectors, and the 3D Graphics Space

Cameras (CAM2) Projectors (PRO2) GFX3

Row C1 · · · CI P1 · · · PP 3D graphics space

1 (x , y)C1
1 · · · (x , y)CI

1 (u, v)
P1
1 · · · (u, v)

PP
1 (X , Y , Z )1

2 (x , y)C1
2 · · · (x , y)CI

2 (u, v)
P1
2 · · · (u, v)

PP
2 (X , Y , Z )2

...
...

. . .
...

...
. . .

...
...

n (x , y)C1
n · · · (x , y)CI

n (u, v)
P1
n · · · (u, v)

PP
n (X , Y , Z )n

Note. Each row contains corresponding points within each of these coordinate spaces. For instance, the 2D point
(x , y)C1

1 in camera C1 corresponds to the 2D point (x , y)C2
1 in camera C2, the 2D point (u, v)

P1
1 in projector P1, and

the 3D point (X , Y , Z )1 on the surface.

camera C2. The corresponding entry (x , y)C3
1 might be

“empty” to indicate that camera C3 is unable to image
this particular location due to the camera’s position and
viewing angle. The entry (u, v)

P1
1 in the same lookup

table row indicates the corresponding coordinate in
the space of projector P1: a projection at this coordi-
nate would appear at the location of the user’s touch
on the surface. Likewise, the corresponding coordi-
nate (X , Y , Z )1 stores the 3D position of this point
within the graphical model. In the lookup table, these
correspondences are stored within the same row, and a
point in any of the coordinate spaces can be used as an
index to find the corresponding point in any of the other
spaces.

4 Prototype

We have developed a prototype system to demon-
strate our method on nonparametric surfaces—in
particular, the physical–virtual patient head. The pro-
totype rig (see Figure 4) is composed of four Point Grey
Blackfly monochrome cameras with IR filters (780 nm),
two IR illuminators (850 nm), and one AAXA P300
pico projector. We use monochrome cameras with
removable IR filters so that the cameras can capture
visible-light imagery of the projections on the surface
to build the CAM2 to PRO2 correspondences in the
lookup table. Once this preprocessing stage is com-
plete, the IR filters are reinserted so that the cameras

Figure 4. In our prototype rig, we used four IR cameras, two IR light

sources, and a projector.

can detect touch events in the IR spectrum. We also
demonstrate the use of the prototype and method on
another head surface and a planar surface in the Surfaces
section.

4.1 Setup

4.1.1 Camera, Projector, and IR Light Place-
ment. We place our cameras and projectors in positions
that allow for sufficient visual coverage of the head
surface (see Figure 6). Likewise, we position the
IR illuminators to provide ample lighting for touch
detection.
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Figure 5. Developing an animatable 3D mesh from the head surface. (a) Head surface with no projection. (b) Dense mesh from structured

coded light scan. This mesh is not suitable for texturing or animation. (c) Retopologized mesh. (d) Retopologized mesh with head texture, suitable

for animation.

4.1.2 Camera and Projector Calibration. We
calibrate the IR cameras using a standard checkerboard
calibration approach in OpenCV (Bradski, 2015). Each
camera is first individually calibrated; their computed
intrinsics are used as initial estimates for subsequent
stereo camera calibration among all pairs of cameras. We
use the projector-to-3D correspondences obtained from
the structured coded light scan to calibrate the projec-
tor: let xi = (u, v)i and Xi = (X , Y , Z )i be a projector
coordinate and its corresponding 3D model coordi-
nate, respectively. We solve for the projection matrix
P that best satisfies xi = PXi for all i, from which we
can obtain the intrinsics and extrinsics for the projec-
tor (Hartley & Zisserman, 2004). As a result, we obtain
relative position information between all cameras, the
projector, and the surface (see Figure 6). To simplify
operations, we take one camera to be the origin of this
3D coordinate system.

4.1.3 3D Model. We use the 3D graphics space
point cloud to construct a 3D model to be projected
onto the surface (Figure 5[a]) using Unity (Unity—
Game Engine, 2014). The point cloud is dense and not
easily textured or animated (see Figure 5[b]). Based
on this point cloud, we generate a lower density mesh
that uses quads with an edge flow topology instead of
the grid of quads produced by the structured coded
light scan; this is more suitable for animation as the use
of quads minimizes artifacts generated by subdivision
during smoothing. Quads are suitable for edge-loop
modeling, shown in Figures 5(c) and (d) (Murdock &
Allen, 2006). Poles are vertices with three or five or

more edges; they are positioned at specific locations
to reduce artifacts during animation. For the physical–
virtual patient head, we create eyeballs and inner mouth
geometry and attach them to the mesh by merging
vertices using Maya (3D Animation Software, Com-
puter Animation Software | Maya | Autodesk, 2014).
The mesh is textured (see Figure 5[d]) and then rigged
using a combination of joints and blendshapes for var-
ious animations. A convex mesh is created for each
semantically defined region of the face—for example, the
eyes, nose, and mouth—and used as a collider in Unity
so that touch events can trigger any region-specific
responses.

The 3D model rigged with joints and blendshapes
is exported to Unity and positioned in a 3D coordi-
nate space based on the results of camera and projector
calibration as in Figure 6—that is, the coordinates of
the surface within Unity correspond to the triangu-
lated coordinates from the structured coded light scan.
The resolution of the Unity scene is set to match the
maximum resolution of the projector (1920 × 1080
pixels) as described in the manufacturer’s manual. A
virtual projector—a camera in Unity—whose position
and rotation match the physical rear projector’s extrin-
sic parameters is created; additionally, we compute the
field of view for this virtual projector using the projector
calibration results. As in our prototype rig, the virtual
projector is located underneath the surface. The result-
ing view rendered from this virtual projector is sent as
imagery to the physical projector to be displayed on the
actual surface.
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Figure 6. The coordinate space containing the cameras, projector,

and 3D surface for the physical–virtual patient head. The IR cameras

and projector are shown as cubes with a line pointing along their

principal axes. The 3D surface plotted here is simplified for

visualization purposes.

4.2 Run Time

To reduce latency, we developed a multithreaded
application that performs image acquisition, touch
detection, and rendering on separate threads. For each
camera, one thread continuously captures new imagery,
while a second thread segments potential touch events
in this imagery into contours. A single thread processes
the contours from all cameras and assigns confidence
scores to them, with higher scores corresponding to like-
lier touch events. On average, the touch sensing thread
processes potential touches across the four cameras of
our prototype rig at 40–60 frames per second, and the
rendering thread sends images to the projector at 60–80
frames per second.

4.2.1 Touch Sensing. Initially, each camera cap-
tures imagery of the surface when no touch events are
occurring. New imagery captured by the cameras is

compared to these background images, thresholded,
and segmented into contours. Each camera contour is
converted via the lookup table into a corresponding
projector contour in the 2D projector space, where it is
evaluated and scored. In order to assign a confidence
score for a potential touch event, we consider the degree
to which multiple cameras agree on the event as well
as the reliability of each camera in imaging the particu-
lar region of the surface on which the potential event is
occurring.

A region of high intensity that does not correspond
to an actual touch may appear in a camera’s imagery, for
example, if the user’s hand hovers close to the surface.
These erroneous events must be discarded. We combine
the projector contours converted from each camera into
a single matrix with the same resolution as the projec-
tor. We declare cameras as “agreeing” on a touch event
when their projector contours have sufficiently similar
positions and sizes. We sum up the ratios of the area of
c cameras agreeing on a projector contour to the area of
the entire contour, weighted by empirically obtained val-
ues wa[c] for c ∈ {1, 2, 3, 4}, and normalized by the sum
of the weights.

Each camera images different regions of the surface
with varying amounts of distortion. A camera with
a better “view” of a particular region should have its
contributions weighted higher than one with a com-
paratively less accurate view. The CAM2 to GFX3
correspondences in the lookup table provide rays con-
necting each camera’s position to a 3D position on the
surface, passing through a given pixel in the camera’s
image plane. We compute the surface normal at this
point of intersection. Regions that have surface nor-
mals that are nearly parallel to the camera ray are locally
“flat” when imaged by that camera and should appear
with minimal distortion; potential touch events that
occur in such regions are more reliable. Regions with
surface normals nearly orthogonal to the camera ray
will be highly distorted when imaged by that camera.
Hence, the dot products between surface normals and
camera rays form a measure of “viewing” confidence.
These dot products are precomputed for all pixels of all
camera image planes. At run time, we aggregate these
dot products for the segmented contours within camera
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imagery and weight the respective camera contributions
accordingly.

The camera agreement and camera reliability mea-
sures are added together as an overall confidence score.
Projector contours with a sufficiently high confidence
are accepted as touch events and sent to the render-
ing system to trigger appropriate graphical or other
responses.

4.2.2 Rendering. Accepted touch events are
sent to Unity in two forms, using the lookup table to
perform the necessary coordinate conversions. First,
a monochrome image mask in 2D projector space is
created in which touch events are represented as white
pixels. This mask is overlaid onto the rendered out-
put from Unity, allowing for the touch event to be
displayed in a different color. The touch event is also
converted to 3D graphics space coordinates and sent to
Unity for the activation of blendshapes. The upper and
lower lips, upper and lower eyelids for both eyes, and
nose of the physical–virtual patient head have associ-
ated blendshapes. When a touch occurs, the rendering
system uses Unity’s physics engine to determine if it
happens inside a collider region associated with one of
these blendshapes; if so, the blendshape is activated.
As the touch position varies over the surface, we com-
pute a percentage between the current touch position
and the maximum position the blendshape can reach
to update the blendshape accordingly. In this way, a
user can “spread” the lips of the patient with her fin-
gers, revealing the teeth and gums (see Figure 1). If
the touch event triggers an audio response, lip-synced
animations are activated to move the mouth appropri-
ately. Finally, a shader in Unity renders the buffers for
the mesh in reverse order so that the eyeballs and mouth
bag are rendered correctly.

4.3 Evaluation

During normal operation of our system, touch
events detected in the 2D camera space are mapped
via the lookup table to the 3D graphics space, and the
appropriate graphical effect is rendered based on the
location of the touch. To assess the detection accuracy

of our prototype, we effectively reversed this process
for a large number of samples (over 600). Specifically,
we projected a grid of visual targets—a set of concentric
circles with a “crosshair” at the center—onto the head
shell, one at a time. A user was instructed to touch each
visual target with a small wand as carefully and precisely
as possible, and both the detected location of each touch
event in PRO2 and the corresponding 3D position in
GFX3 were recorded.

The positions of the projected targets and user
touches are shown in Figure 7 for an earlier prototype
of our system (described in Hochreiter et al., 2015).
The mean distance between the projected circles and the
detected touch events in projector space is 16.7 pixels
with a standard deviation of 12.5 pixels, which corre-
sponds to a mean 3D distance in the 3D graphics space
of 4.3 mm and standard deviation of 4.3 mm (same
as mean). In general, the largest errors correspond to
highly curved regions of the shell—such as the nose—
and to a portion of the shell that is largely parallel to the
projector’s principal axis. In such regions a small pixel
displacement in projector space can result in a compar-
atively large displacement in physical 3D coordinates. If
we ignore the points with the top 10% error, the mean
distance in projector space is 13.2 pixels with a stan-
dard deviation of 6.5 pixels, which corresponds to a
mean 3D distance in the 3D graphics space of 3.2 mm
and standard deviation of 1.7 mm. Because the errors
are static, we could potentially factor corrections into
our lookup table if needed. However, we would first
attempt to improve the camera and projector placement
to minimize error sensitivities in the regions with higher
accuracy requirements.

It is worth noting that while the user attempted to
touch the surface carefully and precisely during this
experiment, there is undoubtedly noise introduced by
his inability to know whether or not his touching was
indeed centered on the circle. In fact, for finger touches
in general it is not clear what being “centered” means as
fingers pressed onto a surface are not circular. In the end
what matters is the user’s perception of where he or she
is touching and how the graphical content responds, all
in the context of the application.
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Figure 7. Errors between a user’s touch and the touch location detected by the system. Left: Errors in 2D projector space (average 16.7 pixels

with a standard deviation of 12.5 pixels). Right: Errors in 3D graphics space (average and standard deviation of 4.3 mm).

4.4 Surfaces

We demonstrate the general nature of our
method using three rear-projection surfaces: two
different human head-shaped surfaces and a pla-
nar surface (see Figure 8). The first head surface is
modeled after a real human head—it serves as our
physical–virtual patient head for training applica-
tions. The second head surface has a more robotic or
cartoon-like head shape. Finally, the planar surface
simply demonstrates the applicability of this approach
on an ordinary parametric surface. The first row of
Figure 8 shows these surfaces without any projected
imagery.

The pipeline for turning each of these three sur-
faces into touch-sensitive ones is the same. First, we
scan each surface using the structured coded light
approach detailed earlier. After retopologizing the
resulting 3D mesh, we rig it with joints and blendshapes
as appropriate and texture it. We semantically define
regions of the 3D model so that touch events can trig-
ger region-based responses. Finally, we build lookup
tables relating camera pixels, projector pixels, and 3D
surface points. In the remaining rows of Figure 8 we
show the detection of touch events, the 3D model of the
virtual head, the resulting projection onto the surface,
and touch-triggered blendshape changes on the three
surfaces.

5 Application to Stroke Assessment

We have demonstrated our touch-rendering meth-
ods using a physical–virtual patient head in a medical
training scenario. Specifically, we chose a stroke sce-
nario to illustrate the capabilities of our prototype for
assessment of patients. The American Stroke Association
(ASA) suggests the FAST mnemonic for early stroke
recognition and survival: Face drooping, Arm weakness,
Speech difficulty, and Time to call emergency services
(Warning Signs of Stroke, 2014). At a receiving cen-
ter, a healthcare provider will perform a neurological
and a psychomotor assessment that includes examin-
ing the patient for an asymmetric smile, lid lag, irregular
pupils, garbled speech, the ability to show teeth, numb-
ness, or difficulty sensing touch. At present, healthcare
providers are trained in medical and nursing schools to
recognize these findings. Training consists of task train-
ers and standardized patients. The use of simulation
for stroke training is currently limited, possibly due to
the limitations of current simulator technology, which
has not been designed with stroke-related focal neu-
rologic assessment in mind (Garside, Rudd, & Price,
2012).

Most human patient simulators do not have the capa-
bility to respond and exhibit typical stroke symptoms,
such as smile asymmetry, visual gaze, and sensation
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Figure 8. Touch sensing on various nonparametric and parametric surfaces. The second and fifth rows show the effects of two kinds of touch

events: pixel-level changes at the points of contact and geometric changes due to a touch-triggered lower-lip-tug blendshape, respectively.
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Figure 9. Example stroke scenario. The patient’s mouth and eye are drooping on her left side, where she cannot sense touch, and she is unable

to smile. Animated blendshapes still function properly on the drooping mouth. Figure 1 shows similar interactions on a healthy patient.

awareness. Similarly, a trained human actor would be
unable to simulate facial droop and lid lag in a realistic
manner. However, our physical–virtual patient head
is capable of exhibiting many of the visual and audi-
tory symptoms of a stroke, as shown in Figure 9. The
projected 3D model can be switched between “nor-
mal” mode and “neurological event” mode whenever
desired.

Moreover, as the physical–virtual patient head can
respond to touch events, a healthcare practitioner can
follow the aforementioned neurological and psychomo-
tor assessments. Compared to a two-dimensional avatar
or a non-touch-sensitive robot, this could afford a more
natural and engaging training experience. To this end,
we apply our physical–virtual patient head as a simu-
lated “patient” in a stroke assessment training scenario.
Various regions of the graphical model are semantically
defined: the forehead, chin, left and right eyes, left and
right cheek, and nose. A detected touch event, once
converted from 2D camera space to 3D graphics space,
can be classified as belonging to one of these parts of the
face, and a prerecorded sound file of the patient verbally
identifying the location of the touch can be triggered.
In this way, the healthcare provider can test for sensory
function by touching different locations on the head
and asking the patient to indicate where the touch is
perceived. Blendshapes that control the opening and
closing of the graphical model’s eyes and lips are cre-
ated and linked to the touch system so that the trainee
can examine the simulated patient by physically inter-
acting with it. In neurological event mode, when the

patient’s mouth and eye are drooping on the left side,
the blendshapes function naturally.

As appropriate, additional prerecorded verbal and
nonverbal responses can be triggered manually. Joint
animations in the jaw are activated when the patient
speaks, and the lips are synchronized to the audio
source. Nonverbal responses include emotions, such
as happiness, surprise, contempt, or anger, and non-
emotional behaviors, such as closing eyes, pupil dilation,
eyebrow movement, and tongue movement. Each verbal
and nonverbal response behaves appropriately depend-
ing on the current mode of the patient; for instance,
the patient exhibits slurred speech, asymmetric eye-
brow movement, and impaired ability to recognize the
locations of some touches in neurological event mode.

6 Future Work

We plan to extend the proposed technique to han-
dle multiple projectors, allowing for touch sensing and
rendering on larger surfaces, by expanding the lookup
table to provide correspondences in the additional coor-
dinate spaces of these projectors. The primary difficulty
concerns the blending of projected imagery in regions
of overlap, as these regions can have arbitrary shapes,
sizes, and orientations with respect to the nonparametric
surfaces. If multiple projectors can “cover” a particular
section of the surface, one projector may be able to do
so with less distortion or brightness falloff depending on
its position and orientation. There are also tradeoffs to
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consider regarding the number of projectors used and
their positioning: limiting the number of projectors and
amount of overlap can help reduce the complexity of the
overall system, but this may reduce the brightness and
contrast in certain regions.

To prevent the need for time-consuming recali-
bration, we are considering automatic continuous
self-calibration methods. Constant updates to the
lookup table should improve correspondence accuracy
and increase the overall reliability of the system.

We are also investigating the ability to sense proximity
or contact with objects beyond fingers and hands, both
passive (e.g., medical instruments) and active (e.g., a
wand with an IR LED in the tip). The ability to detect
non-contact events will allow for additional interactions,
such as having the patient follow a moving flashlight
with the eyes.

We are experimenting with creating our own surfaces
through a combination of 3D printing and vacuforming.
To be suitable, a surface must satisfy a few constraints.
First, it must allow for the formation of a sharp projec-
tion image when viewed from above. If projecting an
image onto the surface leads to visible light reflections
below the surface, it will disrupt the scanning pro-
cess. Similarly, the surface must permit IR light to pass
through it without the presence of intense hot spots in
the IR domain to allow for accurate touch sensing. We
are also investigating different translucent skin materials
to simulate a tactile feeling closer to that of human skin.
The material we are considering appears to be simul-
taneously opaque enough to support the formation of
a projector image and transparent enough to pass IR
light in both directions, thus maintaining our ability
to achieve optically-based touch sensing on a skin-like
surface.

Finally, from an application standpoint, we are
working to apply these methods to an entire life-size
physical–virtual body.

7 Conclusion

We have presented a generalizable approach for
touch detection on nonparametric rear-projection

surfaces using IR cameras. We developed a physical
prototype and applied our method to three rear-
projection surfaces on which a projector displays
a graphical model. Touch events on these surfaces
prompt visual and auditory responses in the model.
We demonstrated an example application scenario on
a head-shaped surface where touch events and result-
ing graphical updates could be used to train a healthcare
professional in stroke assessment.

A primary goal of our approach is a direct touch-
graphics architecture to ensure the appropriate semantic
response of the interactive graphics application while
minimizing the perceived latency. Toward this end,
our method includes precalibration steps to populate
a lookup table that is used during run time to directly
map points in the 2D camera space to the 3D graphics
space, as well as decoupled touch and rendering coordi-
nate spaces and processes to allow each to proceed at an
appropriate rate.

We analyzed the accuracy of our prototype using a
reverse-touch approach in which we chose a 2D projec-
tor point, attempted to touch that point, and assessed
how well the detected touch event mapped back into the
projector space. The results revealed greater static error
(mismatch) in regions where camera/projector-surface
normals are closer to being orthogonal (ill-conditioned).
We should be able to reduce this error by various means,
including better camera/projector placement and the
use of dense correction factors.

We look forward to extending our methods to a full
human body surface with multiple projectors and cam-
eras and to evaluating more extensive medical training
scenarios incorporating hands-on full-body diagnostic,
therapeutic, and comfort touch.
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