
Ensuring Color Consistency across Multiple Cameras

Adrian Ilie and Greg Welch
University of North Carolina at Chapel Hill, Computer Science Department

Sitterson Hall, CB# 3715, Chapel Hill, NC 27599, USA
{adyilie,welch}@cs.unc.edu

Abstract

Most multi-camera vision applications assume a single
common color response for all cameras. However different
cameras—even of the same type—can exhibit radically dif-
ferent color responses, and the differences can cause signifi-
cant errors in scene interpretation. To address this problem
we have developed a robust system aimed at inter-camera
color consistency. Our method consists of two phases: an
iterative closed-loop calibration phase that searches for the
per-camera hardware register settings that best balance lin-
earity and dynamic range, followed by a refinement phase
that computes the per-camera parametric values for an ad-
ditional software-based color mapping.

1. Introduction

Many of the computer vision and computer graphics ap-
plications that have emerged during the last decade make
use of multiple images. Some applications involve the ac-
quisition of multiple images using a single camera [14,
10, 22]. While using a single camera ensures a consistent
color response between images, the approach limits the ap-
plicability of these methods to static scenes. Alternatively
one can capture dynamic scenes using multiple cameras
[12, 25, 23]. However such applications require consistent
inter-camera color responses to produce artifact-free results.
Figure 2 illustrates some artifacts in a reconstruction pro-
duced by an implementation of the 3D reconstruction sys-
tem in [26].

Unfortunately most cameras—even of the same type—
do not exhibit consistent responses. Figure 1 illustrates the
differences between the responses of 8 cameras to the 24
colors of the GretagMacbeth [5] ColorCheckerTM chart
imaged under the same illumination conditions and using
the same hardware settings. The data shows that color
values are significantly different from camera to camera.
This is due for example to aperture variations, fabrication
variations, electrical noise, and interpolation artifacts aris-

Figure 2. Artifacts in the 3D reconstruction of
a physical cookie box. Left: A reconstruction
using uncalibrated cameras with the same
hardware settings. Right: A reconstruction
with color-calibrated cameras. Artifacts are
eliminated and the colors are more natural.

ing from the reconstruction of a full-resolution color image
from a half-resolution Bayer pattern image [3].

To address the color matching problem we have devised
a two phase process: an iterative closed-loop calibration
phase that searches for the per-camera hardware register
settings that best balance linearity and dynamic range, fol-
lowed by a refinement phase that computes the per-camera
parametric values for an additional software-based color
mapping. Variations of these phases have previously been
explored separately, however we believe the hardware and
software approaches offer complementary benefits that can
yield better results when combined. Our goal is to bring the
response curves of several cameras closer together and as
close as possible to a desired reference image, while also
minimizing the amount of noise in the images.

Note that in color science the term photometric calibra-
tion is typically defined as setting a device to a particular
state characterized during a profiling process such as the
one described in [16] and later taken into account in order
to achieve a desired behavior of the device. In computer
graphics, the same term is typically used to describe the
process of tuning a general model of the physical device to
best describe the specific instance of the device [4]. The first
definition corresponds to our iterative closed-loop hardware
calibration phase, and the second definition corresponds to
our software refinement phase.

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Red

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Green

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Blue

Figure 1. Differences in responses of 8 cameras. Left image: 3D RGB color space plot. Each colored
sphere represents the position of a camera sample in the RGB color space. Each connected cluster
of colored spheres corresponds to one of the 24 samples in a ColorCheckerTM chart. The size of each
sphere is proportional to the intra-sample variance. The small white spheres at the origin of each
cluster represent the position in the RGB color space of the corresponding target color samples.
Right 3 images: The measured color values for each channel, camera and sample, plotted with
respect to the corresponding target values. Each individual curve represents samples taken from a
particular camera.

2. Previous Work

Previous research aimed at color consistency falls mainly
in two categories: calibrating cameras in order to obtain
some desired response, and processing images after acqui-
sition. Color consistency has also been studied in the con-
text of projector displays [11], but these techniques have not
been extended to camera systems. Other well-known cali-
bration techniques for printers, scanners and monitors are
described in great detail in [9].

Calibrating cameras is usually performed with respect
to a known target, such as a color chart with standardized
samples [13]. Color charts have been traditionally used in
photography and color research [2]. The closest work to
our method is presented in [8]. They acquire images of a
color target, compensate for non-uniform lighting, adjust
the gains and offsets of each color channel to calibrate each
camera to a linear response, and then apply several soft-
ware post-processing steps. They also address the scalabil-
ity of calibrating a large number of cameras by automat-
ically detecting the location of the color target and using
special hardware attached to each camera in order to min-
imize traffic over the camera connections. Although their
calibration method is different, their other contributions are
applicable to our method as well. We use an approach that
minimizes the differences between several camera images
while also observing goals such as maintaining visual fi-
delity and minimizing the signal noise.

Other researchers have proposed the use of scene statis-
tics for single camera calibration [6]. Scene statistics are
used in the RingCam [15], a system for capturing panora-
mas using multiple cameras. They change the brightness
and gain of each camera to match the desired “black level”

and “mean brightness” values, and to match the image col-
ors in the overlapping regions of adjacent cameras. While
these methods have the advantage that they do not require
a color chart, they are sensitive to the choices of desired
values.

Consistency can also be obtained by software post-
processing of images. For example, [19] uses pair-wise
correlation for modeling transfer functions and a special
distance metric based on image color histograms. While
this can produce reasonable results, its complexity increases
quadratically with the number of cameras. Also, the transfer
functions computed by this approach may introduce distor-
tions and quantization errors when some parts of the color
spectrum are compressed or stretched.

3. The Calibration Process

Our method consists of two main phases: an iterative
closed-loop hardware calibration phase, and a software re-
finement phase. In the first phase we search for the per-
camera hardware register settings that best balance linearity
and dynamic range. We do this in two steps: first we opti-
mize to a known target (a 24-sample GretagMacbeth [5]
ColorCheckerTM), and then we optimize to the average
of the results of the previous step. In the second phase we
compute the per-camera parametric values for an additional
software-based color mapping. These two phases and the
intra-phase steps are depicted in Algorithm 1, and described
in more detail in the following subsections.

Algorithm 1 Overall process.
Phase 1: Closed-Loop Calibration of Hardware
identify locations of color samples in the target image
Step 1: optimize to target
for each camera do

identify locations of color samples in the camera image
repeat

minimize cost function with respect to target
until (cost < threshold) or (no improvement)

end for
Step 2: optimize to average
repeat

compute average of all camera images
designate average as the new target image
identify locations of color samples in the target image
for each camera do

if cost is higher than a threshold then
minimize cost function with respect to target

end if
end for

until for all cameras (cost < threshold) or (no improvement))

Phase 2: Software-Based Refinement
for each camera do

perform software refinement
end for

3.1. Closed-Loop Calibration of Hardware

The basic idea of the calibration phase is to use a general
optimizer to search the space of each camera’s hardware
register values for a state with the closest match between
the colors of a target image and the camera image of the
color chart. For each camera, the optimizer repeatedly ad-
justs the register values, acquires an image, and computes
the cost. We allow the optimizer to run until all the cam-
eras are close enough to the target image, or until there is
no significant improvement from the previous iteration. We
actually perform a variation of this procedure twice—in two
steps.

In the first step we optimize to an image of the
GretagMacbeth ColorCheckerTM chart acquired with a
device whose response is designated as ideal (e.g., another
camera, or a scanner). The optimizer cost is computed as
a function of the differences in color for a predefined num-
ber of samples from each camera image. We compute the
differences in RGB color space using either an L1 or an L2
norm. We also include the intra-window sample variance in
the cost function as a way to ensure that our calibration si-
multaneously minimizes image noise. (Noise will increase
with certain poor choices for camera register values.) The
resulting formula for the cost function is a weighted sum
of the color differences and the intra-window sample vari-
ances:

C =

NS�
s=1

�
w|~Is − ~Ts| + (1 − w)Vs � (1)

where C is the value of the cost function, s is the sample
number, NS is the total number of samples, ~Is is the color
of camera image sample s, ~Ts is the color of target image
sample s, w and (1−w) are weights (we use w = 0.5). Note
that colors are 3-element vectors, containing the 3 values for
the red, green and blue channels: e.g., ~Is = [Irs Igs Ibs].

We use square sampling windows of adjustable size, and
compute the sample color as an average in each color chan-
nel. The intra-window sample variance Vs is computed as

Vs =

√

√

√

√

WS
∑

i=1

| ~Isi − ~Is|
2

(2)

where i is the index of each pixel inside the sampling win-
dow, WS is the window size, ~Isi is the color of pixel i of
sample s, ~Is is the average pixel color over the window.

During the first step each camera will converge on some
minimum cost, but the colors in the final camera images are
typically still quite different from the target colors. This is
not unexpected, as most cameras would be unable to match
the ideal target. However in practice when the cameras are
of the same type, their response functions (after this first
step) are reasonably similar.

In the second step of the hardware-based calibration
phase we use the same cost function, but compare with a
new target image, computed as the average for all cameras
of the final sample colors from the previous step. This guar-
antees that we have not chosen an outlier for the new tar-
get, and increases the probability that it can be matched by
all the cameras. We repeat the optimization process for all
cameras, and then compute a new average target image. We
repeat this process until all the cameras are close enough to
the latest average target image, or there is no significant im-
provement. In our experience, a small number of iterations
are usually sufficient. Figure 3 shows the final result of our
hardware calibration for 8 cameras of the same type.

In both steps of the hardware-based calibration phase
(see Algorithm 1) we minimize the cost function iteratively
by using a modified Powell’s method, adapted from [20].
We chose this method because it is robust to local minima,
it does not require the derivatives of the cost function with
respect to the input parameters, and it computes the global
minimum in a reasonable number of iterations. In our im-
plementation, we use the cost function callback provided by
Powell’s method to set the current parameter values on the
camera, acquire a new image, then compute and return the
corresponding cost value. In order to minimize the chance
of choosing a local minimum instead of the global mini-
mum, we randomize the starting values of each parameter
and the order in which the parameter domains are explored.

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Red

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Green

0 100 200
0

50

100

150

200

250

Target values

C
am

er
a

va
lu

es

Blue

Figure 3. The results of the hardware calibration process. Left image: 3D RGB color space plot.
Right 3 images: The measured color for each channel, camera and sample, plotted with respect to
the corresponding target values. Compare with Figure 1. The color values in the camera images are
still far from the corresponding target values, but they are more consistent (closer together).

3.2. Software-Based Refinement

Hardware settings alone are insufficient to achieve color
consistency, because their range and precision are often in-
adequate. Consequently, a more precise software refine-
ment also needs to be applied to images taken with already
calibrated cameras. However, to avoid amplifying noise,
clamping and color space distortion errors, we suggest the
impact of software refinement should be kept to a minimum.
We have explored three different post processing methods
to improve our results: linear least squares matching, a 3x3
RGB to RGB linear transform and a general polynomial
transform.

3.2.1. Linear Least Squares Matching

The simplest and fastest transform is linear least squares
matching. We compute the coefficients ac and bc of the
best linear transforms that map the camera image color
values to the target image color values for color channel
c ∈ {R,G,B}. We compute the transforms minimizing the
following functions in least square sense [24]:

NS�
s=1

(~Ics − (ac
~Tcs + bc))

2
, c ∈ {R, G, B} (3)

Here ~Ics is the component for color channel c of camera im-
age sample ~Is, and ~Tcs is the component for color channel
c of target image sample ~Ts. Figure 4 (left) shows the effect
of the transformation. In effect, we are scaling and trans-
lating the color values of each channel independently. This
procedure is fast, but often inadequate in the presence of a
significant influence from the other color channels. These
inter-channel effects are due to several factors. One factor
is the fact that the color filter arrays in front of the sensor
arrays let in some light from the other channels. Another
factor is the specific arrangement of the sensor cells into

color arrays, known as the Bayer pattern [3]. In this arrange-
ment, each sensor cell receives only light from one of the
red, green or blue (R,G,B) color channels. The cells are
arranged into a mosaic composed of 2x2 RG-GB tiles, and
the final RGB image is constructed by interpolation using
special de-mosaicing algorithms. Some of these algorithms
introduce inter-channel effects, noticeable around edges in
the image.

3.2.2. RGB to RGB Transform

A common way to account for inter-channel effects is
a 3x3 RGB to RGB transform [8]. We compute the 3x3
matrix that best transforms the 24 color samples of a cam-
era image into the corresponding color samples of a target
image. The matrix is the solution to the following over-
constrained matrix system:

����
~I1

~I2

...
~I24

� ���
24×3

×

�� trr trg trb

tgr tgg tgb

rbr tbg tbb

��
3×3

'

����
~T1

~T2

...
~T24

� ���
24×3

(4)

This system can be rewritten as the linear system:

������������������

~I1
~03

~03

~03
~I1

~03

~03
~03

~I1

~I2
~03

~03

~03
~I2

~03

~03
~03

~I2

.
~I24

~03
~03

~03
~I24

~03

~03
~03

~I24

� �����������������
72×9

×

��������������

trr

trg

trb

tgr

tgg

tgb

tbr

tbg

tbb

� �������������
9

'

����
~T T
1

~T T
2

...
~T T
24

� ���
72

⇔ A × ~t ' ~T ⇔ ~t ' Pinv(A) × ~T (5)

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

 0 50 100 150 200 250

Red

 0

 100

 200
G

reen
 0

 100
 200

B
lue

 0 50 100 150 200 250

Red
 0

 100

 200
G

reen
 0

 100
 200

B
lue

Figure 4. Different types of software refinement. 3D RGB color space plots. Left: Sample colors
after linear last squares matching. Middle: Sample colors after applying the RGB to RGB matrix
transform. Right: Sample colors after applying the general polynomial transform. The grey outlines
show an example of how the color space is distorted by each transform for one of the cameras.

To simplify the notation, we grouped the matrix elements
into vectors: ~Is = [Irs Igs Ibs] is the color for camera
image sample s, ~Ts = [Trs Tgs Tbs] is the color for target
image sample s, and ~03 = [0 0 0] is a 3-component null vec-
tor. txy is the term that specifies how much the input from
color channel x contributes to the output of color channel
y. We solve the system using singular value decomposition
to compute the pseudo-inverse of matrix A and back substi-
tution to compute the solution ~t. Our implementation uses
the routines from [20]. Figure 4 (middle) shows the effect
of this transform.

3.2.3. General Polynomial Transform

Although the RGB to RGB matrix transform accounts
for inter-channel effects, it does not have a translation com-
ponent and does not compensate for nonlinearities in the
response functions. To account for these remaining short-
comings, we have devised a general polynomial transform.
We generalize the 3x3 RGB to RGB transform to a non-
linear transform by introducing higher degree terms to com-
pensate for the non-linearities in the response functions and
a bias term to allow translations. The general formula for
color c ∈ {r, g, b} of sample s is:

D�
k=1

�
trck

Ir
k
s + tgck

Ig
k
s + tbck

Ib
k
s � + tc0 ' Tcs (6)

where D is the degree of the polynomial approximation.
Irk

s , Igk
s and Ibk

s are the red, green and blue values for cam-
era image sample s, raised to power k. Tcs is the value for
color channel c ∈ {r, g, b} of target image sample s. txck

is

the polynomial coefficient of the kth order term that spec-
ifies how much the input from color channel x ∈ {r, g, b}
contributes to the output of color channel c. tc0 is an addi-
tive term that allows translating the output of channel c. Our
experiments have shown that D = 2 is sufficient to attain
the level of precision required by typical applications. For
D = 2, we can write Equation 6 for all the 24 samples of
the color chart in equivalent matrix form as follows:

Ir1 Ir2

1
Ig1 Ig2

1
Ib1 Ib2

1
1

Ir2 Ir2

2
Ig2 Ig2

2
Ib2 Ib2

2
1

. .

Ir24 Ir2

24
Ig24 Ig2

24
Ib24 Ib2

24
1

24×7

×

[

trc1 trc2 tgc1 tgc2 tbc1 tbc2 tr0
]T

7
'

Tc1

Tc2

...

T c24

24

⇔ B × ~tc ' ~Tc ⇔ ~tc ' Pinv(B) × ~Tc, c ∈ {r, g, b}
(7)

We solve each matrix equation using singular value decom-
position to compute the pseudo-inverse of matrix B and
back substitution to compute the 3 solutions ~tr, ~tg and ~tb
Note that matrix B is the same for all 3 color channels, so
we only need to perform the inversion once. Our implemen-
tation uses the routines from [20]. Figure 4 (right) shows the
effect of this transform. Visually, the general polynomial
transform gives the best results, yet the amount of distor-
tion (shown by the grey outline) is the largest.

Figure 5. The graphical user interface of the color matching application. Left: The main window,
which shows a camera image with the samples highlighted. Also visible are the RGB space repre-
sentation of all the samples (top left), the hardware optimization settings window (right) and the real
time feedback window that shows the progress of Powell’s method’s cost function during hardware
calibration (bottom left). Top right: The batch processing window for applying the software transfor-
mations after capture. Bottom right: An example response function graph: color values from the 6
samples of a 6-step gray scale, plotted against the gain of the camera.

4. Implementation and Results

This section describes our calibration application and
discusses the results of some of our experiments.

4.1. Application

We have implemented a complete calibration system as
an easy to use, stand-alone, extensible application. A few
elements of the user interface are shown in Figure 5.

We use an approach similar to the one described in [8]
and [23] to automatically detect the locations of the camera
image samples: we place the color target at a known loca-
tion on top of a checkerboard pattern, detect the checker-
board corners in the camera images using OpenCV [7] and
employ their positions to compute the location of each sam-
ple.

The closed-loop hardware calibration phase is flexible,
offering the possibility to choose which hardware settings
are tuned, and within what interval. By default, optimiza-
tion is performed using Powell’s method [20]. If time is
not critical, the entire hardware settings space can be ex-

plored exhaustively, with a specified step in the domain of
each setting. The cost can be computed on raw or software-
transformed color values, using either an L1 or an L2 norm
and flexible weighting between the color differences and
intra-sample variances. The user is given real-time feed-
back showing the evolution of the color sample values in
RGB space and of the value of the cost function. The best
hardware setting values are saved in configuration files that
are later used during the acquisition process.

The application also allows the visualization of a cam-
era’s response function with respect to a chosen hardware
setting, as shown in Figure 5 (bottom right). This can pro-
vide insight into the limits within which the setting should
be constrained during calibration to avoid undesirable ef-
fects such as color saturation or excessive noise.

The software refinement phase is performed on demand,
and the effect of each transform on the color values can also
be visualized as shown in Figure 4. The computed values
for the coefficients of the linear, RGB to RGB, and general
polynomial transforms are also saved in configuration files
that are later used during the post-processing shown in Fig-
ure 5 (top right).

The application is written in C++, so extending it by
adding new types of cameras and cost metrics is easy by
design. Camera hardware settings are mapped to register
values, and the mappings are saved in initialization files.
Support for other types of cameras can be added by writing
subclasses of a base camera class, linking with the appropri-
ate libraries and creating the appropriate initialization files.

4.2. Results

We use 8 FireWire DragonF ly cameras and capture li-
braries provided by PointGrey, Inc. [18] for an implemen-
tation of the 3D reconstruction system described in [26],
and employ our calibration system to ensure optimal per-
formance.

As shown in Figure 1, even though or cameras are of the
same type and we have set their registers to the same values,
their responses are quite different and these differences lead
to noticeable artifacts in the 3D reconstruction.

For comparison purposes, we first calibrated one cam-
era to a scanned image of the color chart then applied its
setting values to all the other cameras. We used a scanned
image as our target because even though the chart manu-
facturer [5] provides color values for the chart we use, the
values do not correspond to any color space used in practice
[17] and are impossible to match using our cameras. Of all
the available hardware camera settings, we used the gain,
brightness and per-channel gains during hardware calibra-
tion. We chose appropriate values for the other settings and
turned off camera features such as auto white balance and
auto exposure. Table 1 shows the impact of the hardware
calibration process for all cameras.

The inter-sample standard deviation measures how far
apart the color samples in the camera images are with re-
spect to each other. This is the error we are trying to min-
imize, and the hardware calibration accomplishes this task
for all 3 color channels. The intra-sample standard devi-
ation measures the level of noise in the camera images.
While the noise in the blue channel increases slightly, the
noise in the red and green channels decreases significantly.

We then applied the software refinement process. Table
2 shows the impact of the 3 refinement methods we tested
(linear least squares, 3x3 matrix transform and general
polynomial transform) on the error measured as the mean
inter-sample standard deviation for each channel, compared
to the values after hardware calibration.

The general polynomial transform performs best accord-
ing to this error criterion. The 3x3 matrix transform per-
forms worse than the linear transform in this particular case,
due to the fact that the 3x3 matrix transform does not have a
translation component, and overestimates the inter-channel
effects to compensate.

There is a trade-off between the error and the amount of

Table 1. Results of Hardware Calibration
Channel Before After

Mean R 7.6488 3.0524
inter-sample G 6.1958 2.3559

st. dev. B 7.9980 3.5444
Mean R 0.3220 0.2637

intra-sample G 0.3000 0.1932
st. dev. B 0.2598 0.2695

Table 2. Software Refinement Methods
Channel Hardware Linear Matrix General

R 3.0524 2.4438 2.3992 1.5170
G 2.3559 1.5098 1.7392 1.0580
B 3.5444 1.7275 1.8078 1.0547

Table 3. Matching of Sony and PointGrey
Channel Hardware Software

Mean R 11.1369 5.1854
inter-sample G 15.1733 5.8926

st. dev. B 12.6101 6.1872

color space distortion a transform induces. Choosing the
appropriate software refinement method is dependent upon
the application and the scene content. Applications that are
more sensitive to differences between camera images and
deal with scenes of average colors should choose the gen-
eral polynomial transform. However, if a scene contains
very dark or very bright colors that are already close to the
limits of the color space, more distortion can lead to more
clamping errors, and the linear method should be chosen
instead.

We have also experimented with calibrating configura-
tions of heterogenous cameras. Our first experiment was
with a Flea camera from the same manufacturer [18]. The
available settings were not the same as for DragonF ly

cameras: the gain setting for the green channel was miss-
ing, but Flea cameras implement gamma correction. We
were able to integrate the camera into our application with
very little effort, and the result of the calibration was in-
distinguishable from a DragonF ly camera. (Both cameras
use the same type of imaging sensor.)

For a second experiment, we used a DFW − V L500
camera from Sony [21], which we integrated into our ap-
plication using the generic capture driver and libraries from
[1]. This camera was also missing the gain setting for the
green channel, but had many other settings, of which we
chose to use brightness, gain, white balance, hue, saturation
and gamma correction. Table 3 shows the result of calibrat-
ing this camera and one DragonF ly camera to the same
target.

The errors are approximately 5 times larger than when
using cameras of the same type, but within the usability

threshold for many applications. We conclude that using
cameras of different types is possible, but if high-quality
results are desired the best way to obtain them is to use
cameras of the same type or at least with the same type of
imaging sensor.

5. Conclusion and Future Work

We have shown that it is possible to calibrate several
cameras to a known target with high accuracy, which brings
their response curves closer together while also minimiz-
ing the noise in their images. This enables correlation-
based computer vision applications to obtain high quality
results. We have presented a complete calibration system
in the form of an easy to use, stand-alone, extensible appli-
cation. Our system implements a two phase process: an
iterative closed-loop hardware calibration, followed by a
single-stage software refinement.

The main limitation of our work is that cameras have to
be re-calibrated when the lighting conditions change dra-
matically. While we have not been affected by this problem
in our reconstructions, we think re-calibrating may become
impractical in some specific circumstances. Re-calibrating
without imaging the color chart is not straightforward. We
plan to investigate methods that use scene statistics [6] as
a way to make incremental adjustments to the cameras to
compensate for small changes in lighting.

Another area we plan to explore is more detailed profil-
ing of the cameras. At this time, only the best hardware
settings values and the corresponding software transforms
coefficients are saved for later use, and only for particular
lighting conditions. Profiling the cameras in more detail and
under several different lighting conditions may help avoid
the need to re-calibrate when the lighting changes.

References

[1] C. Baker. CMU 1394 Digital Camera Driver. http://
www-2.cs.cmu.edu/∼iwan/1394/.

[2] K. Barnard and B. Funt. Camera characterization for color
research. Color Research and Applications, 27(3):153–164,
2002.

[3] B. Bayer. Color imaging array. US Patent 3,971,065, 1976.
[4] M. Goesele. New Acquisition Techniques for Real Ob-

jects and Light Sources in Computer Graphics. PhD thesis,
Max-Planck-Institut fur Informatik, Saarbrucken, Germany,
2004.

[5] GretagMacbeth Color Management Solutions. http://
www.gretagmacbeth.com.

[6] M. Grossberg and S. Nayar. What can be known about the
radiometric response function from images? In Proceedings
of ECCV, pages 189–205, 2002.

[7] Intel Corporation. Open Source Computer Vision
Library. http://www.intel.com/technology/
computing/opencv/.

[8] N. Joshi. Color calibration for arrays of inexpensive image
sensors. Master’s thesis, Stanford University Department of
Computer Science, 2004.

[9] Kang, H. Color Technology for Electronic Imaging Devices.
SPIE-International Society for Optical Engineering, 1997.

[10] M. Levoy and P. Hanrahan. Light field rendering. In Pro-
ceedings SIGGRAPH, pages 31–42, 1996.

[11] A. Majumder, Z. He, H. Towles, and G. Welch. Achiev-
ing color uniformity across multi-projector displays. In Pro-
ceedings of IEEE Visualization, pages 117–124, 2000.

[12] A. Majumder, W. Seales, M. Gopi, and H. Fuchs. Immer-
sive teleconferencing: A new algorithm to generate seam-
less panoramic video imagery. In Proceedings of the Sev-
enth ACM International Conference on Multimedia, pages
169–178, 1999.

[13] C. McCamy, H. Marcus, and J. Davidson. A color-
rendition chart. Journal of Applied Photographic Engineer-
ing, 2(3):95–99, 1976.

[14] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. In Proceedings of SIGGRAPH
1995, pages 39–46, Los Angeles, CA, 1995.

[15] H. Nanda and R. Cutler. Practical calibrations for a realtime
digital omnidirectional camera. In Proceedings of CVPR,
Technical Sketch, 2001.

[16] M. Nielsen and M. Stokes. The Creation of the sRGB ICC
Profile. In Proceedings of IS&T Sixth Color Imaging Con-
ference: Color Science Systems and Applications, 1998.

[17] D. Pascale. RGB Coordinates of the Macbeth Color
Checker. http://www.babelcolor.com/main
level/download.htm, 2003.

[18] Point Grey Research Inc. http://www.ptgrey.com/.
[19] F. Porikli. Inter-camera color calibration by cross-

correlation model function. In IEEE International Confer-
ence on Image Processing, volume 2, pages 133–136, 2003.

[20] Press, W. and Teukolsky, S. and Vetterling, W. and Flannery,
B. Numerical Recipes in C: The Art of Scientific Computing,
Second Edition. Cambridge University Press, 1993.

[21] Sony Corporation. Digital Color Camera Module
DFW-VL500. Available at: http://www.sony.
net/Products/ISP/products/interface/
DFWV500.html.

[22] R. Szeliski and H.-Y. Shum. Creating full view panoramic
image mosaics and environment maps. In Computer Graph-
ics, 31 (Annual Conference Series), pages 251–258, 1997.

[23] Vaish, V. and Wilburn, B. and Levoy, M. Using plane +
parallax for calibrating dense camera arrays. In Proceedings
of CVPR, volume 1, pages 2–9, 2004.

[24] E. Weisstein. Least squares fitting. MathWorld-A Wolfram
Web Resource, http://mathworld.wolfram.com/
LeastSquaresFitting.html.

[25] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz.
High-speed videography using a dense camera array. In Pro-
ceedings of CVPR, volume 2, pages 294–301, 2004.

[26] R. Yang. View-Dependent Pixel Coloring - A Physically-
Based Approach for 2D View Synthesis. PhD thesis, Uni-
versity of North Carolina at Chapel Hill, Computer Science
Department, 2004.

