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Abstract—Large networks of cameras have been increasingly
employed to capture dynamic events for tasks such as surveillance
and training. When using active cameras to capture events
distributed throughout a large area, human control becomes
impractical and unreliable. This has led to the development of
automated approaches for on-line camera control. We introduce
a new automated camera control approach that consists of
a stochastic performance metric and a constrained optimization
method. The metric quantifies the uncertainty in the state of
multiple points on each target. It uses state-space methods with
stochastic models of the target dynamics and camera measure-
ments. It can account for static and dynamic occlusions, accom-
modate requirements specific to the algorithm used to process the
images, and incorporate other factors that can affect its results.
The optimization explores the space of camera configurations
over time under constraints associated with the cameras, the
predicted target trajectories, and the image processing algorithm.
The approach can be applied to conventional surveillance tasks
(e.g., tracking or face recognition), as well as tasks employing
more complex computer vision methods (e.g., markerless motion
capture or 3D reconstruction).

Index Terms—camera control; active camera networks; com-
puter vision; surveillance; motion capture; 3D reconstruction

I. INTRODUCTION

Many computer vision applications, such as motion capture
and 3D reconstruction of shape and appearance, are currently
limited to relatively small environments that can be covered
using fixed cameras with overlapping fields of view. There is
demand to extend these and other approaches to large environ-
ments, where events can happen in multiple dynamic locations,
simultaneously. In practice, many such large environments are
sporadic: events only take place in a few regions of interest
(ROIs), separated by regions of space where nothing of interest
happens. If the locations of the ROIs are static, acceptable
results can be obtained by straightforward replication of static
camera setups used for small environments. However, if the
locations of the ROIs are dynamic, coverage needs to be
ensured throughout the entire volume. Using an increasing
number of fixed cameras is impractical due to concerns over
increased requirements in terms of computation and monetary
cost, bandwidth and storage.

One practical solution to this problem is using active
cameras to cover sporadic environments. Active cameras have
been used in surveillance [1] and computer vision fields such
as motion capture [2] and robotics [3]. What makes them

so versatile is their capability to change their pan and tilt
settings to aim in the direction of dynamic ROIs, and zoom
in or out to best enclose the ROIs in their field of view.
However, this versatility comes at a cost: in order to capture
dynamic events, active cameras need to be controlled on-line,
in real-time. Control decisions need to be made as events are
happening, and to take into account factors such as target
dynamics and camera capabilities, as well as requirements
from the computer vision algorithms the images are captured
for, such as preferred camera configurations, capture durations
and image resolutions.

We present an approach that controls a network of active
cameras on-line, in real-time, such that they capture multiple
events taking place simultaneously in a sporadic environment
and produce the best possible images for processing using
computer vision algorithms. We approach camera control as
an optimization problem over the space of possible camera
configurations (combinations of camera settings) and over
time, under constraints derived from knowledge about the
cameras, the predicted ROI trajectories and the computer
vision algorithm the captured images are intended for. Op-
timization methods rely on objective functions that quantify
the “goodness” of a candidate solution. For camera control,
this objective function is a performance metric that evaluates
dynamic, evolving camera configurations over time.

The rest of the paper is organized as follows. In Section
II we present a few performance metrics and camera control
methods. Section III details our performance metric, and
Section IV describes our control method. In Section V we
present simulated experimental results. We discuss some future
work and conclude the paper in Section VI.

II. PREVIOUS WORK

A. Performance Metrics

Several researchers have attempted to express the intricacies
of factors such as placement, resolution, field of view, focus,
etc. into metrics that could measure and predict camera
performance in computer vision algorithms.

Wu et al. [4] estimate the uncertainty in multi-camera stereo
using the 2D quantization error. Chen [5] proposes a metric
that takes into account resolution and occlusion for motion
capture. Olague and Mohr [6] analyze the propagation of
uncertainty in 3D reconstruction, and use the maximum value



of the covariance matrix as an optimization criterion. Denzler
et al. [7] derive a performance metric based on conditional
entropy to select the camera parameters that result in sen-
sor data containing the most information for the next state
estimation. Allen [8] introduces steady-state uncertainty as a
performance metric for optimizing the design of multi-sensor
systems. In previous work [9] we illustrate the integration
of several performance factors into this metric and envision
applying it to 3D reconstruction using PTZ cameras.

B. Camera Control Methods

Camera control methods fall mainly into two broad cat-
egories: adaptation of scheduling policies, algorithms and
heuristics from other domains, and optimization of a quality
metric. We lists a few examples from each category below.

Qureshi and Terzopoulos [10] propose a virtual testbed
for surveillance algorithms and use it to demonstrate two
adapted scheduling policies: first come, first serve (FCFS) and
earliest deadline first (EDF). Costello et al. [11] present and
evaluate the performance of several scheduling policies in a
master-slave camera configuration. Camera scheduling is cast
as a multi-class scheduling problem, with class assignments
done based mainly on the number of times a target has been
observed. The authors of [12], [13] cast on-line camera
saccade planning for acquisition of high resolution images
into a kinetic traveling salesperson problem. Bakhtari et al.
[14] use principles from vehicle dispatching for tracking and
state estimation of a single target with 4 PTZ cameras and
a static overview camera. The goal is to select the optimal
camera subset for data fusion and maneuver them in response
to target motion while keeping other cameras available for
future demands. Lim et al. [15] introduce the concept of
task visibility intervals (TVIs) and propose solving the camera
scheduling problem using dynamic programming and greedy
heuristics.

Yous et al. [16] propose a camera assignment scheme based
on the visibility analysis of a coarse 3D shape produced
in a preprocessing step to control multiple Pan/Tilt cameras
for 3D video of a moving object. The optimization is then
extended into the temporal domain to ensure smooth camera
movements. Krahnstoever et al. [17] present an approach
to schedule 4 PTZ cameras for a biometric task. Multiple
candidate schedules are constructed as sequences of targets
to be covered by each camera, then evaluated using a proba-
bilistic performance objective function to optimize the success
probability of the biometric task. Broaddus et al. [18] present
ACTvision, a system consisting of a network of PTZ cameras
and GPS sensors covering a single connected area that aims
to maintain visibility of designated targets. They use a joint
probabilistic data association algorithm to track the targets.
Cameras are tasked to follow specific targets based on a
cost calculation that optimizes the task-camera assignment and
performs hand-offs from camera to camera.

In [19], Denzler et al. present a performance metric for
selecting the optimal focal length in 3D object tracking. The
determinant of the a posteriori state covariance matrix is

used to measure the uncertainty derived from the expected
conditional entropy given a particular action. Visibility is taken
into account by considering whether observations can be made
and using the resulting probabilities as weights. Optimizing
this metric over the space of possible camera actions yields
the best actions to be taken by each camera. Deutsch et al. [20],
[21] improve the process by using sequential Kalman filters
to deal with a variable number of cameras and occlusions,
predicting several steps into the future and speeding up the
computation. Sommerlande and Reid add a Poisson process
to model the potential of acquiring new targets by exploring
the scene [22], examine the resulting camera behaviors when
zooming [23], and evaluate the effect on the performance of
random and first-come, first-serve (FCFS) scheduling policies
[24].

III. PERFORMANCE METRIC

We define the performance of a camera configuration as
its ability to resolve 3D features in the working volume,
and measure it using the uncertainty in the state estimation
process. We use state-space models [25] to describe target
dynamics and measurement systems. Formally, at time step t,
the system state is described by a state vector x̄t ∈ Rn which
may include elements for position, orientation, velocity, etc.
Given a point in the state space, a mathematical motion model
can be used to predict how the target will move over a given
time interval. Similarly, a measurement model can be used to
predict what will be measured by each sensor. We measure
the uncertainty in the state x̄t using the a posteriori error
covariance P+

t , which we compute by applying the Kalman
Filter [26] equations to elements of the state-space models.
The Kalman filter consists of a predict step that projects the
a priori state x̄−

t and error covariance P−
t ahead in time, and

a correct step that computes the Kalman gain and updates the
state and error covariance estimates to x̄+

t and P+
t using the

available measurements z̄t.
In [9], we introduced the concept of surrogate models

to allow evaluation of the metric in state-space only where
needed: at a set of 3D points associated with each ROI.
The metric values can be aggregated over the points in the
surrogate model of each ROI and over the entire environment.
Due to the dynamic nature of the events being captured and the
characteristics of the active cameras used to capture images,
spatial aggregation of metric values for the current camera
configuration is not sufficient. Future camera configurations
need to be evaluated as well, which requires temporal aggre-
gation. Our performance metric evaluates a plan: a temporal
sequence of camera configurations up to a planning horizon.
The difficulty is that at each time instant a camera’s mea-
surement can be successful or unsuccessful. Denzler et al. [7]
introduced a way to deal with visibility at each step. Deutsch
et al. [20] extended this approach to multiple steps into the
future using a visibility tree, and then sped up the evaluation
by linearizing the tree and extended the approach to multiple
cameras using a sequential Kalman filter in [27]. We employ
a similar approach, but use a norm of the error covariance P+

t



instead of entropy as the performance metric, and aggregate
uncertainties over the entire horizon instead of simply taking
the last uncertainty value. This avoids penalizing plans with no
captures at the end of the planning horizon, where the absence
of measurements leads to high uncertainties.

The metric computation works in tandem with a separate
Kalman filter that is used to estimate the ROI trajectories. At
each time instant, this filter incorporates the latest measure-
ments from cameras and other sensors, and saves its current
estimate

(
x−
0 , P

−
0

)
. This estimate is the starting point for all

metric evaluations. We compute the performance metric for
each candidate plan by repeatedly stepping forward in time
until the planning horizon, while applying the Kalman filter
equations and changing relevant state-space model parameters
at each time step. We use the motion models to predict
ROI trajectories, and update the measurement models with
the camera parameters corresponding to the configurations
planned for each time step. Since future measurements are
not yet available, we use the predicted ROI trajectories to
generate predicted measurements instead. The Kalman correct
step is evaluated sequentially [21] for all sensors involved. We
perform aggregation over space and time using weighted sums,
with weights quantifying the relative importance of elements
at various levels, such as points in a ROI’s surrogate model,
ROIs, or time instants. Equation 1 illustrates the general
formula for the metric computation using weighted sums.

M =

nROIs∑
r=1

ur

Nr∑
p=1

vp

H∑
t=1

wt

√
max

(
diagpos

(
P+
t

))
(1)

nROIs is the number of ROIs, Nr is the number of points
in the surrogate model of ROI r, H is the planning horizon.
ur, vp and wt are relative weights for each ROI r, model
point p and time step t, respectively. We use the square root
of the maximum value on the diagonal of the portion of the
error covariance matrix P+

t corresponding to the position part
of the state to obtain a single number. Other functions such
as the determinant or the trace can be used instead of the
diagonal maximum. One benefit of using the square root of
the covariance is that the measurement unit for the metric is the
same as the measurement unit of the state space. For example,
if the state consists of 3D point positions measured in meters,
the metric value will also be in meters. This makes it more
intuitive for a system user to specify application requirements
such as the desired maximum error in a particular area where
important events take place.

Using state-space models as our framework for computing
the performance metric has several advantages. One is the
possibility to seamlessly integrate measurements from hetero-
geneous sensors such as cameras and GPS to estimate the
state. Another is that it allows easy incorporation of perfor-
mance factors and algorithmic requirements. In [9], we have
detailed the incorporation of several factors into a stochastic
performance metric: object distance, incidence angle, image
resolution, field of view, occlusion, focus distance, depth

of field and camera selection. Small changes to the metric
allow it to adapt to various computer vision algorithms. For
example, for target tracking and motion capture, a system
designer only needs to appropriately choose the components
of the state vector. Surveillance tasks such as following a
target or capturing face images for biometric purposes can be
implemented by tuning the relative importance of the target’s
surrogate model, and of the points corresponding to the face,
respectively. Surrogate models can be adapted for the require-
ments of various 3D reconstruction algorithms: models used in
stereo reconstruction could include local surface orientation,
and models used in volumetric reconstruction could consist of
medial axis-like representations, instead of 3D points. Finally,
our metric naturally incorporates trade-offs such as the one
between uninterrupted, long captures at larger fields of view
and lower resolution vs. short captures at narrow fields of view
and higher resolution, punctuated by transitions.

IV. CONTROL METHOD

We define optimization in active camera control as the
exploration of the space of possible solutions in search for
the best solution as evaluated by the performance metric. We
found that exploring all possible camera settings combinations
is intractable. Instead, we explore the space of camera-ROI
assignments, and compute the best settings corresponding to
each assignment using geometric reasoning: the best results
are usually obtained when the ROI trajectories are enclosed in
the camera fields of view as tightly as possible.

The optimization process first predicts the ROI trajectories,
then uses them to construct and evaluate a number of candidate
plans for each camera. A plan consists of a number of planning
steps, which in turn consist of a transition (during which the
camera changes its settings) and a dwell (during which the
camera captures, with constant settings). Candidate plans differ
in the number and duration of planning steps up to the planing
horizon.

Unfortunately, evaluating all possible combinations of can-
didate plans for all cameras is still intractable. We investigated
multiple ways of reducing the search space size, of which we
found the most effective to be decomposing the optimization
problem into subproblems and solving each subproblem inde-
pendently. Our implementation runs on-line, in real-time, and
consists of two components: centralized global assignment and
distributed local planning.

A. Global Assignment

The global assignment component accomplishes two tasks:
grouping ROIs into agencies and assigning cameras to each
agency. We create agencies by clustering together ROIs that
are close to each other and predicted to be heading in the
same direction. We use predicted ROI trajectories to cluster
the ROIs into a minimum number of non-overlapping clusters
of a given maximum diameter. ROI membership needs to
exhibit hysteresis to help keep the assignments stable: when
an agency’s membership changes, all cameras assigned to it
and other cameras nearby need to have their current plans



reevaluated. If these evaluations result in changes in plans
or assignments, cameras may need to transition, and end up
spending less time capturing, which usually results in worse
performance. To avoid this problem, we use a minimal change
heuristic, consisting of three steps:

1) if any agency has become too large, iteratively remove
ROIs from it until it becomes small enough;

2) assign all unassigned ROIs to the agencies closest to
them; form new agencies for isolated ROIs;

3) if any two agencies are close enough to each other,
merge them into a single agency.

We use a greedy heuristic to assign cameras to each agency,
based on their potential contribution to it. Only available cam-
eras are taken into account. A camera is considered available if
its state for the next planning cycle is the start of a transition or
an occlusion. Additionally, a camera’s dwell can be interrupted
if it has lasted longer than a specified minimum duration. The
heuristic iteratively tries assigning all available cameras to
all agencies, searching for the camera-agency assignment that
best improves the metric value for the agency. Improvement
is measured using the ratio between the metric value before
and after making the assignment. The resulting plans are
compared with plans obtained by prolonging the current plans
up to the planning horizon whenever possible, and the greedy
assignments are only applied if they perform better.

The plans corresponding to each camera-agency assignment
are generated heuristically by assuming the worst-case sce-
nario: the camera is repeatedly set to transition, then capture
for as long as possible, with a field of view as wide as
possible. While other scenarios, in which the camera captures
for shorter intervals, may result in better performance by using
tighter fields of view, the goal of this heuristic is only to
help assess the potential contribution a camera can have to the
capture of the ROIs in the agency it is being assigned to. The
heuristic also takes into account predicted static and dynamic
occlusions, and plans transitions during occlusions whenever
possible, in order to minimize the time when the camera is not
capturing. Static occlusions are precomputed off-line for each
camera. Dynamic occlusions are computed on-line, using the
predicted ROI trajectories.

B. Local Planning

Local planning at the level of each agency is concerned
with the locally-optimal capture of the ROIs in the agency.
All cameras assigned to each agency capture all member ROIs,
and no further camera-ROI assignment decisions are made at
this level. The planning decisions made at this level are on
when and for how long each camera should dwell (capture),
and when it should transition to a new configuration.

The current configuration of each camera, corresponding
to the first step in a plan, is arguably the most important:
configurations corresponding to subsequent steps are revised
during subsequent optimization cycles, when the planning
method can take advantage of the most recent predictions
of ROI trajectories. We call the resulting planning process
myopic: exhaustive exploration of all possible dwell durations

is only done during the first planning step, and heuristic
computations are used for subsequent steps up to the time
horizon. The heuristic is the same one employed for generating
plans during global assignment. Myopic planning can still
result in too many plans to evaluate for running in real-
time. We reduce the number of candidate plans by planning
transitions during occlusions and limiting how many planning
steps can fit before the planning horizon.

All possible combinations of candidate plans for all cameras
are explored exhaustively using backtracking. To achieve on-
line, real-time control, the set of candidate plans is sorted
so that the most promising plans are evaluated first. We use
prior experimental observations to derive criteria for judging
a plan’s potential. While not a guarantee that the best plan
would be chosen on time, we have found this heuristic to
closely approximate an exhaustive search.

V. EXPERIMENTAL RESULTS

We used data from a training exercise to test how a proto-
type implementation of our method can control 6 PTZ cameras
to observe 6 ROIs, each ROI enclosing a single exercise
participant. The exercise was performed by members of the
United States Marines Corp (USMC), and captured on-site at
the Sarnoff Corporation in Princeton, NJ. We used the game
engine-based simulator from [28] to run multiple simulations
using the same input data. The simulator provides means
of controlling a number of virtual cameras in a simulated
environment and retrieving images from them. We extended
the simulator’s functionality by providing means for an outside
application to control the virtual characters in the scene.

The exercise lasted 170 seconds, and our method performed
a complete optimization every second. The exercise scenario
was for a squad of 4 Marines to patrol, cross a danger zone
between 2 buildings, perform cordon searches on a civilian,
neutralize a sniper threat, and move out to secure an area.
Figure 1 shows a top-down view of the exercise site (rotated
90◦ counterclockwise).

Figure 1. Top-down view of the exercise site.



Marine tracks are shown in blue, civilian and sniper tracks
are shown in red. We placed the 6 virtual cameras as follows: 4
cameras along the building walls and 2 cameras on light poles
in the parking lot. We precomputed static occlusions for each
camera using the simulator’s ability to provide ground truth
for the virtual characters in the camera images (silhouettes,
bounding boxes, total and visible pixel counts) and stored the
results in visibility maps. Camera locations are shown as blue
circles, each accompanied by its visibility map. Brighter values
denote higher visibility. The aggregated visibility is also shown
as a grayscale image overlaid on a top-down satellite view of
the site and aligned to match the area where the exercise took
place. There are also 2 shipping containers which served as
props during the exercise and helped us test the impact of
static occlusions. They appear as dark spots of zero visibility
in the aggregated visibility image, and cast “shadows” in the
visibility maps.

During the exercise, target trajectories were captured as
GPS measurements over time. The approach from [18] was
used to capture images from 2 PTZ cameras and refine the
trajectory estimates. We filtered the trajectory data to reduce
noise, sampled it at every second and used the samples as input
for our prototype implementation. During experiment runs,
we used the 3D points on these input trajectories to generate
simulated 2D measurements in each virtual camera and 3D
(long., lat., alt.) simulated GPS measurements. We added noise
(precomputed for repeatability) to each measurement before
incorporating it into the performance metric computation. The
surrogate model for each exercise participant consisted of 2
cubic regions, 1 meter on the side, stacked on the vertical axis.
The coordinates of the center of each region were included in
the state, and a PV state model [25] was used in the Kalman
filter-based performance metric evaluation process.

We ran multiple simulations using the same input data and
tuning the parameters of our control method. The results we
obtained led to the observations summarized below:

1) Using active cameras always performed better than using
fixed cameras (simulated by zooming out the active
cameras and aiming them at the center of the scene).
The positive effect of higher resolution when controlling
the cameras was more than enough to compensate for
the interruptions in capture due to transitions.

2) Decreasing the frequency of GPS measurements made
the control method zoom out the cameras to compensate,
which resulted in worse performance.

3) Increasing the visibility threshold led to more occlu-
sions, resulting in plans with captures that were more
fragmented by transitions, but the increased image res-
olution compensated for some of the performance loss.

4) Increasing the length of the planning cycle to allow for
more comprehensive searches resulted in fewer disrup-
tions in camera membership for each agency, but also
in an increased number of times when wrong trajectory
predictions led to the ROIs not being captured.

5) Increasing the planning horizon length and the clustering
diameter led to the heuristic generating longer captures

at larger fields of view and lower resolution, which
resulted in worse performance.

One important result was that our planning heuristics can
produce satisfactory results and serve as a fall-back when the
search space is too large to be explored in real-time. We varied
the number of candidate plans explored by the local planning
component of our method between heuristic (using the plan
generated heuristically by the global assignment), selective
(only explore a small number of plans) and exhaustive (explore
all candidate plans when possible — 151 out of 170 planning
cycles). Figure 2 shows the results, including the metric values
when using static cameras, shown for comparison.
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Figure 2. Metric over time when varying the number of plans explored.
Top: Metric values over time for various local exploration
methods.
Bottom: Differences in metric values over time.

As expected, the metric values in the case of static cameras
are significantly higher, but part of the price paid for the
lower resolution is offset thanks to the fact that there are no
transitions. The 3 curves corresponding to varying the number
of candidate plans explored are very close to each other, to
the point of being indistinguishable at the scale in Figure 2
(top). Figure 2 (bottom) shows the differences between them
at a larger scale. The heuristic arrived at the same result as
the exhaustive search for 109 out of 151 cycles, or 72% of
the time, and the selective search did so for 143 cycles, or
94% of the time. For the remaining times when the results
were different, the average difference in the metric values was
0.01m for the heuristic and 0.0087m for the selective search.

In our experiments, we have also observed desirable com-
plex camera behaviors emerging automatically, without user
intervention, as a direct result of candidate plans being gener-
ated and evaluated using the performance metric. For example,
when the ROIs in a particular agency were predicted to be
occluded from a camera’s view by one of the shipping con-
tainers, the camera was automatically reassigned to a different
agency that contained ROIs predicted to be visible. Cameras
were zoomed out to cover a larger area when participants
moved faster, and zoomed back in when the ROIs slowed
down. Multiple cameras also automatically had their transi-
tions coordinated: inside the same agency, camera transitions
were planned such that at any given time coverage was ensured



by at least 2 cameras simultaneously. When an agency only
had 2 cameras assigned to it, the global assignment tried to
assign a 3rd camera to the agency whenever transitions were
needed to ensure continuing coverage.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new on-line camera control approach that
treats camera control as an optimization problem. For the ob-
jective function, we developed a versatile performance metric
that can incorporate both performance factors and application
requirements. To reduce the size of the search space and arrive
at an implementation that runs in real-time, our control method
breaks down the problem into subproblems. We first employ
proximity and minimal change heuristics to decompose the
problem into subproblems and a greedy heuristic to assign
cameras to subproblems based on evaluating candidate plans.
We then solve each subproblem independently, generating and
evaluating candidate plans as time allows.

The simulator we used [28] closely approximates a real
camera’s control interface and has allowed us to repeatedly test
our method with the same input data and tune its parameters.
We are currently working on applying our control method to
real cameras and investigating the possible use of smart PTZ
cameras for distributed processing. We plan to replace the
simulated camera measurements obtained from the external
tracker with actual measurements from image tracking. We
are also studying the impact of imprecise geometric calibration
and camera settings accuracy on our control method.
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