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Abstract. Physical training ranges have been shown to be critical in
helping trainees integrate previously-perfected skills. There is a growing
need for streamlining the feedback participants receive after training.
This need is being met by two related research efforts: approaches for
automated camera selection and control, and computer vision-based ap-
proaches for automated extraction of relevant training feedback
information.

We introduce a framework for augmenting the capabilities present in
training ranges that aims to help in both domains. Its main component
is ASCENT (Automated Selection and Control for ENhanced Training),
an automated camera selection and control approach for operators that
also helps provide better training feedback to trainees.

We have tested our camera control approach in simulated and labo-
ratory settings, and are pursuing opportunities to deploy it at training
ranges. In this paper we outline the elements of our framework and dis-
cuss its application for better training support.

1 Introduction

In recent years, physical training ranges have proven instrumental in providing
trainees with a way to integrate skills perfected separately in an environment
that is similar to the operational environment. Training feedback is provided
in the form of After Action Reviews (AARs), which currently require a large
number of highly-experienced instructors to accompany different segments of
the unit throughout their training run.

Some training ranges have been equipped with large networks of hundreds of
cameras, which can capture training exercises as they take place. Many cameras
have pan-tilt-zoom (PTZ) capabilities, and are manually controlled by operators
during the exercises. Other cameras are static, but operators still need to manu-
ally select which cameras to record, because only a limited number of recording
devices are usually available. To alleviate these problems, automated approaches
are being pursued to augment the operators’ capabilities in controlling PTZ cam-
eras and selecting which video streams to record.

The availability of cameras and operators has enabled instructors to provide
a package containing multiple hours-long video segments manually selected by
the operators. However, in order to pinpoint problem areas, the videos in the
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package need to be reviewed in their entirety. Computer vision algorithms can be
employed to analyze the captured images and automatically extract information
relevant for training feedback.

The framework introduced in this paper supports these efforts through AS-
CENT, an automated camera selection and control approach designed to support
camera operators, while also helping provide better feedback to trainees by tak-
ing into account the requirements of the computer vision algorithms that process
the captured images.

ASCENT consists of a stochastic performance metric and a constrained op-
timization method. The performance metric quantifies the uncertainty in the
state of the targets. It can account for occlusions, accommodate requirements
specific to the algorithms used to process the images, and incorporate other fac-
tors that can affect their results. The optimization method explores the space
of camera configurations over time under constraints associated with the cam-
eras, the predicted target trajectories, and the image processing algorithms. To
achieve real-time performance, it combines a global assignment of cameras to
targets that divides the problem into subproblems with a local optimization in-
side each subproblem. The global assignment uses a proximity-based heuristic
to group targets and a greedy heuristic based on performance metric evaluations
to assign cameras to each target group. It can also perform camera selection
when needed. The local optimization is performed at the level of each group. It
predicts the trajectories of all targets in the group and plans dynamic camera
configurations over time to ensure optimal coverage up to a time horizon. While
only some of the available cameras may be selected for recording, all captured
images are available for algorithms that run in real-time, some of which can even
provide feedback to ASCENT.

We have applied ASCENT to simulated and laboratory settings, and are pur-
suing opportunities to deploy it at training ranges that have already been out-
fitted with large camera networks. Our framework is well-positioned to help
augment training capabilities. First, it augments camera operators’ capabilities,
allowing them to more effectively manage large camera networks. ASCENT auto-
mates camera selection and control decisions, allowing operators to either direct
it to cover important events, or directly manage a smaller number of cameras.
Additionally, ASCENT can be customized to produce images best-suited for
the computer vision approaches that analyze and help extract relevant training
feedback data. This has the potential to shorten AAR video packages down to
automatically-selected segments that can be reviewed much faster.

The rest of the paper is organized as follows. In Section 2 we present some rele-
vant research: a few performance metrics and camera control methods, as well as
a few computer vision approaches that can be used to augment training. Section
3 presents our approach to camera selection and control: our performance met-
ric and our camera selection and control method, as well as some experimental
results. Section 4 briefly describes our framework and its potential contributions
to better training support. We discuss some future work and conclude the paper
in Section 5.
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2 Previous Work

2.1 Performance Metrics

Many researchers have attempted to express the intricacies of factors such as
placement, resolution, field of view, focus, etc. into metrics that could measure
and predict camera performance. Below we list the performance metrics research
closest to our work. The interested reader can find a comprehensive list of camera
performance metrics in Chapter 2 of [10].

Allen [1] introduces steady-state uncertainty as a performance metric for opti-
mizing the design of multi-sensor systems. In previous work [9] we illustrate the
integration of several performance factors into this metric and envision applying
it to 3D reconstruction using active cameras.

Denzler et al. [3] derive a performance metric based on conditional entropy
to select the camera parameters that result in sensor data containing the most
information for the next state estimation. In [4], Denzler et al. present a per-
formance metric for selecting the optimal focal length in 3D object tracking.
The determinant of the a posteriori state covariance matrix is used to measure
the uncertainty derived from the expected conditional entropy given a particu-
lar action. Visibility is taken into account by considering whether observations
can be made and using the resulting probabilities as weights. The authors of
Deutsch et al. [6,5] improve the process by using sequential Kalman filters to
deal with a variable number of cameras and occlusions, predicting several steps
into the future and speeding up the computation. The ASCENT performance
metric presented in Section 3.1 is similar to the metric by Denzler et al., but it
uses a norm of the error covariance instead of entropy as the metric value, and
employs a different aggregation method.

2.2 Camera Selection and Control Methods

Camera selection and control methods are typically encountered in surveillance
applications. Many are centralized approaches, based on the adaptation of
scheduling policies, algorithms and heuristics from other domains to camera con-
trol. Others are distributed: decisions are arrived at through contributions from
collaborating or competing autonomous agents. We list a few example methods
below. The interested reader is referred to Chapter 2 of [10] for a comprehensive
list.

Qureshi and Terzopoulos [19] propose a virtual testbed for surveillance algo-
rithms and use it to demonstrate two adapted scheduling policies: first come,
first serve (FCFS) and earliest deadline first (EDF). In [18], they apply the same
paradigm to a distributed surveillance system, in which cameras can organize
into groups to accomplish tasks using local processing and inter-camera commu-
nication with neighbors in wireless range.

Naish et al. [17] propose applying principles from dispatching service vehicles
to the problem of optimal sensing. They present a dynamic dispatching method-
ology that selects and maneuvers subsets of available sensors for optimal data
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acquisition in real-time. The goal is to select the optimal sensor subset for data
fusion by maneuvering some sensors in response to target motion while keeping
other sensors available for future demands.

Lim et al. [13] propose solving the camera scheduling problem using dynamic
programming and greedy heuristics. The goal of their approach is to capture
images that satisfy task-specific requirements such as: visibility, movement di-
rection, camera capabilities, and task-specific minimum resolution and duration.

Krahnstoever et al. [11] present a system for controlling 4 PTZ cameras to
accomplish a biometric task. Scheduling is accomplished by computing cam-
era plans: lists of targets to cover at each time step. Plans are evaluated us-
ing a probabilistic performance objective function to optimize the task success
probability.

Broaddus et al. [2] present ACTvision, a system consisting of a network of
PTZ cameras and GPS sensors covering a single connected area that aims to
maintain visibility of designated targets. Cameras are tasked to follow specific
targets based on a cost calculation that optimizes the task-camera assignment
and performs hand-offs from camera to camera. The authors develop optimiza-
tion strategies to either use the minimum number of cameras needed, or encour-
age multiple views of a target for 3D reconstruction.

Sommerlande and Reid [21] present a probabilistic approach to control mul-
tiple active cameras observing a scene. Similar to the approach in ASCENT,
they cast control as an optimization problem, but their goal is to maximize the
expected mutual information gain as a measure for the utility of each parameter
setting and each goal. The approach allows balancing conflicting goals such as
target detection and obtaining high resolution images of each target.

Matsuyama and Ukita [15] describe a distributed system for real-time multi-
target tracking. The system is organized in three layers (inter-agency, agency and
agent), with agents that dynamically interchange information with each other.

2.3 Computer Vision Approaches to Augment Training

There are many computer vision approaches that can process images, ranging
from posture recognition from single images [22] to full 3D reconstruction from
multiple images: multi-view dynamic scene modeling [7], space carving [12], 3D
video [14] and image-based visual hulls [16]. However, most of these approaches
have yet to be applied to large environments such as training ranges. Moreover,
there are few approaches that can analyze the results of computer vision algo-
rithms and extract relevant information that can help augment training. Sadagic
et. al. [20] describe a concerted research effort in this direction. ASCENT pro-
vides ways to take into account the requirements of these approaches in order
to capture images that are likely to produce the best possible result.

3 Automated Camera Selection and Control

We approach camera selection and control as an optimization problem over the
space of possible camera configurations (combinations of camera settings) and
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over time, under constraints derived from knowledge about the cameras, the
predicted target trajectories and the computer vision algorithms the captured
images are intended for. The objective function is a performance metric that
evaluates dynamic, evolving camera configurations over time. In this section, we
briefly describe the two components of ASCENT: its camera performance metric
and its camera selection and control method. The interested reader is referred
to [8] and Chapters 5 and 6 of [10] for a detailed presentation.

3.1 Camera Performance Metric

We define the performance of a camera configuration as its ability to resolve 3D
features in the working volume, and measure it using the uncertainty in the state
estimation process. We use state-space models [8] to describe target dynamics
and measurement systems. Formally, at time step t, the system state is described
by a state vector x̄t ∈ R

n which may include elements for position, orientation,
velocity, etc. Given a point in the state space, a mathematical motion model can
be used to predict how the target will move over a given time interval. Similarly,
a measurement model can be used to predict what will be measured by each
sensor. We measure the uncertainty in the state x̄t using the a posteriori error
covariance P+

t , which we compute by applying the Kalman Filter equations to
elements of the state-space models.

Our performance metric evaluates plans : temporal sequences of camera con-
figurations up to a planning horizon. We compute the performance metric for
each candidate plan by repeatedly stepping forward in time up to the plan-
ning horizon, while applying the Kalman Filter equations and changing relevant
state-space model parameters at each time step. We use the motion models to
predict target trajectories and generate predicted measurements, and we update
the measurement models with the camera parameters corresponding to the con-
figurations planned for each time step. We aggregate over space and time using
weighted sums, with weights quantifying the relative importance of elements at
various levels, such as points in a target surrogate model, targets, or time in-
stants. Equation 1 illustrates the general formula for the metric computation
using weighted sums.

M =

Nt∑

r=1

ur

(
H∑

t=1

vt

(
Nr∑

p=1

wp

(√
Max

(
Diagpos

(
P+
t,p

)))
))

(1)

Nt is the number of targets, Nr is the number of points in the surrogate model
of target r, H is the planning horizon. ur, vt and wp are relative weights for each
target r, time step t, and model point p, respectively. P+

t,p is the a posteriori
covariance for model point p at time t. To convert the error covariance into a
single number, we use the square root of the maximum value on the diagonal
of the portion of the error covariance matrix P+

t,p corresponding to the position
part of the state.
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3.2 Camera Selection and Control Method

We define optimization in active camera selection and control as the exploration
of the space of possible solutions in search for the best solution as evaluated
by the performance metric. Our optimization process first predicts the target
trajectories, then uses them to construct and evaluate a number of candidate
plans for each camera. A plan consists of a number of planning steps. A step
consists of a transition (during which cameras are not being recorded, and PTZ
cameras change their settings) and a dwell (during which cameras capture, with
constant settings, and are being recorded). Candidate plans differ in the number
and duration of planning steps up to the planning horizon.

To ensure real-time performance, we decompose the optimization problem into
subproblems and solve each subproblem independently. Our method consists of
two components: centralized global assignment and distributed local planning.

The global assignment component accomplishes two tasks: grouping targets
into agencies and assigning cameras to each agency. We create agencies by clus-
tering together targets that are close to each other and predicted to be heading
in the same direction. We use predicted target trajectories to cluster the tar-
gets into a minimum number of non-overlapping agencies of a given maximum
diameter. We use a minimal change clustering heuristic that tries to preserve
agency membership over time. We then use a greedy heuristic to assign cameras
to each agency, based on their potential contribution to it. The heuristic itera-
tively tries assigning all available cameras to nearby agencies, searching for the
camera-agency assignment that best improves the performance metric value for
the agency. Improvement is measured using the ratio between the metric val-
ues before and after making the assignment. The resulting plans are compared
with plans obtained by prolonging the current plans up to the planning horizon
whenever possible, and the greedy assignments are only applied if they perform
better. We use the same process both to control PTZ cameras in real-time and
to select which cameras to record when there are fewer recording devices than
cameras. In the case of selection, we simply stop after the maximum allowable
number of cameras have been assigned. The plans corresponding to each camera-
agency assignment are generated assuming the worst-case scenario: the camera
is repeatedly set to transition, then capture for as long as possible, with PTZ
cameras zoomed out to a field of view as wide as possible. Predicted static and
dynamic occlusions are taken into account, and transitions are planned dur-
ing occlusions whenever possible, in order to minimize the time intervals when
cameras are not capturing.

Local planning at the level of each agency is concerned with the locally-
optimal capture of the targets in the agency. All cameras assigned to each agency
capture all member targets, and no further camera-target assignment decisions
are made at this level. The planning decisions made at this level are on when and
for how long each camera should dwell (capture), and when each PTZ camera
should transition to a new configuration. All possible combinations of candidate
plans for all cameras are explored exhaustively using backtracking. To achieve
on-line, real-time control, the set of candidate plans is heuristically generated
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and sorted so that the most promising plans are evaluated first. We use prior
experimental observations to derive criteria for judging a plan’s potential. While
not a guarantee that the best plan would be chosen on time, we have found this
heuristic to closely approximate an exhaustive search.

3.3 Experimental Results

We have applied ASCENT to automated on-line control of cameras in simulated
and laboratory settings, capturing training exercises that involved patrolling,
cordoning and searching a civilian, and crossing a danger zone. Experiments
showed the emergence of desired camera behaviors, including: fast coverage of
new targets, continuous target coverage via staggered settings adjustments, con-
tinuous coverage of divergent target groups, automatic hand-offs, and continuous
preemptive coverage of fast-moving targets. The performance metric and control
method were tuned to produce images best suited for a volumetric reconstruc-
tion method such as [7]. The interested reader is referred to Chapter 7 of [10]
and [8] for more details.

The simulated setting involved capturing 6 targets (4 Marines and 2 civilians)
moving around 2 occluders, using 6 cameras. Figure 1 (Left) shows an overview
of the setup as modeled in the simulator. Camera locations are shown in blue,
occluders are shown in red. The laboratory setting involved capturing 7 targets
(4 Marines and 3 civilians) moving around the entrance to an alley between 2
buildings, using 8 cameras hanging from the ceiling. Figure 1 (Right) shows an
image captured by an overview camera during the exercise. Building walls were
simulated using cloth attached to waist-high posts.

Fig. 1. (Left) Simulated setting. (Right) Laboratory setting.

4 Training Support Framework

We envision ASCENT as part of a training support framework that defines how
automatic control of cameras can augment the capabilities at training ranges.

First, by automating camera selection and control decisions, ASCENT aug-
ments the operators’ capabilities. A well-configured automated system can make
decisions that an operator may find counter-intuitive, but are justified when the
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captured images are destined for automated analysis, as opposed to manual re-
view. We envision the following scenarios for how ASCENT can be applied to
augment human decisions in camera selection and control:

1. Automated: ASCENT controls all active cameras and selects a number of
cameras for recording.

2. Directed: ASCENT allows operators to intervene on-the-fly, and designate
important events, areas and persons for capture with higher priority. Camera
selection and control are still done automatically, but operator interventions
are incorporated as constraints in the optimization method.

3. Assisted: ASCENT allows operators to dynamically choose a set of cameras
that they want to record, control directly or assign to particular targets. It
then assists the operators by automatically selecting which of the remaining
cameras to record, and controlling the remaining active cameras. It also
suggests the best camera-target assignments and camera settings for the
cameras chosen by the operators, but lets the operators decide whether to
apply them or not.

Second, ASCENT augments the training capabilities at training ranges by help-
ing provide images best suited for automated computer vision analysis, which
has the potential to shorten AARs video packages down to segments relevant
for improving the trainees’ performance. To that end, both components of AS-
CENT are highly customizable. The performance metric can be adapted to in-
clude performance factors relevant to the application, such as varying weights for
different members of a team over time; or factors relevant to the computer vision
algorithm used, such as preferred incidence angles for 3D reconstruction or 2D
posture recognition. The selection and control method can incorporate domain
knowledge such as the training range topology and the locations of important
training events in relation to camera placement, as well as their timing during
a training exercise. The interested reader can find a discussion of many of the
customizations possible in ASCENT in [8] and Chapters 5 and 6 of [10].

5 Conclusions and Future Work

We introduced a framework for augmenting capabilities at training ranges. Its
main component is ASCENT, an optimization-based on-line camera selection
and control approach consisting of a performance metric and a selection and
control method. For the optimization objective function, we employ a versatile
performance metric that can incorporate both camera performance factors and
application requirements. To reduce the size of the search space and arrive at an
implementation that runs in real-time, our camera control method breaks down
the optimization problem into subproblems. We first use a proximity-based min-
imal change heuristic to decompose the problem into subproblems and a greedy
heuristic to select cameras and assign them to subproblems. We then solve each
subproblem independently, generating and evaluating candidate plans as time al-
lows. We applied ASCENT to simulated and laboratory settings, demonstrating
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useful camera behaviors. We briefly discussed how ASCENT can help augment
the capabilities at training ranges: it can automate selection and control deci-
sions, and can be easily adapted to include requirements for automated analysis
using computer vision approaches.

We are looking forward to applying ASCENT in training ranges that have
the camera infrastructure already in place, and gather feedback from camera
operators, instructors and trainees. We plan to address the challenges of scaling
an approach that has only been tested in simulated and laboratory settings with
a small number of cameras to training ranges with hundreds of cameras. We are
also looking forward to incorporating the requirements of emerging approaches
that go beyond the results of today’s computer vision algorithms and extract
relevant information such as the video segments best suited for AARs. While in
its current version ASCENT can capture images best suited for computer vision,
human reviewers may have different requirements for AAR. We plan to leverage
the experience of human operators in selecting footage appropriate for AARs in
further customizing ASCENT to incorporate these requirements. Similarly, the
experience of instructors currently following monitoring exercises on the ground
will be invaluable.
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