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Abstract—This paper describes the development of vision-
aided navigation (i.e., pose estimation) for a wearable augmented
reality system operating in natural outdoor environments. This
system combines a novel pose estimation capability, a helmet-
mounted see-through display, and a wearable processing unit to
accurately overlay geo-registered graphics on the user’s view of
reality. Accurate pose estimation is achieved through integration
of inertial, magnetic, GPS, terrain elevation data, and computer-
vision inputs. Specifically, a helmet-mounted forward-looking
camera and custom computer vision algorithms are used to
provide measurements of absolute orientation (i.e., orientation
of the helmet with respect to the Earth). These orientation mea-
surements, which leverage mountainous terrain horizon geometry
and/or known landmarks, enable the system to achieve significant
improvements in accuracy compared to GPS/INS solutions of
similar size, weight, and power, and to operate robustly in the
presence of magnetic disturbances. Recent field testing activities,
across a variety of environments where these vision-based signals
of opportunity are available, indicate that high accuracy (less
than 10 mrad) in graphics geo-registration can be achieved. This
paper presents the pose estimation process, the methods behind
the generation of vision-based measurements, and representative
experimental results.

Index Terms—inertial navigation, augmented reality, computer
vision.

I. INTRODUCTION

In his 2009 review [1], Welch stated that the “Holy Grail”
for researchers working on tracking for augmented reality
(AR) “still seems to be robust and accurate tracking outdoors,
for augmented reality everywhere. Researchers around the
world are working on 6 DOF position and orientation-aware
computer interfaces that will support access to information
embedded in or attached to the physical world all around us.”
At around the same time, the effort described in this paper
started, with the specific objective of developing a wearable
AR system to provide intuitive visualization of geo-registered
graphics on a see-through display. The core challenge has
indeed been to achieve robust and accurate estimation of pose
(i.e., position and orientation) outdoors.

In this particular application, the pose estimation problem
is challenging on numerous fronts. The system must (a) track
the pose of the user’s head quickly and precisely (latency is
very obvious when looking through a see-through display), (b)
do so using relatively low-cost, low-SWAP (size, weight, and
power) hardware in a ruggedized package, and (c) operate
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Fig. 1. Helmet-kit variants and corresponding augmented-reality (AR) view.
Each helmet kit consists of a forward-looking camera (1), a sensor package
(2), and a display (3). (See [2] for more details.) Image (a) shows the see-
through display and (b) shows the night-vision display. Samples of their
respective views are shown in images (c) and (d).

in arbitrary outdoor environments without requiring specific
preparation or instrumentation. The overall system consists of
a helmet kit (see Fig. 1), a processing unit, a graphical user
interface (GUI) implementation, and a computer vision-aided
navigation system. The system hardware and the GUI have
been described in [2]. This paper provides additional details
on the navigation system implementation.

The integration of inertial measurements with vision in-
formation has been the subject of a substantial amount of
research and many approaches have been pursued [3]. The
fundamental method that was chosen in this work consists of
implementing a baseline GPS/INS and aiding it with vision-
based information when it is available. The baseline GPS/INS
is designed to provide a nominal level of performance when
vision-aiding measurements are not available, and integrate
them when available for improved performance. (No assump-
tions can be made about the presence or periodicity of vision-
aiding measurements.) The level of performance without vi-
sion aiding is similar to that of off-the-shelf GPS/INS systems
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of similar SWAP, with additional measures to address latency
and enhance robustness to magnetic and dynamic disturbances.
When vision-based information is available, however, the
current system is able to achieve a significant improvement
in accuracy.

Though using vision-based information “all the time” was
initially explored (e.g., using video frame-to-frame relative
rotation/translation information [4], or using more sophisti-
cated vision SLAM approaches [5], [6]), this path was not
pursued further due to concerns about both processing power
requirements and overall robustness. The vision algorithms
currently in the system have instead been implemented as a
module that may or may not provide measurements, depending
on the circumstances. These are measurements of absolute
orientation (i.e., orientation with respect to the Earth) that
are generated by one or both of two vision-based methods:
landmark matching (LM) and horizon matching (HM). Land-
mark matching requires the user to align a cross-hair (rendered
on the display) with a distant feature of known coordinates,
while horizon matching functions automatically without user
involvement. Recent developments include the use of images
of the Sun taken by the forward-looking camera. Correspond-
ing Sun-matching (SM) absolute orientation measurements are
also generated without user involvement.

The next section of this paper describes the overall method
by discussing the pose estimation process and the methods be-
hind the generation of vision-based measurements (including
preliminary work on Sun matching). The remaining sections
discuss experimental results of the integrated system and
proposed future efforts.

II. METHOD

The main objective of AR is to render graphics on a display
such that the graphical objects appear to be part of the real
environment as the user looks through the display. This can be
achieved if the position of any point in a reference coordinate
system fixed to the environment can be also specified in the
coordinate system of the display, which amounts to being able
to accurately estimate the display’s pose with respect to the
environment.

Fig. 2 shows the various coordinate systems involved. The
body coordinate system b is the reference for the helmet kit,
with origin at the point p. The camera coordinate system
c consists of a permutation of the body axes and shares
the same origin. The display coordinate system d and the
accelerometer coordinate system a are both rigidly attached to
the body. (Coordinate system a is the reference for the helmet-
kit’s sensor package.) Coordinate system n is the North-East-
Down (NED) reference for navigation. The Earth-Centered
Earth-Fixed (ECEF) coordinate system e is used to specify
points in the environment. Coordinate system i is the Earth-
Centered Inertial (ECI) coordinate system, which is a good
approximation of a true inertial reference in the context of
this work. The WGS-84 ellipsoid [7] is used as the world
model.
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Fig. 2. Coordinate systems for pose estimation and rendering of geo-registered
graphics.

Given the position rees of a point s in the environment
with respect the origin of e, expressed in e coordinates, its
position with respect to the origin of d, expressed in display
coordinates, can be computed as

rdds =
(
CenCnb Cbd

)T [
rees −

(
reep + CenCnb r

b
pd

)]
, (1)

where reep is the position of p with respect to the origin of e,
expressed in e coordinates, rbpd is the position of the origin
of d with respect to p, expressed in b coordinates, and the
C matrices represent orientation of one coordinate system (in
the subscript) with respect to another (in the superscript). In
practice, the position of points s and p with respect to the
origin of e are specified in terms of latitude, L, longitude, λ,
and altitude, h, in which case they are denoted as ps and pp,
respectively. The conversion from these geodetic coordinates
to their Cartesian equivalent needed in (1) is performed by the
mapping

xe = (RN (L) + h) cosL cosλ

ye = (RN (L) + h) cosL sinλ

ze =
[(

1− e2
)
RN (L) + h

]
sinL

, (2)

where RN (L) and e are WGS-84 ellipsoid parameters [7].
Since ps is a given input, Cbd and rbpd are obtained from a-
priori calibration, and Cen is a known function of pp [8, pg.
74], all that is needed to render graphics that are properly
registered to the point s is accurate knowledge of pp and Cnb ,
which is the ultimate goal of the pose estimation process.

The remainder of this section describes the pose estimation
process, the landmark matching and horizon matching meth-
ods, and the current development on the use of Sun-based
measurements.
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A. Pose Estimation Process

The pose estimation framework consists of an Extended
Kalman Filter (EKF) implementation of a total-state loosely-
coupled GPS/INS [8], designed to integrate additional aiding
measurement of absolute orientation, without assumptions
about their availability or periodicity. These “opportunistic”
aiding measurements are provided by vision-based methods
(LM and HM), which are described later. The main compo-
nents and salient features of the pose estimation process are
discussed below.

1) Calibration: Helmet-kit hardware calibration consists of
estimating Cbd, rbpd, Cba, and rbpa. Estimation of the relative
orientation, Cba, of the sensor package with respect to the
body is performed by following the procedure in [9], which
also yields an estimate of the camera’s intrinsic parameters.
Estimation of the relative orientation, Cbd, of the display with
respect to the body is performed by an iterative process based
on using the current Cbd estimate to render scene features (e.g.,
edges) from camera imagery onto the display, and adjusting it
until the rendered features align with the corresponding actual
scene features when viewed through the display. The position
vectors rbpd and rbpa can be obtained by straightforward
measurement, but in fact they are negligible in the context of
this application (the former because ‖rpd‖ � ‖rps‖, and the
latter because its magnitude is very small and was empirically
determined to have negligible effect). The magnetometer is
calibrated prior to each operation by following the procedure
described in [10].

2) EKF Models: The EKF is based on the model

ẋ = f(x,u,w, t)

ŷk = hk(xk,νk)
,

where t is time, f is the continuous-time process, hk is the
discrete-time measurement (with output ŷk), x is the state
vector, xk is its discrete-time equivalent, and u is the input
vector. The vector w is a continuous-time zero-mean white-
noise process with covariance Q (denoted as w ∼ (0,Q)),
and νk is a discrete-time zero-mean white-noise process with
covariance Rk (denoted as νk ∼ (0,Rk)).

The state is defined as x =
[
pp;v

n
ep; qnb; bg; ba; bα; bγ

]
(semicolons are used as row separators), where vnep is the
velocity of the point p with respect to the ECEF coordinate
system, expressed in NED coordinates, and qnb is the quater-
nion representation of Cnb . The vector bg is the rate gyro bias,
ba is the accelerometer bias, and bα and bγ are biases in the
model of local magnetic declination and inclination values,
respectively.

The rate gyro and accelerometer data are inputs to the
process model, so that u = [ua;ug], with

ua = f bip + ba +wa

ug = ωbib + bg +wg

,

where f bip = Cnb
T
[
anep − gn + (ωnen + 2ωnie)× vnep

]
is the

specific force at p, ωbib is the angular rate of the body
coordinate system with respect to the ECI coordinate system,

wa ∼ (0,Qa), and wg ∼ (0,Qg). The cross product in
the f bip expression is a Coriolis and centripetal acceleration
term due to motion over the Earth’s surface [11], and can be
neglected when the velocity is small (which is the case for
pedestrian navigation).

Using the state definition and input model described above,
the process model is specified by the following equations:

ṗp = fp (x) +wp

v̇nep = Cnb (ua − ba −wa) +

+gn − (ωnen + 2ωnie)× vnep +wv

q̇nb =
1

2
Ω (qnb)

(
ug − bg −wg − ωbin

)
+wq

ḃg = wbg

ḃa = wba

ḃα = wα

ḃγ = wγ

where fp is a known function of vnep, h, L, and WGS-
84 parameters [8, pg. 61], gn is the acceleration due to
gravity, Ω is a 4×3 matrix that transforms an angular rate
vector into the corresponding quaternion derivative [11, pg.
44], and ωbin = Cnb

T (ωnie + ωnen). The process noise vec-
tor is w =

[
wp;wv;wq;wg;wbg ;wa;wba ;wα;wγ

]
, and

Q = blkdiag
(
Qp,Qv,Qq,Qg,Qbg ,Qa,Qba , σ

2
α, σ

2
γ

)
is its

covariance matrix.
The measurement vector is defined as

ŷk =



ŷLM

ŷHM

ŷa

ŷm

ŷGv

ŷGp

ŷD


=



qnb + νLM

qnb + νHM

Cnb
T
(
anep − gn

)
+ ba + νa

Cnb
Tmn + νm

vnep + νGv

pp + νGp

h+ νD


, (3)

where landmark matching, ŷLM, and horizon matching, ŷHM,
are the vision-aiding measurements, ŷa is the accelerometer
measurement, ŷm is the magnetometer measurement, ŷGv

is the velocity measurement, ŷGp is the GPS horizontal
position (i.e., latitude and longitude) measurement, and ŷD
is the measurement of altitude based on Digital Terrain and
Elevation Data (DTED). The measurement noise vector is
νk = [νLM;νHM;νa;νm;νGv;νGp; νD], and its covariance
matrix is Rk = blkdiag

(
RLM,RHM,Ra,Rm,RGv,RGp, σ

2
D

)
.

Because of the block-diagonal structure of Rk, the EKF mea-
surement update step is executed by processing measurements
from each sensor as separate sequential updates (in the same
order as they are listed in (3)).

The gravity vector is approximated as being perpendicular
to the ellipsoid and therefore modeled as gn = [0; 0; g0(L)],
where the down component g0(L) is obtained from the
Somigliana model [7]. Note that since the acceleration anep
is not directly measured nor modeled (accelerometers can
only measure specific force), it appears in (3) as an unknown
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quantity that, when nonzero, has the effect of degrading the
value of accelerometer measurements in aiding the estimate of
orientation.

The reference magnetic field vector mn in (3) is the Earth’s
magnetic field vector, expressed in n coordinates, and is
modeled as

mn =

 cos(α̂− bα) cos(γ̂ − bγ)

sin(α̂− bα) cos(γ̂ − bγ)

sin(γ̂ − bγ)

Bm, (4)

where Bm is the Earth’s magnetic field strength, and α̂ and
γ̂ are the values of magnetic declination and inclination, re-
spectively, obtained from the EMM2010 Earth magnetic model
[12]. Because they are otherwise not observable, updating of
the corresponding biases, bα and bγ , is only allowed when a
vision-aiding measurement is available.

3) Initialization and Alignment: The initial state x(0) is
estimated by using sensor readings during the first few sec-
onds of operation before the EKF process starts. The initial
condition of all biases is set to zero.

4) Parameter Tuning: Parameter tuning consists of estab-
lishing values for Q, Rk, the initial estimated error covariance
matrix P(0), and a number of parameters that are used for
disturbance detection, filtering, etc. This tuning has been
performed by combining Allan variance analysis of sensor
data [13], with the models described so far, to identify a
starting point. Further adjustments were performed based on
experiments.

5) Dynamic Disturbance: Since they are used as measure-
ments of the gravity vector in body coordinates, accelerometer-
based updates are only valid if anep is zero (see (3)). If not,
these measurements are considered to be corrupted by an
unknown dynamic disturbance. The problem is addressed by
detecting the presence of this disturbance and, if detected,
increasing the corresponding measurement noise covariance
matrix, Ra, by a large factor ρa. Detection is based on
comparing the norm of the accelerometer measurement to
‖gn‖, as well as checking that the measured angular rate
is low enough. (The location of the sensor package on the
helmet kit, and the corresponding kinematics, result in angular
rate being a very good indicator of anep.) The approach of
increasing Ra implies that the unknown acceleration anep is
modeled as a stationary white noise process. Though the actual
process is not stationary nor white, it was found experimentally
that this approach yields better results than the alternative
of completely rejecting accelerometer measurements that are
deemed disturbed. In fact, when testing this alternative, it was
observed that a single valid measurement after long periods
of dynamic disturbance (as is the case when walking) could
cause undesirable jumps in the estimates of bg and ba, while
increasing Ra resulted in no such issues.

6) Magnetic Disturbance: Magnetometer-based measure-
ment updates are valid if the magnetic field being measured
is the Earth’s magnetic field only. Otherwise, these measure-
ments are considered to be corrupted by an unknown mag-
netic disturbance. The problem is addressed by detecting the
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Fig. 3. Qualitative timing diagram of vision and EKF processing. When
vision-based information is processed and delivered, the EKF must reprocess
past information. This extra processing is handled within a single EKF epoch
∆t. Note that the image acquisition is synchronized with the sensor data
acquisition.
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Fig. 4. Vision-aiding measurement update. In the example illustrated by the
inset, the EKF is able to “go back in time” and use the rewind buffer to
reprocess the azimuth estimate based on the delayed HM measurement.

presence of magnetic disturbances and, if detected, rejecting
the corresponding magnetometer measurements. Detection is
based on comparing the norm of the measured magnetic field
vector to the Earth’s field strength Bm, as well as checking
that the computed inclination angle is not too far from the
nominal value. (Since it is based on yT

mya, the latter check is
only performed if no dynamic disturbance is detected.)

7) The Rewind Buffer: The rewind buffer (RB) is a circular
buffer that is used to maintain a record of relevant information
pertaining to the last Nr samples of EKF processing. This is
done to properly integrate vision-aiding measurements, which
are delayed with respect to the rest of the data (see Fig. 3).
Fig. 4 shows a close-up look at an azimuth update based on a
horizon matching measurement. The EKF is able to “go back
in time” and reprocess the state estimate based on the late
measurement, all within its regular processing interval.

8) Altitude: In this effort, DTED has been used as the only
measurement of altitude. Since DTED is readily available and
experiments have taken place almost exclusively on natural
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terrain, other options have not yet been explored. However,
planned future tasks include integrating GPS and barometric
altitude measurements.

9) The Forward Buffer: The forward buffer (FB) is a buffer
that is used to store both the current state estimate x+

k and
the predicted state estimates up to Nf time steps ahead.
That is, FBk =

{
x+
k ,x

−
k+1,x

−
k+2, . . . ,x

−
k+Nf

}
. Through

interpolation of the FB vectors, a state estimate can then
be produced for any t ∈ [tk, tk +Nf∆t], where tk is the
time of the current estimate and ∆t is the EKF’s processing
interval. Given a value, ∆td, for system latency, the pose that
is delivered at time tk for rendering graphics on the display
is based on the predicted state at t = tk + ∆td, which is
extracted from the FB. (Note that Nf must be selected such
that Nf > 0 and Nf∆t ≥ ∆td.) The beneficial effect of
this forward-prediction process is obvious when using the
system, and focused experiments [2] have shown a reduction
in perceived latency from about 40 ms to about 2 ms.

10) Adaptive Gyro Filtering: The forward-prediction pro-
cess extrapolates motion to predict the state at some time
in the future, and is inherently sensitive to noise. This may
result in jitter of the rendered graphics even when the system
is perfectly stationary (e.g., mounted on a sturdy tripod).
Low-pass filtering of the rate gyro signal, ug , reduces this
jitter effect but also introduces lag. Since this lag is not
noticeable when the rotation rate is near zero, and the jitter
is not noticeable when there is actual motion, a reduction
in perceived jitter is achieved by low-pass filtering the rate
gyro signal only when the estimated rotation rate magnitude
is small. This can be done by adjusting the low-pass filter’s
bandwidth using a smooth increasing function of estimated
rotation rate magnitude. The resulting filtered signal can be
then used in place of ug in the EKF’s time-propagation steps
(i.e., in the forward-prediction process). This method was
found to reduce jitter by a factor of three without any adverse
effects in other performance measures [2].

11) Pose Estimation Processing Step: A single pose es-
timation processing step takes as inputs the current sensor
data, the RB data, and an index, inow, corresponding to
the current-time location in the RB. It returns updates to
RB, inow, and the whole FB. It is implemented as fol-
lows:

1: pre-process sensor data
2: RB[inow]← {sensor data, pre-processed data}
3: istop = inow
4: if vision data is available and ∃ ivis : tCLK in RB[ivis] =
tCLK in vision data then

5: inow = ivis
6: end if
7: keep processing = true
8: while keep processing = true do
9: {x−,P−} ← RB[inow]

10: RB[inow] ← {x+,P+} = ekf u(x−,P−,RB[inow])
11: inext = inow + 1
12: RB[inext] ← {x−,P−} = ekf p(x+,P+,RB[inow])
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ŝ
s

f 

s 
ŝ
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Fig. 5. Camera model and vectors used to measure accuracy.

13: if inow = istop then
14: FB[0]← x+,FB[1]← x−

15: for kp = 2 to Nf do
16: {x−,P−} = ekf p(x−,P−,RB[inow])
17: FB[kp]← x−

18: end for
19: keep processing = false
20: end if
21: inow = inext
22: end while
where tCLK is the reference time stamp of both sensor and
vision data acquisition. Lines 10 and 12 are the EKF mea-
surement update and prediction steps, respectively. The loop
on lines 15–18 implements the forward-prediction process by
repeating single EKF prediction steps.

12) Error Metric: Accuracy performance is based on a
measure of error, ε, defined as the angle between the vectors
rbps′ and rbpŝ (see Fig. 5). The point s′ is the point in the undis-
torted camera image corresponding to the real-world reference
point s, and is obtained via semi-automatic processing (i.e.,
requiring some manual input) of the imagery. The vector rbpŝ is
the result of using the pose estimate, {pp,Cnb }, to compute rbps.
Note that, in addition to pose estimation errors, the process of
generating the “ground-truth” vector rbps′ also contributes to
ε. This contribution was observed to be up to 3 mrad across a
variety of experiments.

B. Landmark Matching

The landmark matching (LM) module uses imagery from
the forward-looking camera to track the location of a distant
object of known coordinates and provide a measurement of
orientation to the EKF. Prior to operation, the user must select
a feature in the environment (i.e., a landmark) that can be
visually recognized during operation and whose coordinates
are known. Once in the area of operation, the user overlays
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a cross hair — rendered on the display and corresponding
to the intersection of the camera’s optical axis with the image
plane (shown as a circle in Fig. 5) — on the selected landmark
and clicks a mouse button. This procedure is called “landmark
clicking”.

1) LM Method: Landmark clicking triggers the system to
extract features from the current image and compute the cor-
responding absolute orientation of the camera (and therefore
the body) using the known direction of the optical axis and
the EKF’s current estimate of roll angle. The combination
of extracted features and absolute orientation is stored in a
landmark key-frame that can be compared to later images
to determine their corresponding camera orientations. Fig. 6
shows an illustration of the LM process in action. Once the
landmark key-frame is generated by the user, the LM module
uses computer vision techniques to determine orientation.

Regarding the extraction of features in a given image,
FAST [14] corners are extracted in the undistorted image and
their BRIEF [15] descriptors are calculated. The tilt estimate
from the EKF is then used to align the BRIEF descriptors with
respect to the down axis of the NED coordinate system. This
eliminates the need for rotational invariance and increases the
discrimination power of the BRIEF descriptors compared to
feature descriptors, such as Oriented BRIEF (ORB) [16], that
use image gradient information to orient the descriptors.

It is important to maintain robustness to the user walking
short distances where the landmark is still in view after
moving. Therefore, nearby image features, which move due
to parallax as the user walks, must be separated from far
features, which do not move. This can be done by a model-
fitting approach consisting of fitting either an essential matrix
[17], in the case where features are close, or a rotation matrix
when all of the features are far away. In practice, it was found
that in most cases features at intermediate distances exhibited a
small degree of parallax yet still fit a rotation-only hypothesis
model within the required accuracy. The small parallax in these
features, however, was enough to create a bias in the rotation
estimate and caused a corresponding orientation error to be
passed on to the EKF.

To alleviate this issue, a simple heuristic approach to feature
selection was implemented, based on choosing only features
that are above a threshold distance from the camera. This
distance is computed using the EKF’s tilt estimate and the
assumption of a flat ground in front of the camera. Ultimately,
robustness of LM to translation depends on the user being
trained to use it only for distant landmarks, without nearby
objects in the scene to cause parallax. (Of course, the ideal
situation for the current LM implementation is one where the
camera is not translating at all.)

After extraction, features in the current image are matched
to features in the landmark key-frame based on their BRIEF
descriptors, calculating the best matching feature as the one
with minimum Hamming distance. For each feature in the
landmark key-frame, its best match in the current image is
computed. The same is done from the current image to the
landmark key-frame and only those matches that agree in both

directions are deemed valid. (This is a standard process of
cross-validation of feature matches.) After matching, a two-
point RANSAC [18] procedure is applied to find the rotation
between the two frames and eliminate outliers. Because the
camera has been calibrated, only the three degrees of freedom
of the relative rotation between the landmark key-frame and
current images need to be estimated. Two feature matches
provide four constraints and so over-constrain the solution.
Each potential rotation solution is scored in the RANSAC
procedure by rotating the current image’s features according
to the inverse of the rotation and applying a threshold to the
distance to the corresponding feature matches in the landmark
frame. The number of feature matches satisfying the threshold
is the score for that solution.

Before delivering a measurement of orientation to the EKF,
a few sanity checks must be satisfied. At least M features
matches are required between the landmark key-frame and the
current frame after RANSAC. This prevents incorrect rotations
with little support in the features from being passed to the
EKF. The RANSAC procedure must also exceed a minimum
target confidence in its solution. This confidence is calculated
as the probability p = 1− (1− is)n, where n is the number of
RANSAC iterations, s is the number of points selected at each
iteration, and i is the inlier ratio. (A lower bound of the true
inlier ratio can be computed by dividing the maximum number
of inliers that was observed by the total number of feature
matches.) An upper bound on n is set to limit processing time
and meet real-time constraints, so it is possible that p may not
reach the required level. The inlier ratios observed in practice
and the small number of points selected (i.e., s = 2) result in
a high-enough p most of the time. A final check is that the
angle between the optical axis of the landmark key-frame and
that of the current frame be less than twenty degrees, insuring
adequate overlap between the two images.

A key feature of the LM method is that the object needs
to be visible to the user but not necessarily to the camera.
Since the LM module tracks FAST corner features around the
landmark object, these features need not be on the landmark
object itself.

2) Standalone LM Results: Standalone results are produced
by using the LM orientation measurement, yLM, to compute
ε, instead of using the EKF’s orientation estimate. The LM
module has been tested in a variety of environments to verify
the generality of its algorithms. One example is an area of
the Smoky Mountains (see images in Fig. 9), characterized
by green, tree-covered, rounded mountains, as well as plenty
of vegetation in the lower flatter areas. Another example
is the area around Red Rock Canyon, NV (see images in
Fig. 6), characterized by desert-like landscape, with rocks
and bushes in the flat areas, and sharp, bare-rock mountain
peaks. A sample of performance of the LM module in these
environments is shown in plots (a) of Fig. 7 and Fig. 8.
LM performed well in both cases, with a mean error less
than 3 mrad. Because the landmark is designated by the user,
and can only be matched when it is in the field of view of
the camera, only limited sections of the data have landmark
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(a) (b) (c) 

(d) (e) (f) 

t = 70    m < M    d = 0    y = -128 t = 96    m < M    d = 0    y = -92 t = 104    m = 49    d = 0    y = -127 

t = 146    m = 38    d = 22    y = -125 t = 169    m = 30    d = 48    y = -131 t = 185    m < M    d = 62    y = -128 

Fig. 6. Illustration of the landmark matching process using imagery from the forward-looking camera. The small cross hair in each image corresponds to the
camera’s optical axis and is used to align the camera to the known landmark. Image (a) shows the moment when the landmark (the mountain peak shown in
the inset and by the large arrow) is clicked, generating a landmark key-frame. In image (b) the user has looked away from the landmark and there are not
enough feature matches. In image (c) the user looks back at the landmark and the software automatically re-acquired the landmark by matching m = 49
features (shown by circles) to the landmark key-frame. The user then walks 22 m (d) and 48 m (e) from the starting point and the landmark is re-acquired
in each case. Image (f) shows that after walking 62 meters the landmark is not re-acquired. Each image is annotated with the elapsed time t in seconds, the
number of matched features m, the distance d from the starting point in meters, and the estimated azimuth ψ in degrees. M is the minimum number of
matches that are required (in this case, M = 20).

measurements, and those sections typically correspond to
stationary conditions (i.e., not walking). Overall, when the user
requires it, landmark matching can provide a highly accurate
orientation measurement.

C. Horizon Matching

The horizon matching (HM) module provides a measure-
ment of absolute orientation by comparing edges detected in
the camera imagery with a horizon silhouette edge generated
from DTED, using a hierarchical search algorithm initialized
at the current orientation estimate from the EKF.

Stein and Medioni [19] demonstrated feasibility of local-
ization from horizon data using fully synthetic experiments.
Their method approximated the horizon as a set of line
segments and employed several line-fitting tolerances during
the matching. In contrast to Stein and Medioni, the method
described here uses real-world data and can generate refined
orientation measurements at 20 Hz with current hardware.
Behringer et al. [20] estimate camera pose by comparing
salient points in a horizon silhouette derived from DTED to
the visible horizon silhouette extracted from the camera image.
The assumption is made that the horizon silhouette shows
up as a strong-gradient edge in the image, which is not the
case under various lighting conditions and in cases of severe
occlusions by foreground objects. The method described here
is robust to both of these disturbances because it uses only

the more stable parts of the horizon. More recently, Badoud
et al. [21] proposed a robust system for pose estimation
that finds the best alignment between a 3D terrain model and
an input image. An interesting aspect of their system is that
they leveraged secondary silhouettes (visible local mountain
peaks or ridges that do not coincide with the uppermost
visible horizon silhouette) in the terrain data and the image
to improve their alignment. They were able to achieve very
accurate results over various types of mountainous terrain, but
their system is far too computationally expensive, preventing
its use in real-time low-SWAP applications.

1) HM Method: The basic principle of the HM method
presented here is that given the user’s position and a 3D
height map of the terrain surrounding him, a corresponding
360-degree horizon can be computed. If accurate alignment
can be found between the computed horizon and the horizon
extracted from the camera imagery, then the camera’s absolute
orientation can be determined.

After transforming the DTED into ECEF coordinates, the
next step is to determine the corresponding shape of the hori-
zon from the user’s estimated current position. This 3D terrain
model is then rendered onto a unit sphere centered at the user’s
position, where the rendering resolution is chosen to match
the native resolution of the camera. To support automatic
extraction of the horizon silhouette, the 3D terrain model is
rendered as a white surface onto a black background, so that
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Fig. 7. Sample standalone accuracy performance (as defined in Sec. II-A12) of the LM module (a) and HM module (b) during field tests in the Smoky
Mountains. Plots (c) and (d) show the accelerometer and rate gyro data, respectively, to give an indication of dynamic conditions. In this sample, LM has a
mean error of 2.9 mrad with a standard deviation of 1.0 mrad. Note that LM is used under stationary conditions (i.e., not walking), when needed by the user.
The HM module, on the other hand, functions automatically and produces a measurement as long as there is a horizon available to match. Note, however, the
presence of two false positive matches (outliers) in plot (b). In this sample, without including the outliers, HM has a mean error of 4.3 mrad with a standard
deviation of 2.6 mrad.

the horizon extraction becomes a simple edge detection. Using
the inverse of the camera calibration matrix, each pixel along
the horizon is converted to its corresponding image vector, and
normalizing these vectors yields a spherical representation of
the horizon silhouette.

Given the spherical representation of the horizon silhouette,
several optimizations can be performed to improve the compu-
tational efficiency. To facilitate data compression and improve
processing efficiency, a continuous connected chain is created
that represents the 360-degree horizon silhouette. First, edges
are extracted from the projected spherical image followed by
an edge-following algorithm in the image to define an edge
chain. While the edge chain is a very good representation
of the horizon, it is also a very dense representation posing
computational challenges for the alignment. This leads to a
second step in which the pixel-resolution chain is reduced to a
much smaller set of line segments that satisify a maximum tan-
gential distance. The resulting piece-wise linear representation
typically reduces the complexity of the horizon and greatly
boosts the computational efficiency.

To extract a horizon from the camera imagery, edge detec-
tion is performed on each undistorted image by first blurring
with a Gaussian filter and then using a Sobel filter along both

the horizontal and vertical directions. From this, the squared
edge response is computed at each pixel location by summing
the squares of the vertical and horizontal edge components.
Then the image of the squared edge response is blurred again
with a Gaussian filter to effectively increase the size of the
edges. The last step is to threshold the edge response so that
it is equal to one along the edges and zero elsewhere. The
threshold is set so that the resulting edges are around five to
ten pixels wide (the advantage of which is discussed later).
At this point in the process, a pyramidal representation of
edge images is also created, which is used later in a course-
to-fine search. To create the down-sampled images, a simple
bilinear interpolation scheme is applied where the results are
then rounded to maintain the binary nature of the edge image.
The rationale for this process is that extracting the edges from
the imagery is desirable because the actual horizon silhouette
is typically an edge within the image. The reason for the
thresholding is that in many cases, the strength of the edge
along the horizon varies, even within the same frame-to-frame
video sequence. The desired approach is to treat a strong edge
in the same manner as a weak edge, as each are equally as
likely to be the true horizon silhouette.

The next step is to perform an optimization that seeks
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Fig. 8. Sample standalone accuracy performance (as defined in Sec. II-A12) of the LM module (a) and HM module (b) during field tests in the area of Red
Rock Canyon, NV. Plots (c) and (d) show the accelerometer and rate gyro data, respectively, to give an indication of dynamic conditions. In this sample, LM
has a mean error of 2.5 mrad with a standard deviation of 1.2 mrad. Note that LM is used under stationary conditions (i.e., not walking). It did, however,
provide some accurate measurements even after walking some distance (as is also illustrated in Fig. 6), due to the nature of the scene. The HM module
functions automatically and produces a measurement as long as there is a horizon available to match. In this sample, HM has a mean error of 6.3 mrad with
a standard deviation of 2.0 mrad. Also shown in plot (a) is the standalone accuracy performance of the SM module prototype under development.

the best alignment between the terrain’s horizon silhouette
and the horizon silhouette from the camera image. This pro-
cess is initiated using the EKF’s current orientation estimate,
which is used to transform the horizon silhouette into the
expected image. The obtained horizon edge image (given a
perfect alignment) would correspond to the observed horizon
silhouette in the camera frame. Once the silhouette has been
projected onto the image using a specific alignment, a measure
of goodness is assigned to this alignment, based on the amount
of overlap between the projected horizon and the edges in
the camera edge image. This is why wide edges are enforced
in the previous image-processing phase. Given that a single-
pixel width silhouette is being aligned with the edges in the
camera edge image, wide edges are needed to help account for
any slight differences between the DTED-based horizon and
what is actually seen in the image. For instance, a forest of
trees along the top of a mountain ridge will slightly alter the
shape of the ridge, but will still exhibit a strong resemblance
to the shape of the underlying terrain. The wider edges result
in a more robust measure of goodness that allows for slight
misalignments without excessive penalty. Additionally, the
measure of goodness favors segments of longer overlap as
their orientation is more reliable.

To determine optimal alignment, an orientation search is
first performed in a region that is centered around the orien-
tation reported by the EKF. To obtain the global maximum
in the search region, a hierarchical multi-start gradient ascent
technique is used. The search space is first sampled coarsely
and uniformly, and several local gradient searches are started
from those samples. Once each local search is completed,
the maximum of all locals searches is taken to be the global
maximum. Then, using a coarse-to-fine approach, the result
is up-sampled, and a new search begins at the next highest
resolution. When the final search completes, the resulting
orientation measurement is produced along with a confidence
metric. This metric reflects preference for longer overlapping
segments as well as segments that vary in their shape, which is
equivalent to a high-gradient entropy of the segment. Before
the orientation measurement is sent to the EKF, the corre-
sponding confidence metric has to exceed a relatively high
threshold. This is done to prevent measurements coming from
false positive matches from corrupting the EKF’s measurement
update.

2) Standalone HM Results: Standalone results are produced
by using the HM orientation measurement, yHM, to compute
ε, instead of using the EKF’s orientation estimate. Horizon
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matching typically works best in mountainous environments
because of the distinctiveness of the horizon’s shape. The HM
module was tested in multiple distinctly different mountainous
regions including the Smoky Mountains (see Fig. 9) and Red
Rock Canyon, NV (see Fig. 6), and was able to tolerate the
large differences in horizon shapes. A sample of performance
of the HM module in these environments is shown in plots (b)
of of Fig. 7 and Fig. 8. HM performed well in both cases, with
a mean error less than 7 mrad. Note in Fig. 7 that there are
a couple of outliers corresponding to false positives whose
confidence metric passed the threshold test. These have the
potential of affecting the integrated solution (the effect of the
first of the two false positives is obvious as a spike in the
error plot of Fig. 10). Though not yet implemented, these
isolated outliers could be detected in the EKF by monitoring
the statistics of zHM = yHM − ŷHM. On the plus side, note
in Fig. 9 that the HM module is able to find matches through
several occlusions, such as the trees in images (a) and (b),
and the parked car in image (e). Overall, when a reasonably
distinctive horizon is in view, horizon matching can provide
an accurate and robust orientation measurement.

D. Sun Matching

After a recent field test, it was noticed that the Sun appeared
in a large portion of the camera imagery as a black spot on an
otherwise bright sky (see, for example, image (e) of Fig. 6).
In fact, this “eclipsing” phenomenon is characteristic of many
CMOS sensors and occurs when the photo-generated charge
of a pixel is so large that it impacts the pixel’s reset voltage
and subsequently the signal-reset difference level presented
to the analog-to-digital converter. This results in saturated
pixels being incorrectly decoded as dark pixels. Most CMOS
sensors include anti-eclipse circuitry to minimize this effect,
but this function had been effectively disabled in our camera.
The resulting black-Sun artifact prompted an exploration of
Sun-based measurements of orientation, and a preliminary
SM module was developed that uses the Sun’s location in
the camera image to generate a measurement of the camera’s
absolute orientation.

1) SM Method: The basic method consists of the following
steps:

1: find pixel coordinates of black-Sun centroid in undistorted
camera image

2: convert pixel coordinates into measured Sun vector in b
coordinates, sb

3: compute reference Sun vector in n coordinates, sn

4: using EKF’s roll estimate as constraint, find Cnb such that
Cnb s

b = sn

The camera model shown in Fig. 5 is used in line 2. In
line 3, using an astronomical model [22] and knowledge of
pp, date, and time, the reference Sun vector is computed
as azimuth and zenith angles in the n coordinate system.
The Sun-based orientation estimate returned to the EKF is
the rotation matrix that aligns the reference Sun vector in n
coordinates with the measured Sun vector in b coordinates,
as shown in line 4. This requirement only constrains two out

of three angular degrees of freedom, so a third constraint is
imposed, which is that the roll angle represented in the Sun-
based orientation estimate must be the same as the one in
the current EKF estimate of orientation. Under this constraint,
a gradient-descent optimization method is used to find the
rotation matrix Cnb that most closely satisfies Cnb s

b = sn.
2) Standalone SM Results: Standalone results are produced

by using the SM orientation measurement to compute ε,
instead of using the EKF’s orientation estimate. Since the
Sun matching method is still under development, it is not yet
integrated into the system for real-time operation. Therefore,
sample results were obtained by post-processing GPS/INS
data corresponding to the sample experiment of Fig. 8. The
GPS/INS solution in that experiment was used to provide pp
and a roll estimate to the SM algorithm. The resulting output
of the SM module is shown in plot (a) of Fig. 8, where the
accuracy performance is shown to be similar to that of LM
when the user is stationary. As the user walks, performance
degrades but is still shown to be better than GPS/INS alone.
This degradation may be caused by errors in the GPS/INS
estimate of roll being propagated to the SM solution.

Being based on a single data collect and a first-try algo-
rithm, these results are very preliminary. Further development
will include exploring different algorithm options (especially
regarding other choices of enforced constraint) and testing in a
variety of environments and sky conditions. Optimum camera
placement and field-of-view strategies must also be evaluated
and the robustness of the CMOS sensor’s eclipse feature must
be determined. At this point, however, it is already clear that
Sun-based pose estimates are a promising opportunistic aid to
navigation solutions.

III. INTEGRATED SYSTEM RESULTS

All results presented in this paper are based on real-time
pose estimation data collected with the actual system during
field tests in unprepared outdoor environments. The corre-
sponding computer hardware consists of an off-the-shelf em-
bedded processing module (SECO QuadMo747-X/T30) with
an Nvidia Tegra 3 system-on-chip (SoC) and 2 GB of DDR3L
memory on-board. This computing hardware uses about 12 W
of power at full load provided by a high-capacity battery, and
runs a standard version of Ubuntu Linux 12.04 provided by
SECO, which supports “hard-float” binary modules.

Accuracy performance results were shown for the individual
vision-aiding measurement modules in Fig. 7 and Fig. 8. In
this section, integrated system (i.e., vision-aided) accuracy
performance results based on the same two representative data
sets is discussed. These results, shown in Fig. 10 and Fig. 11,
correspond to system operation of several minutes under a
various dynamic and magnetic conditions. Also shown in these
figures are indicators of the presence of LM and HM aiding
measurements, and the validity of accelerometer (ACC) and
magnetometer (MAG) data (based on previously discussed
dynamic and magnetic disturbance detection).

Both Fig. 10 and Fig. 11 show the GPS/INS-only (i.e., no
vision-aiding) solution performance varying about an offset of
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(a) (b) (c) 

(d) (e) (f) 

Fig. 9. Examples of HM module matches under different conditions during field tests in the Smoky mountains. In these images, a light horizon line
superimposed on the real horizon indicates a successful match (i.e., the confidence metric exceeds a given threshold) and a dark line indicates an unsuccessful
one. The threshold is set to a relatively high value to avoid the occurrence of false positive matches, which would corrupt the EKF’s measurement update, at
the expense of false negatives such as the one in (c). Note that the HM module is able to find matches through several occlusions, such as the trees in images
(a) and (b), and the parked car in image (e).
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Fig. 10. Integrated system accuracy performance (as defined in Sec. II-A12) corresponding to the data shown in Fig. 7 (Smoky Mountains). Also shown are
indicators of the presence of LM and HM measurements, and the validity of accelerometer (ACC) and magnetometer (MAG) data.
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Fig. 11. Integrated system accuracy performance (as defined in Sec. II-A12) corresponding to the data shown in Fig. 8 (Red Rock Canyon). Also shown are
indicators of the presence of LM and HM measurements, and the validity of accelerometer (ACC) and magnetometer (MAG) data.

20 mrad to 30 mrad. (Variation about this offset over the exper-
iment are due to varying magnetic and dynamic conditions.)
This is representative of our experience in operating in this
mode, where systematic errors typically between 10 mrad and
40 mrad have been observed. Since the largest component of
this error is in the azimuth direction, its main cause is due to
the difficulty of using the Earth’s magnetic field as a reference
for orientation. This difficulty is two-fold. The first aspect
has to do with magnetometer calibration errors. The typical
calibration procedure, aimed at correcting hard-iron and soft-
iron effects, does not address a residual orientation error that
is azimuth-dependent and would have to be corrected by a
more burdensome alignment [23], which is impractical in our
application. The second aspect has to do with inaccuracies
in the assumed model of the Earth’s magnetic field, which
contribute to the overall error through inaccurate values of
magnetic declination and inclination.

The availability of vision-based measurements of absolute
orientation provides a way to correct these errors, which is
why magnetic bias terms were included in the state vector
definition. In fact, Fig. 10 and Fig. 11 show that once
the system starts receiving vision-aiding measurements, its
pose accuracy increases dramatically. Also, because estimates
of magnetic biases are only updated when a vision-based
orientation update has occurred, the benefit of vision-aiding
measurements persists even when they are no longer avail-
able because they have helped to correct the magnetometer

measurement model. This is evident, for example, over the
ten seconds around t = 280 in Fig. 10, where there is a
gap in the availability of vision-based measurements, and yet
the pose estimate retains its accuracy because of an improved
magnetometer measurement model. Without this improvement,
the performance would revert back to that of GPS/INS when
vision-aiding is not available. (Fig. 11 shows another example
at around t = 240.)

Rapid error increases visible in both figures are due to
sudden head rotations (visible in plots (d) of Fig. 7 and Fig. 8)
whose beginning and end cannot be predicted by the forward-
prediction process and therefore expose the system’s latency as
error. (Without forward prediction, these error spikes would be
larger.) Note that one of the rapid error increases in Fig. 10, at
around t = 95, is due to the large HM false positive mentioned
previously and shown in plot (b) of Fig. 7. It can also be
seen that the best overall performance is achieved when LM
is active. This is due to the fact that it is used under stationary
conditions and also has a higher intrinsic accuracy than HM.
When LM is not active, performance is driven by the accuracy
of HM, with areas of higher error variance that correspond
to dynamic conditions (i.e., the user walking). In Fig. 11,
for example, the user walked continuously over rocky and
uneven terrain from around t = 125 to around t = 360, and
a corresponding increase in error variance can be observed
due to the difficulty in measuring the gravity vector under
those conditions. In the same figure, a number of time periods
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with magnetic disturbance can also be observed. Overall, since
the performance shown in these figures is representative of
what was observed across many other field tests, this vision-
aided navigation system consistently showed a significant
improvement over the GPS/INS solution, maintaining a mean
error below 10 mrad over a wide range of magnetic and/or
dynamic conditions.

Exploiting signals of opportunity such as the vision-based
measurements described in this paper is a sensible and feasible
strategy for greatly expanding the operational envelope of
high-accuracy, low-SWAP navigation systems. It is a promis-
ing path toward achieving the “Holy Grail” of robust and
accurate tracking outdoors, for augmented reality everywhere.

IV. FUTURE WORK

Opportunities for future work consist of continuing explo-
rations that were started but left at the preliminary stage, as
well as undertaking new investigations based on what was
learned during the development of the current system. These
include:
• Integration of other available altitude measurements;
• Revisiting tight integration of frame-to-frame vision in-

formation;
• Revisiting the possible role and use of vision-based

SLAM techniques;
• Development and implementation of enhanced magne-

tometer calibration;
• Development and implementation of enhanced magnetic

measurement error model to provide a means of updating
the magnetometer calibration in real-time when absolute
orientation measurements are available;

• Continuation of SM investigation and development;
• Continued enhancement of LM and HM algorithms aimed

at improving robustness and providing an appropriate
measure of uncertainty and/or integrity of the correspond-
ing measurements;

• Development and implementation of enhanced integrity
monitoring, to provide timely warning of degraded per-
formance to the user and generate appropriate measures
of uncertainty in the state estimate.

Plans for future work also include integrating all of the
current software onto the Android platform. Newer processor
architectures are also being tested and preliminary results
suggest major performance gains.
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