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ABSTRACT 
 
Military training conducted on physical ranges that match a unit’s future operational environment provides 
an invaluable experience. Today, to conduct a training exercise while ensuring a unit’s performance is 
closely observed, evaluated, and reported on in an After Action Review, the unit requires a number of 
instructors to accompany the different elements. Training organized on ranges for urban warfighting brings 
an additional level of complexity—the high level of occlusion typical for these environments multiplies the 
number of evaluators needed. While the units have great need for such training opportunities, they may not 
have the necessary human resources to conduct them successfully. In this paper we report on our US 
Navy/ONR-sponsored project aimed at a new generation of instrumented ranges, and the early results we 
have achieved. We suggest a radically different concept: instead of recording multiple video streams that 
need to be reviewed and evaluated by a number of instructors, our system will focus on capturing dynamic 
individual warfighter pose data and performing automated performance evaluation. We will use an in situ 
network of automatically-controlled pan-tilt-zoom video cameras and personal position and orientation 
sensing devices. Our system will record video, reconstruct dynamic 3D individual poses, analyze, 
recognize events, evaluate performances, generate reports, provide real-time free exploration of recorded 
data, and even allow the user to generate ‘what-if’ scenarios that were never recorded. The most direct 
benefit for an individual unit will be the ability to conduct training with fewer human resources, while 
having a more quantitative account of their performance (dispersion across the terrain, ‘weapon flagging’ 
incidents, number of patrols conducted). The instructors will have immediate feedback on some elements 
of the unit’s performance. Having data sets for multiple units will enable historical trend analysis, thus 
providing new insights and benefits for the entire service. 
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INTRODUCTION 
 
This paper describes our US Navy/Office of Naval 
Research (ONR)-sponsored project on a new 
generation of instrumented ranges and the early results 
we have achieved; the project is titled “Behavioral 
Analysis and Synthesis for Intelligent Training”  
(BASE-IT). The approaches and solutions suggested in 
this research effort represent a paradigm shift in terms 
of the type of the data collected on the physical training 
ranges, as well as the way those data are processed and 
used both on the ranges and outside of that realm.  
 
Problem Description and Motivation 
 
Military training conducted on physical ranges that 
matches a unit’s future operational environment as 
closely as possible, provides an invaluable experience. 
Today, to conduct a training exercise in an urban 
environment while ensuring a unit’s performance is 
closely observed, evaluated, and reported on in an 
After Action Review (AAR), the unit requires a 
number of highly experienced instructors to 
accompany different segments of the unit throughout 
their training run. Additionally, as a form of better 
familiarization with the training environment and the 
complexity of actions they will encounter, the unit 
receives an introductory package for the training they 
are just about to conduct. After the completed training, 
the unit receives AAR and a take-away package as an 
illustration of their performance on the same range.  
 
The current approach, which is practiced on a number 
of military training ranges, is to use a large number of 
skilled instructors who accompany the unit in its 
training. This poses a problem, however: the number of 
specialized instructors available to assume this role is 
always limited. For example, a unit may want to 

conduct the training where no special instructor—apart 
from its own staff—may be available. As an 
introductory package the units receive textual 
information, maps, charts and images, and may also get 
videos of another units’ training runs. Such information 
has limited power and is unlikely to be an optimal 
illustration of all topics on which the unit needs to be 
informed. This type of information is hard to browse (it 
requires multiple hours of careful scrutiny), and the 
review is inherently a rather passive activity, involving 
minimal human interaction with the material. If the 
training range is equipped with a camera system, as a 
take-away package the unit will receive multiple videos 
showing the training run it just completed. Each video 
may be several hours long. This again poses a problem, 
as no unit can dedicate the necessary number of hours 
to review this information. In fact, it may also turn out 
that the same videos did not actually contain 
information of interest to the unit. Reviewing the 
videos (essentially a linear type of data representation) 
has another inherent problem: it is nearly impossible to 
resolve which recorded events happened 
simultaneously, which is essential in order to 
understand the coordination of actions done by 
different segments of the unit. 
 
To address all those issues we suggest a radically 
different concept: instead of a traditional approach of 
recording multiple video streams that need to be 
reviewed in their entirety by a number of instructors 
and then be evaluated, our system will focus on 
technology-supported capturing of non-linear 
information about exhibited performances based on 
dynamic individual warfighter poses (3D position, and 
torso, head and weapon orientation) and posture 
(standing, kneeling, prone) data. This type of data 
enables us to apply an automated performance analysis 
and evaluation that requires minimal to no human 
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intervention; as a result the automated system provides 
a set of quantitative metrics about the recorded 
performances and skills that were trained. 
 
Our team looked for a technical solution that: 

(1) is omnipresent—it should be ‘everywhere’ 
and see everything/everyone,  

(2) has a perfect memory—it should record 
everything, and  

(3) produces and delivers relevant information in 
a timely fashion and in a format that is useful 
to both the instructors and the warfighters.  

Additionally, we are interested in extending the value 
of the physical training range outside of that realm, and 
using the collected data to affect the training that 
comes before and after the range-based training. This 
approach ensures that a full training circle is addressed 
with the family of related products. In this context, we 
included the ability to explore the dynamic 3D data in 
an interactive fashion, allowing the warfighters to 
visualize the data sets as well as to conduct fast smart 
searches and look for events of special interest. For 
example, Which squad was ‘bunching-up’ while 
moving through the range? Did Marines cross a danger 
zone in ‘ones’ and ‘twos’, and how fast were they? 
 

TRAINING RANGES FOR URBAN WARFARE 
 
Special attention was paid to domain analysis. Because 
our goal is to make a solid connection between the 
needs of operational forces and the scientific work that 
our team would propose, it was an absolute prerequisite 
to acquire a thorough understanding of the domain. We 
conducted several field visits to different training sites 
where we observed the training ‘up-and-close’ and 
collected assorted sets of data. A number of discussions 
with the Subject Matter Experts (SMEs) were also 

organized, and we had a continuous dialog with both 
active and retired USMC officers, some of them 
directly provided to us by our transition customer, The 
Program Manager for Training Systems (PM 
TRASYS). The experiences and insights provided by 
the USMC officers who are currently students at the 

Modeling Virtual Environments and Simulations 
(MOVES) Institute, NPS, also proved to be invaluable.  
The environment where urban warfare training is 
conducted should provide a realistic, accurate and 
relevant environment. If the environment is designed in 
this way, it provides the troops with optimal conditions 
for highly effective training of their warfighting skills. 
The basic characteristics of this environment are: (1) it 
is a large environment to enable joint training of 
multiple agencies and the engagement of large units; 
(2) it is a highly occluded environment—the streets and 
passages can be very narrow; (3) there is a large 
number of buildings, some of them representing 
multistory houses; (4) there is a large number of 
individuals (unit members and role players) and a 
certain number of vehicles, all of which need to be 
observed and have their performance evaluated; and (5) 
in addition to buildings, the environment also has the 
urban and battlefield clutter, both important for the 
level of realism of such a site. All of this suggests that 
a large number of human instructors is usually needed 
to observe all warfighters’ actions and provide expert 
opinions on their training.  
 
The buildings are usually simulated by metal cargo 
containers, some of them stacked on top of each other 
to represent multistory buildings. Figure 1 illustrates 
several typical views inside such a training range. The 
spaces between the containers simulate the streets, 
junctions, courtyards, markets and village squares. 
Inside the containers are the rooms and facilities that 
represent typical house environments to enable 
segments of units’ training focused on indoor urban 
warfighting skills. The same training range is used to 
conduct different training courses that each may last 
from 30 minutes up to several days, and include both 
kinetic and non-kinetic warfighting skills. 

 
SYSTEM ARCHITECTURE 

 
The BASE-IT system architecture is organized around 
a central database that connects all other components 
(see Figure 2).  

Figure 1. Typical Views Inside the Training Range for Urban Warfare 
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Figure 2. BASE-IT Architecture 

 
In addition to the database, there are four other major 
blocks: data capture, behavior analysis, behavior 
synthesis, and visualization. 
 
Each block of the system can be easily understood in 
terms of the data that it consumes or produces for the 
central database. The data capture block is responsible 
for producing data on exercise participant position, 
orientation, and posture. This includes camera control 
and fusion of Global Positioning System (GPS) and 
camera data. The behavior analysis block reads 
participant data from the database, and then uses it to 
generate performance assessment data, which is then 
returned to the database. The behavior synthesis block 
supports the user with the exploration of alternative 
courses of action. It can read an initial situation from 
the database, and then simulates the rest of an exercise 
under the interactive control of the user. The 
visualization block reads exercise data from the 
database and renders it in an accessible form on various 
target devices, including fixed and handheld PCs. 
 
A database-centric architecture has both pros and cons. 
Its attractive features are several, and for us, ultimately 
compelling. It provides enhanced modularity of the 
system as a whole, yielding dividends in ease of 
development (particularly over multiple physical 
development sites), ease of managing (browsing, 
storing) system data, flexibility in adding new sensors 
and support for exercise playback. This helps us fulfill 
our goal of realizing a prototype that is extensible, for 
example to allow additional or new/unforeseen sensors, 
new analysis methods, and new interfaces. The primary 
downside of the architecture is the (small) added 
latency associated with database reads and writes. 

 
DATA ACQUISITION FRAMEWORK 

     
An essential component of the overall BASE-IT system 
is a data acquisition framework consisting of an in situ 
network of automatically controlled pan-tilt-zoom 
(PTZ) video cameras, and personal position and 
orientation sensing devices—GPS and Inertial 
Navigation Systems (INS) devices. In this section, we 
describe data inputs to this system, sensor devices, and 
data capture and processing. 
 
Data Inputs 
 
The data needed for our system includes (1) the 
positions of the Marines; (2) the poses of the Marines; 
(3) the poses of the Marines’ weapons or equipment; 
(4) the skeletal postures of the Marines; (5) video 
coverage for position, pose tracking and situational 
awareness; and (6) time stamps for each of the 
aforementioned items. It is important to note that our 
system does not record auditory information (e.g., 
voice commands), nor does it record weapon 
deployment data or use of other military assets (e.g., 
air). 
 
Sensors 
 
Our sensor system for data capture includes (1) GPS 
and video for positions; (2) IMU and video for poses of 
Marines; and (3) PTZ video cameras for skeletal 
posture estimation. In our framework, to capture video, 
we use the Bosch G4 series of PTZ cameras. The GPS 
unit is a low cost and wearable off-the-shelf GPS 
system. The GPS units also serve to provide an ID for 
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each Marine wearing them. In our experiments, we use 
the GlobalSat BU-353 GPS unit, which has a WAAS 
enabled 2dRMS of 5 meters. We are also 
experimenting with the Intersense Intertial Cube2 INS 
units for orientation calculations.  
 
Data Capture and Processing 
 
In Figure 3 we show a diagram of our data acquisition 
framework (outlined box) and data processing 
components. 
 

 
 

Figure 3. BASE-IT Data Capture and Processing 
Diagram 

 
Data Flow  
The central Device Server collects telemetry data from 
the PTZ cameras, and position and orientation data 
from GPS & INS units. The Device and Video Servers 
output data to the Tracker Nodes, or the 3D posture 
estimation module, and the raw data is stored in the 
database. A Tracker Node performs GPS assisted 
visual tracking and pose estimation of Marines in a 
designated camera/view. Each Tracker Node, outputs 
local tracks to the Multiple Hypothesis Tracker (MHT) 
module. Here local tracks are fused to obtain global 
tracks consistent with all available views using MHT. 
The global tracks are stored in the database and sent to 
the PTZ Scheduler.  The PTZ Scheduler is responsible 

for deciding when cameras should capture images and 
when they should maneuver to new pan, tilt and zoom 
settings. The Device Server receives PTZ control 
commands and sends these to the cameras. For areas 
observed by multiple cameras simultaneously the data 
are fused into a 3D body posture of the observed 
Marines (see Figure 4). 
 

 
Figure 4. 3D Model and Associated Skeleton     

(Posture) Obtained From Multiple PTZ cameras 
 
PTZ Camera Control 
We examined existing approaches used in surveillance, 
extracted useful elements, and developed a new 
scheduling approach that is better suited for 3D 
reconstruction. Application-specific requirements 
include higher image resolution, longer capture 
intervals, more cameras capturing the same target, and 
geometric calibration. To satisfy these requirements, 
we are developing an approach consisting of a global 
optimization method which assigns cameras to target 
and a local scheduling method which schedules 
pre-assigned cameras for optimal coverage. Both 
components make use of a quality metric that 
characterizes and predicts the performance and 
usefulness of possible camera configurations. We have 
implemented the local scheduling method and tested it 
in the simulated environment shown in Figure 5; a top-
down view shows six color-coded cameras and a 
visibility map that takes into account static occluders 
represented by three vertical columns. 
 

 
Figure 5. Top-Down View of the Simulated 

Environment 
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Our scheduler uses a pre-computed visibility map and 
the predicted target trajectory and schedules camera 
maneuvering and capturing intervals such that a quality 
metric is maximized. Figure 6 shows an example 
schedule obtained using our local scheduling method. 
Green indicates cameras that are capturing (i.e. green is 
good). 
 

 
Figure 6. Example Schedule for 6 Cameras 

Following a Single Target 
 

BEHAVIOR ANALYSIS 
 
Introduction 
 
The overarching goal of behavior analysis is to provide 
a fine-grained understanding of movements and actions 
undertaken by individuals and groups of warfighters.  
Behavior analysis can be decomposed into the 
following main components: (1) maintaining a library 
of known behaviors in an ontology; (2) detecting and 
grouping behaviors observed by the system into known 
classes (e.g., states) and scoring the accuracy of 
detection or classification; (3) understanding the body 
posture of the participants to improve classification; 
and (4) assessing and evaluating performance for after-
action review (AAR).  
 
Behavior Ontology 
 
Our aim is to develop an extensible ontology for 
simulation and training focused on urban warfare 
scenarios, yet built on general-purpose principles. The 
ontology is a knowledgebase that captures USMC 
Tactics, Techniques and Procedures—TTP (including 
definitions and measurements) for dismounted small 
team behaviors, maneuvers, procedures, and rules of 
engagement. The ontology is not restricted to a single 
representational formalism.  
 
The ontology also encodes the decomposition of states 
and events that are necessary for detection and 
recognition. For example, a higher-level state such as 
“Patrolling” can be decomposed into a number of sub-
states that define procedures for “Crossing danger 
areas” such as intersections. We use a finite state 
machine (FSM) representation of states as part of the 
behavior analysis architecture and show a top-level 
FSM in Figure 7.  
 

 
Figure 7. Top-level Finite State Machine 

 
Detection of States and Events 
 
One of the challenges of state or activity detection is 
modeling inter-object relationships along with the 
participants involved. We train Support Vector 
Machine (SVM) classifiers to detect activities or states. 
Example activities include military patrols moving in 
formation.  For the patrol formation, we can recognize 
one of n classes such as single-column formation, 
staggered column formation, wedge, etc. An example 
of a staggered column formation is shown in Figure 8.  
 

 
Figure 8. Example of a Patrol Formation 

 
Activities are detected or classified at different levels 
in the system. For example, to recognize low-level 
activities, the system combines information from video 
with INS (e.g., weapon) with low-level pose 
information to classify activities performed by 
warfighters. Context is also important for behavior 
analysis, e.g., the position of the warfighter with 
respect to features of the environment such as 
buildings. By composing low-level actions, we are able 
to recognize complex activities. 
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Posture Recognition 
 
Behavior analysis of the human almost always requires 
knowledge of the body posture, including overall 
stance, orientation (Figure 9), head gaze direction 
(Figure 10) and hand/arm poses. We built a real-time 
system using various features and classifiers that 
analyze the live video streams with known position 
estimates for the Marines (Wachs et al., 2009). Stance 
and torso direction is estimated both with a Viola-Jones 
style multi-class detector (Viola et al., 2001) and with a 
parts-based detector using full-body appearance models 
(Torralba et al., 2007).  These estimates act as priors 
for detecting heads, weapons, and their respective 
orientations with similar algorithms. Syntactic and 
statistical post-processing improves the accuracy and 
reliability of the posture recognition.    
 

 
Figure 9. The Three Distinguished Stances in Two 

Orientations Each 
 

 
Figure 10. The Four Detected Head Orientations 

 
Performance Evaluation 
 
Automatically tracking warfighters using camera feeds 
during training enables the automatic assessment of 
performance; even the best instructors cannot see 
everything that happens.  Important mistakes may be 
visible only briefly, may be occluded from the 
instructors’ view by buildings, or several things may 
happen simultaneously, ultimately making it difficult 
or impossible to notice everything. 
 
In our system, there are two categories of performance 
evaluation. The first is the evaluation of state 
estimation (see “Detection of States and Event”). The 
second is the evaluation of performance measures 

computed across states during an exercise. In this 
paper, we focus on the latter.  
Multiple performance measurements are recorded by 
our system. For example, there are certain measures 
that are associated with all states that the Marines can 
be in during an exercise. These would include “360-
security,” “weapon flagging,” etc. Every state also has 
a set of performance measures that provide finer levels 
of detail on how well the actions were performed.  For 
example, did the Marines “pie” off a window or door 
as they passed it? For states that involve a combination 
of actions, some combination of performance measures 
may be necessary to generate an overall assessment. In 
this section, we present details of some of these 
performance measures and trends. 
 
Our approach is to extract positions and orientations of 
the Marines by correlating data from the cameras and 
GPS units.  We then automatically calculate key 
measures of performance at regular time intervals.  The 
measures are based on Marine documents (U.S. Marine 
Corps, 1998; U.S. Marine Corps, 2005), discussions 
with SMEs, and preliminary experiments. Some of 
these measures include: (1) dispersion—whether the 
Marines are sufficiently far apart; (2) collinearity—
whether the Marines form a single column; (3) the 
number of clusters; (4) the number of conversation 
events with non-Marines; (5) the dangerousness of the 
position; (6) sniper awareness—Marine ability to see 
potential sniper position from his location; (7) 
mobility—ability to escape if necessary; (8) weapons 
danger (weapon flagging); (9) weapons coverage of 
threats; and (10) being too close to windows and doors.  
 
We automatically aggregate these measures over time 
to get overall performance trends and note problems 
for after-action review (Hixson, 1995).  Aggregation is 
done separately for units, the type of exercise, and the 
type of behavior involved in the exercise (receiving 
orders, patrol, cordon search, manning a checkpoint, 
etc.). Aggregation calculates the average, the 
minimum, the maximum, and counts in three different 
ranges for each of the above performance measures.  
Values sufficiently far from norms will be flagged for 
review. For instance, we will flag all times that 
situation awareness was in the 10th percentile for a unit 
during an exercise, all units whose average situation 
awareness was in the 10th percentile, and all exercises 
for which the average unit was in the 10th percentile. 
This will enable instructors to quickly find significant 
problems in training and identify their likely causes. 
 

BEHAVIOR SYNTHESIS 
 
The ability to play back the performance that was 
recorded, and to comment on it, is very valuable in the 
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training of every Marine. In order to provide new 
training opportunities we introduced an additional 
feature—the ability to pause a playback, change the 
course of action (e.g., the direction in which simulated 
Marines would be moving, the number of Marines), 
and generate “what-if” scenarios on the fly, i.e. to 
support a “free play” mode. 
 
This functionality is provided by a module called 
behavior synthesis. The goal of this module is to 
provide sufficiently realistic behavior to enable the user 
to substitute new behavior for what was actually 
captured in a particular exercise, in the interest of 
determining how the outcome would have changed. 
The user commands the Marines using a Graphical 
User Interface (GUI) intentionally similar to that used 
in real-time strategy games. The details of the behavior 
synthesis module would be familiar to those aware of 
best practices in the military simulation and video 
game industries, with the exception of innovations in 
the modeling of threat and the pathfinding algorithm. 
 
Threats that are not yet confirmed are usually not 
modeled in simulations. However, most of the time, in 
even the hottest battles, Marines act in response to 
where the enemy might be, rather than where they can 
actually be observed at the present time. We explicitly 
model the likelihood of a threat being at a given 
position by a statistical model—the Heatmap codes 
illustrate subjective probability that a threat occupies a 
position (see Figure 11). The model drives where the 
simulated Marines look at any given time, and in turn 
is updated based on where they look. In other words, 
unless a target is actually spotted, the threat probability 
in the viewed region is reduced. 
 

 
Figure 11. The Heatmap Codes  

 
Pathfinding has received a lot of attention in recent 
years, particularly in the video game industry. We take 
the novel approach of using a conventional A* path for 
a fireteam as a whole (see the white line in Figure 12; 
the colored lines are paths of individual Marines), and 

then carrying out individual greedy searches for each 
Marine. While the fireteam path minimizes distance 
and maximizes cover, the individual Marine paths 
optimize additional factors such as fireteam dispersion 
and distance from fireteam leader. 
 

 
Figure 12. Fireteam and Individual Marine Paths  

 
VISUALIZATION 

 
The rich data in the BASE-IT database only becomes 
useful once it is visualized. In addition to the positions, 
orientations and pose of the exercise participants, the 
results of behavior analysis must be visualized. 
 
3D rendering is accomplished using the open-source 
Delta3D simulation/game engine. Delta3D provides 
several essential visualization capabilities such as a 
scene graph complete with shader capabilities 
including support for shadows; a human character 
animation capability including hardware skinning; and 
standard motion models including one inspired by real-
time strategy games. Additionally, providing DIS or 
HLA networking should be possible if required in the 
future. 
 
Most of the technology in the PC visualization 
component is familiar to those acquainted with the 
state of the art in the development of 3D military 
simulations or video games. However, it was necessary 
to innovate to produce an inexpensive method for 
driving the gaze and aim of the simulated characters 
(see Figure 13). We developed a novel technique to 
control gaze and aim via a constant-time algorithm for 
generating blend weights (Figure 14), which are then 
fed to a conventional blending capability in Delta3D’s 
character animation subsystem. 
 
Because we are using cameras to observe individuals 
as they actually look, using that video information is 
sometimes preferable to a 3D reconstruction (simulated 
Marine). To enable this we provided 2.5D visualization 
of the data. The name 2.5D is appropriate, because 
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while the environment geometry in the visualization is 
true 3D, the characters are video, i.e. 2D. 
 

 
Figure 13. Marine Gaze is Modeled in Detail 

 

 
Figure 14. Constant-Time Gaze or Aim Direction 

 
The 2.5D system, called MapView, provides for 
immersive coverage and intelligible embedded display 
of video and auxiliary data annotations over a wide 
area of both urban and open terrain during AAR, 
including events, and performance metrics. The 
MapView approach is to project multiple videos onto a 
site model, enabling interpretation of visual action in 
the global context of the model. We also display 
symbolic activity and an event view, showing tracks 
and events for all objects on line in real time. A graphic 
of our MapView is presented in Figure 15. 
 

DISPLAYS AND USER INTERFACES 
 
Our BASE-IT system includes several display 
platforms to facilitate individuals and group tasks 
during the various phases of training. For pre-operation 
briefings or AAR done indoors, we have developed 
seamless multi-projector displays that can be rapidly 
set up in a variety of indoor spaces. For pre-operation 
instruction and AAR we have also developed a 
projector-based virtual-physical sand table display. 
Finally, we have identified and will be developing 

hand-held interfaces for instructors during field 
exercises. 
 

 
Figure 15. MapView 

 
Seamless Multi-Projector Displays 
 
While projection-based displays have long been used to 
create large-format displays, only in the last decade 
have researchers developed camera-based calibration 
techniques that can turn the arduous task of display 
setup and maintenance into the mundane (Raskar et al., 
1998; Surati, 1999). During this period, projective 
display research at UNC has focused on improving 
both calibration and rendering techniques for creating 
ad hoc multi-projector display systems that are 
compact, rapidly deployable, and robust. 
 
We feel two keys in achieving these goals are the 
ability to display on the surfaces of ordinary room 
walls (no need for special display screens) and the 
concept of an intelligent projector unit (IPU) that 
combines the projector, calibration cameras, and the 
image generator into a single module. We have 
demonstrated the use of prototype IPUs (Figure 16 (a)) 
to create seamless immersive display on walls and 
across the corners of an ordinary room as shown in 
Figure 16 (b)–(c). 
 
To make such ad hoc displays more operationally 
robust, we have developed a distributed framework for 
continuous calibration (Johnson et al., 2009) that runs 
concurrently with the application to make the display 
robust to small perturbations in projector pose, thus 
reducing the need to stop and re-calibrate. 
 
A Virtual-Physical Sand Table 
 
Physical “sand tables” have been used in the military 
for many years (Bond and Crouch, 1922). Their 
advantages include simplicity and a natural means for 
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conveying tactical plans and reviews related to the 
positions and movements of assets over time. 
Examples in use today for training include setups that 
replicate towns using fixed wooden blocks for 
buildings, and paint or markers to indicate roads and 
walls.  
 
Our BASE-IT system inherently includes the digital 
training content to facilitate a modern version of the 
traditional table. To accomplish this we employ digital 
projectors and Shader Lamps techniques (Raskar et al., 
1999; Raskar et al., 2001) to render textures, tracks, 
moving icons, and training-related information onto a 
physical model of the site. We have developed a 
transportable prototype at UNC, shown in Figure 16 
(d)–(g), and a duplicate to be used at NPS. The design 
involved managing constraints such as the number of 
projectors, pixel densities on the various surfaces, 
accessibility to multiple users, transportability and size.  
 
Handheld Interfaces (Future Work) 
 
In addition to a display system for groups, we have 
identified a need for a small, portable device for use by 
the instructors during training. We envision a 
networked handheld device capable of displaying video 
and 3D graphics—perhaps an Ultra-Mobile PC 

(UMPC) or even an iPhone or Android phone. Uses for 
the device include live annotations by the trainers, 
communication with other trainers (with the ability to 
send annotated images), and virtual views (either live 
video from cameras or synthesized views using 3D 
graphics). Adding pose estimation capability to the 
handheld will enable augmented-reality overlays so the 
trainer can see information about the locale, for 
example that there is a squad of Marines behind a 
building or that a pile of roadside rubbish is booby 
trapped. 
 

CONCLUSIONS 
 
We are now almost two-thirds of the way through a 
three-year effort aimed at realizing the demonstration 
of a vision for an integrated and automated system. The 
effort involves experts in training practices, human 
factors, behavioral analysis, computer graphics, and 
computer vision; along with collaborators in the USMC 
and support/leadership from the Office of Naval 
Research. We recognize that the realization of such a 
long-term vision is a challenging goal, both in terms of 
the new algorithms that need to be developed as well as 
numerous technical issues that need to be resolved in 
such a complex system. However we are optimistic 
about the results so far, and we look forward to our 

Figure 16: Current display system research-related prototypes. (a) A projector, two cameras, and a laptop 
computer combined into an “intelligent projector unit” or IPU. (b) The corner of a room that includes a 
support pillar. (c) We use an IPU to render imagery that is corrected for the unusually shaped display 
surface. (d) Our projector-based sand table prototype, showing only the white surfaces of the physical 
model of a training site. (e) The sand table system being used to visualize the Sarnoff facility in Princeton, 
NJ. (f) The demonstration of an interactive annotation/marker capability. (g) A demonstration showing 
Marine icons. 
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eventual data capture and system demonstrations 
involving actual training exercises. 
 
Today, the dual goals of maximizing the potential that 
physical training ranges have, and making sure the 
associated training is the most effective, are of 
paramount importance to the military in its 
determination to train to fight and fight to win. We are 
confident that striving to bring different sensor systems 
and increasing the level of automation of the sensor 
manipulation and performance analysis in such 
environments is the best way to ensure that the future 
training ranges respond to such a high goal.  
 
While in this system we incorporated only three types 
of sensors (cameras, GPS and INS), in the future the 
systems for instrumented ranges will also incorporate 
sensors that capture audio (commands and shouts), 
weapon deployment and other information pertinent to 
unit activity. 
 
We also believe that the fundamental methods 
suggested in this project could be applied to other types 
of training ranges, including the portions of full 
combined arms exercises, for example. And beyond 
training, we believe long-term potential applications 
include port and airport security, surveillance, 
homeland security, and intelligence operations. 
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