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ABSTRACT

Many human motion tracking systems average, integrate, or corre-
late device samples over some non-zero period of time in order to
produce a single system-level measurement. This is done to reduce
the effects of device noise, or because one has no choice with some
devices. The problem is that the target (user) is likely to be mov-
ing throughout the sample time, and this movement will in effect
introduce additional “noise” (uncertainty) into the measurements.

In this paper we introduce a method to optimize the device sam-
pling time at the measurement level. The central idea is to deter-
mine the sampling time that maximizes device noise filtering while
minimizing the impact of the expected target motion over the inter-
val. We present the theory behind the approach, and both simulated
and real-world examples.
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1 INTRODUCTION

For any given human motion tracking system there is an inherent
pose uncertainty associated with the hardware design, independent
of any particular tracking algorithm. This uncertainty comes from
such things as poor signal, under-constrained measurements, mea-
surement noise, and “competition” from dynamic human motion.
(If the users would only sit still!) In short, the hardware design
matters, as it determines an effective bound on how well one can
resolve the pose of a target throughout the volume. No algorithm
can overcome a loss of signal resulting from poor hardware choices.

In some circumstances, for example if the hardware design is rel-
atively homogeneous, and the design choices are correspondingly
limited, one can attempt to automatically optimize the hardware de-
sign as in [8, 15, 11] and [9, 10]. As the design becomes more com-
plex, such optimizations become more or completely intractable.
An alternative approach in these cases is to provide a human with
an appropriate indication of the “cost” of a design, and then allow
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Figure 1: The tracking system design process with hardware opti-
mization at the system and measurement level.

them to vary the parameters in an attempt to minimize the cost. This
intelligence amplification approach [2, 3] has been used to evaluate
specific designs [12] and is the basis for design tools like Pandora
[17], an interactive software simulator for human-in-the-loop opti-
mization of multi-camera setups.

In [1] we introduced a more general method for evaluating, com-
paring, and interactively optimizing the expected performance of
tracking and motion capture systems. Given a candidate hardware
design and some model for the expected user motion, we compute
and interactively visualize estimates for the asymptotic (steady-
state) pose uncertainty throughout the working volume. (Asymp-
totic uncertainty is one possible measure of the inherent uncertainty
for a particular design.) As with systems for the simulation and vi-
sualization of fluid or air flow, the idea is to modify the hardware
design, looking for “hot” and “cold” spots in uncertainty, unusual
shapes or variations in uncertainty, or uncertainty sensitivities to the
hardware configuration. As illustrated in Figure 1, this hardware
design optimization process is intended to augment traditional de-
sign and simulation practices, offering another tool to achive the
best possible hardware design.

As indicated in the red box on the right in Figure 1, one can con-
sider the hardware design optimization at two levels. In particular
we think of the design optimization described above and addressed
in [1] as a system-level optimization. At this level one is primarily
concerned with the choice of sensors/sources, the number and ar-
rangement of the devices, and the device sampling rates, all in the
context of the expected user motion.



In this paper we introduce the notion of a measurement-level op-
timization. In particular we introduce the idea that in addition to an
optimal device sample rate there is an optimal sample duration, for
systems that sample devices over some non-zero time interval. For
example, because cameras integrate light over a non-zero shutter
time, estimating camera motion or dynamic scene structure using
feature or color matching always involves a tradeoff between max-
imizing the signal (dynamic range or contrast) and minimizing the
motion-induced noise (blur). If the shutter time is too short, the
uncertainty in the measurements will be greater than necessary. If
the shutter time is too long, the measurements will be corrupted by
scene or camera motion. In this paper we present a structured way
of thinking about such tradeoffs, an approach for determining the
optimal sample time, and some experimental results.

2 STATE-SPACE MODELS

In order to trade off electrical measurement noise against motion-
induced measurement noise (e.g., blur in a camera) it is useful to
characterize each in a common mathematical framework. In [1] we
described the system-level optimization using state-space notation,
and we do so again here for the measurement-level optimization.

Without loss of generality, let us assume a 3D tracking system. In
this case the state would likely include the 3D position, and perhaps
also the corresponding derivatives with respect to time (3D velocity
and 3D acceleration). If we consider only position and velocity, the
6D state would be

x̄ =
[

x y z ẋ ẏ ż
]T

. (1)

Given any point in this state space one can use a mathematical mo-
tion model to predict how the user will move over some small time
interval. Similarly one can use some form of a measurement model
to predict what will be measured by each hardware device. Both
of these models can be structured with deterministic and random
components, and we do so in the following sections.

2.1 Motion Models
There are at least two ways to model the expected user motion: us-
ing stochastic models with deterministic and random components,
or using deterministic (only) classical mechanics. We begin by dis-
cussing the former, and touch on the latter at the end of the section.

Motion models have traditionally been described in terms of a
physical parameter that can be modeled as a constant over time.
This basically indicates the “order” of the model—the number of
terms in a Taylor series describing the motion. Examples of such
models include [7] constant position (ẋ = 0), constant velocity (v̇ =
0), and constant acceleration (ȧ = 0). See Figure 2.
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Figure 2: Traditional Motion Models

In a typical stochastic model the “constant” term (e.g., x0, v0, a0)
is replaced with an integrated random noise process, i.e. a random
walk. So in the “constant” velocity case shown in Figure 2, the po-
sition would instead be modeled as x = x0 + vt, where v =

∫
a, and

a ∼ N(0,q).1 If we incorporate this random component into each
type of constant motion model, we end up with what are typically

1We use the notation x ∼ N(µ,σ2) to indicate that x is normally dis-
tributed with mean µ and variance σ2.

called Position (P), Position-Velocity (PV) and Position-Velocity-
Acceleration (PVA) motion models. Figure 3 shows the resulting
stochastic models, using integrals to relate the position x with its
temporal derivatives and the “driving” noise source N(0,q).

P Motion Model PV Motion Model PVA Motion Model
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Figure 3: Stochastic Motion Models

Each of the above forms of stochastic motion models can be used to
describe a different type of (actual) user motion. For example, a P-
motion model might be an appropriate choice for situations where
the user is almost still most of time, and the velocity can be ef-
fectively (although not perfectly) modeled by random noise. In this
case one is modeling the position as a random walk. Similarly if the
user’s velocity is relatively constant for periods of time, and the ac-
celeration is somewhat random, a PV-motion model might be more
appropriate. In this case one is modeling the velocity as a random
walk. Similarly one can model the acceleration as a random walk.

For an n× 1 state vector x̄, the corresponding continuous-time
change in state can be modeled by the linear process equation

dx̄
dt

= Acx̄+ q̄c, (2)

where Ac is an n× n continuous-time state transition matrix, and
q̄c = [0, . . . ,0,N(0,q)]T is an n× 1 continuous-time process noise
vector with corresponding n× n noise covariance matrix Qc =
E{q̄c q̄c

T}, where E{} indicates expected value. In Equation (2),
Acx̄ reflects the deterministic component of the model and q̄c the
random component. See Table 1 for the process parameters corre-
sponding to the P, PV, and PVA models in Figure 3.

Model x̄ Ac Qc

P [x]
[

0
] [

q
]

PV
[

x
ẋ

] [
0 1
0 0

] [
0 0
0 q

]

PVA

 x
ẋ
ẍ

  0 1 0
0 0 1
0 0 0

  0 0 0
0 0 0
0 0 q


Table 1: Parameters for P, PV, and PVA motion models.

To evaluate the impact of the (expected) user motion over some
time interval, one needs to examine the impact of the injected noise
at each stage of the process (each element of the state). As time
passes, the noise variance at and between each state grows, both
deterministically as a result of the integration, and randomly as a re-
sult of the injected noise N(0,q). One can integrate the continuous-
time process Equation (2) over a time interval δ t to obtain an n×n
discrete-time (sampled) Q matrix. The solution to this integration
is given by

Q =
∫

δ t

0
eActQceAT

c tdt (3)

as described in [13]. With appropriately formed Ac and Qc matrices
one can use Equation (3) to compute the discrete time Q matrices
for each of the motion-models in Figure 3. The three corresponding
discrete-time (sampled) Q matrices are

QP = [q δ t] , (4)

QPV =

[
q δ t3

3 q δ t2

2
q δ t2

2 q δ t

]
, and (5)



QPVA =

 q δ t5

20 q δ t4

8 q δ t3

6
q δ t4

8 q δ t3

3 q δ t2

2
q δ t3

6 q δ t2

2 q δ t

 . (6)

This stochastic formulation for the motion model is very general,
and is often already available (modeled) for tracking systems that
(for example) already use a Kalman filter [14, 19]. For example,
systems by Intersense and 3rdTech (HiBall-3100TM) use Kalman
filters, as do many research systems [16, 20, 18, 4]. However it is
possible to consider the optimal sample time using only determinis-
tic motion integration, i.e. simple classical mechanics. For example
one might simply integrate some expected velocity over the sample
interval to obtain a first-order estimate of the impact of the user
motion on the measurement.

2.2 Measurement Models

Similar to the motion noise model, the m×1 measurement vector z̄
obtained from any device can be described by a linear combination
of deterministic and random components, as

z̄ = Hx̄+ r̄, (7)

where H is an m×n measurement matrix that defines the relation-
ship between the n×1 state space and the m×1 measurement space,
and r̄ is an m× 1 measurement noise vector with corresponding
m×m noise covariance matrix R, i.e. r̄ ∼ N(0,R). If the relation-
ship between the state and the measurements is nonlinear, then H
can be approximated by the Jacobian of the nonlinear function.

Typically both H and R can be determined by some sort of
“bench top” calibration. For example, given a calibrated camera,
the 2D measurement of a 3D point would be modeled as the trans-
formation and projection of a point from the world into the camera
and onto the image plane. The measurement noise covariance R can
be determined experimentally, by computing the covariance of a set
of fixed points (in the working volume) over time. If the variance
in the measurements changes with distance (for example) then one
can fit a parametric curve to the experimental results, and compute
R as a function of distance.

Note that the measurement matrix H can also be used to trans-
form state-space uncertainly, e.g., the Q matrix, into the measure-
ment space where it can be compared with R. Because Q is a
variance, Q is mapped into measurement space as HQHT. All of
the simulations in the following sections are one-dimensional, with
H = 1 for P models, H = [1,0] for PV, and H = [1,0,0] for PVA.

Finally note that it is the measurement device(s) that determine
the system update period δ t. Each device may operate at a differ-
ent δ t, or every device may operate at the same rate. In any case,
independent of the rate of updates we are now going to examine
what happens during the measurement (sampling) associated with
any one update.

3 MEASUREMENT-LEVEL OPTIMIZATION

Without loss of generality, let us assume a regular update cycle for
a tracking system. Each cycle for a particular device can be divided
into sampling, processing, and idle time as shown in Figure 4. As
implied in the diagram, δ t = τs + τp + τi.

Typically one wants to minimize the idle time τi in an attempt
to generate estimates as frequently as possible. Similarly one gen-
erally wants to minimize the processing time τp, to minimize the
likely change in target state between system-level updates (δ t), thus
allowing for simplification of the estimation algorithm, which fur-
ther reduces τp, minimizing state change, etc. This circular rela-
tionship, related to time-motion optimization, was originally de-
scribed in [5]. Indeed when one reduces δ t for a particular device
one will likely see improved system-level performance [1].

3δt2δtδt0

τs τp τi
sample

System-Level

Measurement-Level

process idle

Time

Figure 4: At the system level, a tracking system attempts to estimate
the target pose at some regular interval δ t (seconds). At the mea-
surement level this can be further divided into sampling, processing,
and idle time.

3.1 Sampling Time (τs)

In keeping with the apparent “less is more” circumstances described
above, it would seem that one would also want to minimize the
device sampling time τs. Indeed if the device measurements are
obtained using instantaneous analog-to-digital conversion circuitry,
then τs = 0. In this case each measurement will have a constant
amount of noise or uncertainty R associated with it.

However there are many situations where device measurements
are not instantaneous, either because they cannot be in theory, or
because it is impractical to do so. In such cases, τs > 0. For ex-
ample, designers sometimes choose to average some number of
instantaneous device samples over τs in an attempt to reduce the
effects of device noise. In addition, image-forming cameras inher-
ently integrate photons over τs (the shutter time) and then deliver
that integrated energy in the form of a single image. In both of
these situations the noise or uncertainty associated with each mea-
surement is no longer constant, but a function R(τs) that typically
decreases as τs (and/or the number of averaged samples) increases.

3.2 Optimal Sampling Time (τs)

If increasing τs (and/or using more samples) reduces the effects of
the device noise, then why not increase τs as much as possible?
The problem is that for human tracking or motion capture systems,
the target (the user) is likely to be moving throughout the sample
time τs. This movement will, in effect, introduce some additional
“noise” (uncertainty) into the measurement, and that noise will ac-
tually increase as τs increases. In effect, any measurements based
on samples collected over τs > 0 have an uncertainty that is a com-
bination of the expected device noise and the target motion uncer-
tainty. Typically when τs is small the device noise dominates, and
as τs increases the target motion uncertainty dominates. In between
there is an optimal τs where neither dominates—where the sum of
the two is minimal. Using the stochastic motion and measurement
models described in Section 2 one can determine this optimal τs.

Figure 5 depicts three common measurement situations: instan-
taneous, averaged, and integrated. For each example we model the
uncertainty in the process (user motion) as a noise-driven linear PV
model as described earlier in Section 2.1. Figure 5 (a) represents a
situation where the target pose is measured instantaneously as in-
dicated by the switch. This corresponds to a typical analog-digital
conversion with sample & hold circuitry. In (b), s instantaneous
samples are collected over τs and then averaged. This is the ap-
proach used in the HiBallTM system for example. In (c) the signals
are continuously integrated over the interval τs and the integral is
then sampled. This corresponds to a camera.

In Figure 6 we show the results of three one-dimensional sim-
ulations corresponding to the measurement situations in Figure 5.
Each plot shows simulated target motion uncertainty Q and simu-
lated device noise R for the corresponding system shown in Fig-
ure 5. In each case there is a point where the sum is minimal, i.e.
the optimal τs. We now discuss each situation in turn.
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Figure 5: Three possible measurement scenarios for system with a
position-velocity (PV) process model as described in Section 2.1: (a)
instantaneous samples; (b) s instantaneous samples are averaged
over τs; and (c) signals are integrated over τs and then sampled.
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Figure 6: Three Q-R plots corresponding to the example measure-
ment scenarios shown in Figure 5: (a) instantaneous samples; (b)
s instantaneous samples are averaged over τs; and (c) signals are
integrated over τs and then sampled. In each the solid blue curve
represents the uncertainty due to random measurement noise, while
the dashed red line represents the uncertainty due to (possible) user
motion. (For these examples the relative positions of the optimal τs
values are more important than the absolute numbers.)

(a) Single Instantaneous Samples (τs = 0)
Case (a), where a single instantaneous device sample is collected at
each system update time t = kδ t (k = 0,1,2, . . .) is a unique situa-
tion. In this case, because τs = 0, one is typically only concerned
with determining the optimal system-level update period δ t. When
trying to determine the best δ t in this special case, the device noise
is essentially irrelevant because it is constant for every sample. And

because the uncertainty in target state between system-level updates
grows with δ t, one essentially wants to keep δ t as small as possi-
ble, minimizing τp and τi (see Figure 4). This situation is shown in
Figure 6 (a), where R is constant, and Q[1,1] is of the form of the
upper-left element of the QPV in Section 2.1. In this special case,
the optimal δ t is simply as small as possible; the longer one waits
between system-level measurement updates, the more uncertain the
user pose, etc. per the circular relationship described in [5].

(b) Average s Samples Over τs

Case (b) represents the situation where at every system-level up-
date cycle t = kδ t one collects s (s > 1) instantaneous samples
(over period τs) and averages them to produce a single system-
level measurement for time t + τs/2. This is the approach used
in the HiBallTM system for example. Because the device noise R
and process (user motion) uncertainty are both being averaged, they
are both now a function of time, and they both affect the variance
(noise) in the averaged measurement z(t + τs/2). The variance in
the average measurement due to R decreases with increasing time
as the device noise is averaged. And while the measurement vari-
ance due to Q (target motion uncertainty) increases with time, it
increases more slowly than in case (a). The optimal τs (over which
one would average the s samples) is at min(Q(τs)+ R(τs)), about
where the curves cross in Figure 6 (b).

That Q increases more slowly than in case (a) should make sense
intuitively, as averaging is a form of low-pass filtering. However
we can also model the effect stochastically. Averaging the target
motion can be modeled by adding another element to the state. In
case (a) the one-dimensional PV-model state was simply x̄ = [x ẋ]T.
In case (b) it becomes x̄ = [E{x} x ẋ]T. Noting that for a constant-
velocity model, dE{x}/dt = ẋ/2, and referring back to Section 2.1,
we can augment the continuous time state transition matrix Ac with
an additional averaging term, and increase the dimension of Qc,

Ac =

 0 0 1/2
0 0 1
0 0 0

 Qc =

 0 0 0
0 0 0
0 0 q

,

and use Equation (3) again to obtain the new discrete time Q

Q =

 q (δ t)3

12 q (δ t)3

6 q (δ t)2

4
q (δ t)3

6
q (δ t)2

4

QPV

 . (8)

where QPV is as in Equation (5). The target motion uncertainty in
Figure 6 (b) is modeled as Q[1,1] = q(δ t)3/12 (dashed red line).

(c) Integrate Over τs then Sample
Case (c) represents the situation where once every system-level up-
date cycle t = kδ t the device signal is integrated over the interval
τs, and the integral is then sampled to produce a single system-level
measurement for time t +τs. This corresponds to the operation of a
camera, where the shutter opens to collect photons (the shutter time
is τs) and the result is read back as an image. While it does not
appear that the device noise R is being integrated, the fact that the
signal is integrated means that the signal/noise ratio goes up with
time, i.e. the noise/signal ratio goes down. So again the device
noise R and process (user motion) uncertainty are both functions of
time, and they both affect the variance (noise) in the integral mea-
surement z(t + τs).

As in case (b), integrating the target position x can be modeled by
adding another element to the state: x̄ = [

∫
x x ẋ]T. Referring back

to Section 2.1, augmenting the process with an additional integrator
effectively changes it from a PV to PVA model, with Ac and Qc as
shown in the PVA row of Table 1. We then use Equation (3) to
arrive at the new discrete time Q as in Equation (9),



Q =

 q (δ t)5

20 q (δ t)4

8 q (δ t)3

6
q (δ t)4

8
q (δ t)3

6

QPV

 (9)

where QPV is as in Equation (5). The target motion uncertainty in
Figure 6 (c) is modeled as Q[1,1] = q(δ t)5/20 (dashed red line).
The optimal τs (over which one would integrate the device signal)
is at min(Q(τs)+R(τs)), about where the curves cross.

3.3 Dynamic Optimal Sampling Time (τs)
As discussed in Section 2.2, one can typically characterize R as
a function of time (and any other relevant parameters) using a
bench-top setup consisting of the actual measurement devices. And
while one cannot easily characterize Q experimentally, one can use
stochastic process models as described above.

If the expected device noise and user motion statistics are uni-
modal and stationary, an optimal τs can be determined for each de-
vice during the hardware design process. However if the expected
user motion and device noise statistics are not stationary during
normal operation, or if the variance q of the driving process noise
is expected to vary, or the form of the model might change, one
can compute the optimal sampling time τs dynamically at run time.
This could be done numerically if necessary, but if one has or can
approximate analytical expressions for R(τs) and Q(τs), one can dy-
namically solve for the τs where R(τs)+ Q(τs) is minimized. This
will allow the system to continually adjust the optimal sampling
time based on the current circumstances. For example, if the target
motion starts slowing down, τs could probably be increased, and
when the target motion starts speeding up again, τs should proba-
bly be decreased.

4 EXPERIMENTS

Beyond our simulations we have carried out a simple controlled
experiment to illustrate the effect. In summary, we used two cali-
brated cameras to image a rotating LED, triangulated the LED po-
sition over time, fitted those points to a circle, and computed the
statistical deviation from the circle for different shutter times (τs).

Our test setup is shown in Figure 7. We mounted a bat-
tery operated LED on a 15 cm (approximate) arm attached to a
computer-controlled rotation stage (Directed Perception PTU-D46-
70). About 50 cm away we mounted two PtGrey Dragonfly dig-
ital cameras pointed towards the rotating LED. The cameras had
6 mm lenses, and using the PtGrey software we fixed all of the
imaging parameters (including gain at 1.0) except the shutter time
(τs), which we varied under computer control.

PtGrey DragonFly 
cameras (2)

Directed Perception PTU-D46-70 
computer controlled rotation stage

Battery-operated LED

Figure 7: Experimental setup with rotating LED and two cameras.

Initially we performed two static experiments to model the mea-
surement noise. First we positioned the LED at the near side of

the circle (about 35 cm away from the cameras), held it still, and
measured the standard deviation of the 2D centroids (on the image
plane) as we varied the shutter time. We fit a curve to the deviations
to obtain R35cm(τs). The results are shown in Figure 8 (a), where
the blue asterisks are the individual deviations, and the solid red
line is the fitted curve. We repeated this experiment with the LED
at the far side of the circle (about 65 cm away from the cameras) to
obtain R65cm(τs). The results are shown in Figure 8 (b).

Because there was essentially no uncertainty in the motion of the
LED, we used simple classical mechanics to predict the likely blur
of the LED in the images given the varying τs. Specifically, we pre-
dicted the blur by first computing the arc length of the LED path
over the shutter interval, and then projecting that onto the camera
image plane. The result is shown as a black dashed line in Fig-
ure 8. The sum of this predicted LED motion (blur) and the actual
measurement noise (solid red) curves is shown in dashed green in
Figure 8, and the predicted minimums (optimal τs) are noted.
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Figure 8: The actual measurement noise and predicted LED motion
noise (blur) curves for a rotating LED and varying τs.

Finally we performed several dynamic experiments (rotating
LED) to see if we could observe the “saddle” effect predicted in
Figure 8 as we varied τs. We rotated the LED about one revolution
every 10 seconds, capturing 30 frame-per-second imagery with the
(synchronized) cameras, with around two complete revolutions per
shutter setting (τs). We then undistorted the imagery, found the
centroids of the LED in all images, triangulated to find the 3D posi-



tions, and fit the points to a 3D circle.2 We computed the statistics
on the fit in terms of the Euclidian distance to the circle, the distance
to the plane of the circle, and the distance to the cylinder formed by
the circle. The results are shown in Figure 9. The minimums ap-
pear to be at around τs = 0.6 ms, which is about the average of the
minimums predicted in Figure 8: around 0.4 ms in (a) and about
0.8 ms in (b). The minimums are statistically significant.
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Figure 9: The statistics of the actual distances of the triangulated
LED points (in 3D) to the fitted circle, for the rotating LED, and with
varying τs. (The plane and cylinder differences are too small to see.)

5 CONCLUSIONS

In the future we plan on performing more controlled experiments,
in particular for a camera-based motion capture system, where the
human dynamics might be a factor in the precision one can achieve
given the need for non-zero sample time. Mocap systems typically
use LED-based “ring lights” to inject signal, thus improving the
measurement noise curves, however it could be that non-trivial hu-
man motion can occur during the time it takes to turn on (pulse)
the LEDs, take a picture, and turn off the LEDs. Controlled experi-
ments on a large scale are hard, but we have some ideas.
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