
Stereovision on GPU

Ruigang Yang, Liang Wang
University of Kentucky

{ryang,liang}@cs.uky.edu

Greg Welch, Marc Pollefeys
University of North Carolina at Chapel Hill

{welch,marc}@cs.unc.edu

1. INTRODUCTION
Depth from stereo has traditionally been, and continues to be one
of the most actively researched topics in computer vision. Recent
development in this area has significantly advanced the state of the
art in terms of quality. However, in terms of speed, these best stereo
algorithms typically take from several seconds to several minutes
to generate a single disparity map, limiting their applications to
off-line processing. There are many interesting applications, such
as robot navigation and augmented reality, in which high-quality
depth information at video rate is crucial.

In this short paper we summarize a number of techniques we have
developed over the past few years to improve both the speed and
quality of real-time stereo algorithms. Common to these techniques
is to map the computation to commodity graphics hardware (i.e.,
GPUs) to exploit its parallelism and massive bandwidth there. Eval-
uation using the benchmark Middlebury database shows that our
approaches are among the best and fastest stereo algorithms so far.

Figure 1: Two sample images and their depth maps from our
live system on a 3.0GHz PC with an ATI’s Radeon XL1800
graphics card. With this quality, we can achieve 43 fps with
320 × 240 input images and16 disparity levels.

2. METHOD
Given a pair of images, the goal of a stereo algorithm is to estab-
lish pixel correspondences between the two images. The corre-
spondence can be expressed in general as a disparity vector, i.e.,
if PL(x, y) andPR(x′, y′) are corresponding pixels in the left and
right image respectively, then the disparity ofPL(x, y) andPR(x′, y′)
is defined as the difference of their image coordinates–[x−x′, y −

y′]. Therefore, the output of a stereo algorithm is a disparity map,
i.e., a map that records the disparity vector for every pixel in one
image (the reference image) – the disparity map for the other im-
age is automatically defined because of the symmetry in disparity
vectors.

Our stereo framework contains four major steps: rectification, match-
ing cost computation, cost aggregation, and finally disparity selec-
tion. Rectification involves a 2D projective transformation for each
image so that the epipolar lines are aligned with scan lines. In the
second step, a matching cost for every possible disparity value for
each pixel is computed. To reduce the ambiguity in matching, the
cost is summed over a small neighboring window (support region)
in the third aggregation step. The last disparity selection step picks
an “optimal” disparity value for each pixel. In the next few sec-
tions, we present several techniques that fit well on the graphics
hardware to receive maximum acceleration.

2.1 Rectification
The standard approach to perform image-pair rectification consist
of applying3×3 homographies to the stereo images that will align
epipolar lines with corresponding scanlines. It is also a common
practice to correct non-linear lens distortions at the same time. A
common optimization is to create a look-up table that encodes the
per-pixel offset resulting from lens distortion correction and the
rectifying homography. The latest generation of graphics hard-
ware supports dependent-texture look-up that makes precise per-
pixel correction possible.

2.2 Matching cost computation
A widely used matching cost is the the absolute difference between
the left and right pixel intensities:

|PL(x, y) − PR(x + d, y)| . (1)

whered is the hypothesized disparity value. For every pixelPL(x, y)
in the reference image, we loop through all disparity hypotheses
to calculate their matching costs using equation 2.2. In the end,
we obtain a matching cost volumeC – a three-dimensional array
indexed byx, y, and d. The computation can be implemented
on GPU using fragment program and texture mappings. Further-
more pixels can be packed to use the vector processing capability
of GPU. Details can be found in [5].

2.3 Cost Aggregation
The task of cost aggregation is sum over the per-pixel matching
cost over a small window to reduce the ambiguity in matching cost.
Toward this end, we have developed three different approaches:
MIPMAP, adaptive window, andcolor-weighted.

MIPMAP Modern GPUs have built-in box-filters to efficiently gen-
erate all the mipmap levels needed for texturing. Starting from a
base imageP 0 the following filter is recursively applied:

P
i+1
u,v =

1

4

2v+1X
q=2v

2u+1X
p=2u

P
i
p,q,

where(u, v) and(p, q) are pixel coordinates. Therefore, it is very
efficient to sum values over2n×2n windows. The final aggregated
matching cost is the sum over differently-sized windows. This ap-
proach combines the global characteristics of the large windows
with the well-localized minima of the small windows. Details can
be found in [4].

Adaptive Window (AW) Another cost aggregation scheme is to
use an adaptive window that can be accurately evaluated at every
pixel location. Our scheme has six different support windows, each
corresponding to a different shape configuration–corner, edge, etc.
The one with the minimum score is used as the aggregated match-
ing cost. To efficiently implement this on GPU, we use the hard-
ware support for bilinear texture interpolation. By sampling in the
middle of 4 pixels, it is possible to average those pixels. To sum
over a large window, we implement a two-pass algorithm. More
details can be found in [5].

Color-weighted (CW) We adopted the adaptive weight approach
from [6]. The basic idea is to aggregate the matching cost based on
both color and geometric proximity. Given a pixelp (we dropped
the coordinate indices for simplicity in notation), and a pixell in
its support region, the matching cost froml is weighted by the
color difference (∆cpl)) betweenp and l, and the Euclidian dis-
tance (∆gpl) betweenp andl on the image plane. The formulation
for the weightw(p, l) is:

w(p, l) = exp

�
−(

∆cpl

γc

+
∆gpl

γg

)

�
, (2)

whereγc andγg are weighting constants.

The aggregated cost is computed as aweighted sum of the per-
pixel cost. This simple approach has shown to be remarkably effec-
tive. However, this aggregation scheme is very expensive in terms
of computation. Unlike many schemes that utilize a rectangular
window, which can be efficiently computed either incrementally
or through separate passes, the weighting mask varies from pixel
to pixel because the center pixel has different colors. As reported
in [6], it took about one minute to produce a small depth map (i.e.,
about 0.03 Mde/second), which makes real-time application impos-
sible. We designed two approximation schemes on GPU to speed
up the process over two orders of magnitude. More details can be
found in [2].

2.4 Disparity Selection
Given the real-time constraint, there are only two options for dis-
parity selection: “winner-take-all” (WTA) that assigns each pixel to
the disparity value with the minimum cost, or to use Dynamic Pro-
gramming (DP) that optimizes the results on a scanline by scanline
basis. WTA is very simple from a computational standpoint but
the result is more sensitive to image noise and calibration errors.
DP offers horizontally optimized result but the inter-scanline con-
sistency is not enforced. Both WTA and DP can be implemented
on GPU. We found out that DP does not receive significant speed
up in GPUs, probably due to its complex branching and looping
structure.

3. RESULTS AND CONCLUSION
We evaluated our algorithm using the Middlebury data set [1]. The
color-weight-based aggregation combined with dynamic program-
ming yields the best results, as shown in Figure 2. In terms of
speed, as shown in Table 1, MIPMAP+WTA is the fastest, achiev-
ing close to 1000 millions of disparity evaluations per second (MDE/s)1.
In contrast, commercial stereo packages can only achieve about 150
MDE/s. Some video results can be found in [3].

Figure 2: Resulting depth maps using color-weight+DP.

MIPMAP+WTA AW+WTA CW+WTA CW+DP
MDE/s 980 560 47 53

Table 1: Speed of Different Algorithms.The test system is a
3.0Ghz PC with a Radeon XL1800 graphics card from ATI.

We already started to further improve the quality and speed, includ-
ing global-optimization based approaches and exploring temporal
consistency. We believe that more flexible writing operations in
commodity hardware can further allow more complex algorithms
to exploit their full potentials.

4. REFERENCES
[1] D. Scharstein and R. Szeliski. www.middlebury.edu/stereo.
[2] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister. High-quality

Real-time Stereo using Adaptive Cost Aggregation and Dynamic
Programming. InProceedings of 3DPVT, 2006.

[3] L. Wang, M. Liao, and R. Yang.
http://www.vis.uky.edu/̃liaomiao/GPUstereo.htm.

[4] R. Yang and M. Pollefeys. Multi-Resolution Real-Time Stereo on
Commodity Graphics Hardware. InProceedings of Conference on
Computer Vision and Pattern Recognition (CVPR), pages 211–218,
2003.

[5] R. Yang, M. Pollefeys, and S. Li. Improved Real-Time Stereoon
Commodity Graphics Hardware. InIEEE Workshop on Real-time 3D
Sensors and Their Use (in conjunction with CVPR’04), 2004.

[6] K.-J. Yoon and I.-S. Kweon. Locally Adaptive Support-Weight
Approach for Visual Correspondence Search. InProceedings of
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 924–931, 2005.

1The number of disparity evaluations per second corresponds to
the product of the number of pixels times the disparity range times
the obtained frame-rate and therefore captures the performance of
a stereo algorithm in a single number.

