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Abstract

The appearance of a scene is a function of the scene con-
tents, the lighting, and the camera pose. A set of n-pixel
images of a non-degenerate scene captured from different
perspectives lie on a 6D nonlinear manifold in <n. In gen-
eral, this nonlinear manifold is complicated and numerous
samples are required to learn it globally.

In this paper, we present a novel method and some
preliminary results for incrementally tracking camera mo-
tion through sampling and linearizing the local appearance
manifold. At each frame time, we use a cluster of calibrated
and synchronized small baseline cameras to capture scene
appearance samples at different camera poses. We com-
pute a first-order approximation of the appearance mani-
fold around the current camera pose. Then, as new cluster
samples are captured at the next frame time, we estimate
the incremental camera motion using a linear solver. By
using intensity measurements and directly sampling the ap-
pearance manifold, our method avoids the commonly-used
feature extraction and matching processes, and does not re-
quire 3D correspondences across frames. Thus it can be
used for scenes with complicated surface materials, geome-
tries, and view-dependent appearance properties, situations
where many other camera tracking methods would fail.

1. Introduction
In this paper we address the challenging problem of

tracking in scenes with highly view-dependent appearances.
For example, scenes with curved reflective surfaces, semi-
transparent surfaces, and specular reflections all change in
appearance as the viewpoint changes. This confounding be-
havior typically makes motion estimation very difficult.

Traditionally, tracking is formulated as a search problem
in the parameter space of the transformation. There are two
main classes of tracking approaches. The first approach es-

timates motion using salient features of the scene. As a clas-
sic example, Lounget-Higgins [15] extracted features from
a stereo image pair, and used the epipolar geometry to es-
timate the relative camera motion. This method was later
extended to multiple views for simultaneously estimating
the camera internal parameters, the structure and the motion
[1, 18]. The second approach extracts the tracking informa-
tion from the whole appearance observations. For instance,
feature matching is replaced by optical flow in differential
settings [5, 13, 11].

The second approach typically relies on an invariant
scene appearance or a parametric model that accommo-
dates the varying scene appearance. For example, Murase
and Nayar [17] proposed an eigenspace-based recogni-
tion method that projects object appearance samples onto
a hyperspace parameterized by object pose and illumina-
tion. In [3, 10, 6], an object under different lighting con-
ditions was represented as an illumination linear subspace.
Since projecting the global appearance of an object into a
PCA space requires precise segmentation and normaliza-
tion, these methods can encounter difficulties in a general
case. To alleviate these difficulties, [7] proposed to repre-
sent the target object as surface patches and perform recog-
nition in the local appearance space. A similar model is
used for object tracking [16], in which the object is de-
scribed as a collection of local templates whose displace-
ments can be computed efficiently using a linear solver.
Bascle and Deriche modeled the appearance of an object
using texture appearance templates [2]. A parametric rep-
resentation of the scene can also be formulated as a global
statistics of the objects’ appearance [4, 8]. Recently, El-
gammal proposed to learn a generative appearance model
of the target object offline, and employ the model to com-
pute the geometric transformation given the change of the
object appearance [9].

In this paper, we present a method that tracks the camera
motion through linearization of the local appearance mani-



fold. A camera cluster with small baselines is used to ac-
quire local appearance samples. Then these samples are
used to compute a linear approximation of the local appear-
ance manifold and to estimate the camera motion parame-
ters in this linear space. Our proposed method does not re-
quire any 3D or 2D correspondences, thus it accommodates
scenes with view-dependent appearance variances. In con-
trast to the methods based on learning an invariant appear-
ance representation, our method avoids the learning process
that requires training data.

2. Problem statement
Our novel tracking approach targets scenes with highly

view-dependent appearances. As far as we know, this class
of scenes is not handled by any existing technique. It is
very difficult to model appearance behavior in general, and
for this specific class of scenes it is particularly hard to find
a global model due to the highly nonlinear appearance func-
tion. Instead we use multiple local samples that represent
the manifold about the current viewpoint. These local sam-
ples are concurrently extracted from the scene while per-
forming the tracking.

Consider a camera that undergoes complete 6D motion
(3D translation and 3D rotation) in a static scene. At each
frame time, it captures from its current pose P an n-pixel
intensity image I of the scene. Each appearance sample I
represents a point in a high-dimensional space <n. As the
camera changes its pose P , I also changes, moving along
a manifold in <n. One can see that there exists a mapping
from P to I , denoted as I = f(P ). Since the transformation
space of the camera pose has six degrees of freedom, the
dimensionality of the appearance manifold is at most six.
The dimension will be smaller for degenerate cases — for
example, when a camera looks at a very distant scene. For
these cases, f is not invertible and the motion can not be
fully recovered. In this paper, we consider only cases where
the appearance manifold is not degenerate, and accordingly
f is invertible.

In general the appearance manifold of a scene is highly
nonlinear. Therefore, numerous samples need to be ac-
quired to learn a representation of it. Although learning
f globally would be an ideal solution, this task is mostly
infeasible in practice due to changes of lighting conditions
and movements of scene objects during capture, which vi-
olate the static scene assumption. However, as discussed
above, we know that the dimensionality of the appearance
manifold is at most six. Hence, with six samples one can
generate a linear approximation of the appearance manifold
as dI = FdP , where dI is the difference image, dP is the
camera motion, and F is the Jacobian matrix. This holds as
long as the camera motion is within the range of an accept-
able linear approximation. To achieve our goal we need to
solve three fundamental problems:

1. How to capture local appearance samples?

2. How to derive a local linear approximation given ap-
pearance samples?

3. Is a linear approximation sufficient?

We will address these problems in the following sections.

3. Tracking
This section introduces our novel tracking framework.

We will introduce a technique to capture the appearance
samples during tracking and discuss an algorithm to lin-
earize the local appearance manifold and track the camera
motion within the linear space.

3.1. Linearize the appearance manifold

Consider a camera that undergoes complete 6D motion.
Assume at time t, we simultaneously acquire a reference
image I0 from the current camera pose P0, and m perturbed
images Ik at nearby perspectives Pk (k = 1, . . . , m). Thus
we can compute m difference images dIk and camera mo-
tion dPk by subtracting I0 and P0 from Ik and Pk. We
want to use these samples to linearize the appearance func-
tion I(P ) around P0:

I = I0 + F (P − P0) (1)

dI = F dP . (2)

Here I and dI are n-pixel images represented as n× 1 vec-
tors, P and dP are 6×1 pose vectors, and F is the Jacobian
(partial derivative) matrix ∂I/∂P of size n × 6. Given m
samples of dIk and known dPk , we can combine these sam-
ple vectors into matrices and write the linear equation as:

[dI1, dI2, . . . , dIm] = F [dP1, dP2, . . . , dPm] (3)

If m is greater than 6 and the images and poses are not de-
generate, the equation is of rank 6 and can compute the least
square solution of F using the Moore-Penrose pseudo in-
verse as

F = [dI1, dI2, . . . , dIm] [dP1, dP2, . . . , dPm]
+ (4)

The above discussion addresses the appearance manifold
linearization problem in the general case where m ≥ 6. For
an efficient system, one would like to use minimum num-
ber of perturbed cameras whose poses expand a 6D motion
space. In this case, m = 6 and the Jacobian becomes

F = [dI1, dI2, . . . , dI6] [dP1, dP2, . . . , dP6]
−1 (5)

Once a linear approximation is computed for the local
appearance manifold, we can estimate the camera motion



using a linear solver. Assume at frame t + 1, an updated
reference image Ĩ0 is captured at the new camera pose P̃0.
We can then compute a temporal difference image dĨ0 =
Ĩ0 − I0 and estimate the camera motion dP̃ = P̃0 − P0 as
the least square solution of Equation (6).

F dP̃ = dĨ0 (6)

3.2. Sample with a camera cluster

As shown in Fig. 1 we have constructed a prototype
differential camera cluster consisting of four synchronized
and calibrated small baseline cameras: one center camera
C0 and three cameras C1, C2 and C3 that are offset from
the center. The coordinate frame of the cluster is defined
to align with C0. We call the other three cameras C1, C2

and C3 translational cameras as they capture images from
translated viewpoints.1 At any point in time, the center
camera and the translational cameras can be used to obtain
four simultaneous appearance samples of the local appear-
ance manifold. See the example images indicated by the
green (solid) arrows in Fig. 1. In addition we generate three
warped images by rotating the image plane of C0 around its
three coordinate axes. See the example images indicated by
the red (dashed) arrows in Fig. 1. One can consider these
warped images as having been captured by three virtual ro-
tational cameras C4, C5 and C6, each with the same camera
center as C0 but with rotated axes. Thus at any frame the
cluster effectively “captures” seven local appearance sam-
ples I0, . . . , I6. In a non-degenerate case these images can
be used to derive a first order approximation of the local
appearance manifold as described in section 3.1.

The camera cluster provides seven real-time appearance
samples. Because the rotational images are warped ver-
sions of the center image, these four samples are from the
same manifold. However, the translational samples are cap-
tured using different cameras. To use these samples for
linearizing the local manifold captured by the center cam-
era, we need geometric and photometric consistency across
cameras. Assuming the radial distortion is removed from
all cameras, we can achieve geometric consistency by using
the intrinsic parameters of the center camera for the trans-
lational cameras. Specifically we decompose the projection
matrix [12] to obtain camera intrinsic and extrinsic para-
meters. After that we generate three virtual translational
cameras using the intrinsic parameters of the center cam-
era and the extrinsic parameters of the real translational
cameras. We then generate the translational images using
homography mappings. To ensure photometric consistency
across the cameras we used the approach presented in [14].
The approach consists of a closed-loop process that tunes
the camera hardware settings such that the colors values of

1In a general case, their axes do not need to be parallel with those of
the center camera.

 
 

x

z

o

y

Tran X+Y+Z Tran Y Tran X

Center

Rot XRot YRot Z

Figure 1. A prototype differential camera cluster (center) and il-
lustrative images. We obtain seven images total: one center, three
translated, and three rotated. Note that the images shown above
were rendered with exaggerated baselines to make the differing
perspectives more apparent.

a 24-sample color target are consistent in all camera im-
ages. This is followed by a software post-processing step
that uses the same 24 color samples to compute a mapping
that further improves photometric consistency.

4. Linearity of the local appearance manifold
4.1. An SVD analysis

In theory, given six non-degenerate samples one can al-
ways generate a linear approximation of the appearance
manifold, but such a linearization is accurate only within
a limited region. The size of each locally-linear region is
determined by the local smoothness of the manifold. Typ-
ically, the scene appearance is a highly nonlinear function
and its locally-linear regions are quite small. This means
that any differential camera cluster should have very narrow
baselines and a very high frame rate to acquire samples and
restrict motions within a small locally-linear region. This
is a great challenge. Even if these requirements can be sat-
isfied, due to the inherent electronic noise of the camera,
the signal-to-noise ratio of the spatial and temporal differ-
ence images might not be big enough to recover motion ac-
curately. We try to alleviate this problem by blurring the
images to smooth the appearance manifold.

Let us examine the smoothness of the appearance man-
ifold for a synthetic 3D scene consisting of two textured
planes (see the images in Fig. 2). The two planes are placed
at different depths to help distinguishing the parallax ef-



fects from out-of-plane rotation and in-plane translation.
Several rectangular white textures are pasted (around the
periphery) to provide some low frequency texture to the
dimmed background. The resolution of the synthetic cam-
era is n = 640 × 640. As shown in Fig. 2(a), we use a
uniform distribution to randomly perturb the camera pose
and generate m = 50 images from nearby perspectives.
The maximum magnitude of the perturbation is carefully
defined so that the imaging of a point on the frontal plane
shifts at most 4 pixels away from its center position. The
images are blurred using a Gaussian filter and sub-sampled
at a 4-to-1 rate (see Fig. 2(b)). This sampling rate is higher
than the Nyquist rate. We then acquire difference images by
computing a mean image and subtracting it form the sub-
sampled images. The pixel intensities of these difference
images are reordered into column vectors and grouped into
a n × 50 matrix. We then apply SVD decomposition to the
matrix.

To demonstrate the effects of smoothing the appearance
manifold, we use three different Gaussian kernels of size
[20 × 20, 40 × 40, 80 × 80] and σ = [3, 6, 12] to filter the
original perturbed images and generate three sets of blurred
images. The SVD results on matrices constructed using
these blurred images are shown in Fig. 2(d,e,f). One can see
from Fig. 2(e,f) that there are six significant singular values,
which implies that the smoothed local appearance manifold
can be appropriately linearized and the motion can be re-
covered. Yet in Fig. 2(d), the fourth, fifth and sixth singular
values are not easily distinguished from the rest. While in
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Figure 2. SVD analysis using synthetic images of a 3D scene with
textured foreground and background planes. The foreground plane
is the marbled square in the middle of the images. (a) The orig-
inal images captured from 50 close perspectives. (b) The blurred
images. Three Gaussian filters with σ = [3, 6, 12] are used. (c)
The power spectrum of the three Gaussian filter within [−40, 40]
of the frequency domain. (d) (e) (f) SVD results using the three
different filters.

general this could be an indication of a degenerate scene
(under-constrained), in this case it is an indication that there
is considerable non-linearity embedded in the appearance
manifold for the region where the samples are captured. To
address this we can use smaller baselines to sample closer
to the center pose, or smooth the images more heavily.

4.2. A quantitative analysis using sine waves

The SVD analysis shows that a non-linear appearance
manifold can be smoothed using a low-pass filter. One can
thus sample inside a locally-linear region and compute a lin-
ear approximation of the filtered manifold. In this section,
we present a quantitative analysis of sampling and estimat-
ing motion on the smoothed manifold. In particular, for
a given spacial sampling density (camera baseline), we try
to determine the threshold frequency for the low-pass filter
and derive an estimate of the estimation error. In the analy-
sis, we use sine signals as the scene contents, for any image
can be decomposed into a series of sine waves of different
frequencies.
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Figure 3. 1D orthographic cameras capture images of a sine signal.

Without loss of generality, let us consider the problem in
one dimension. Suppose at current frame, two parallel 1D
orthographic cameras C0 and C1 capture images I0 and I1

of a sine signal as shown in Fig. 3(a). At the next frame,
C0 moves x degrees and captures a new image Ĩ0. All three
images contain r samples from one period of the sine signal,
starting from initial phases a0, a1 and ã0 = a0+x as shown
in Fig. 3(b). Using these 3r samples, we can compute the
motion estimate x̃. We can write these three 1D images as:

Ij = sin(aj + r k) (7)

where j ∈ [0, 1, 0̃] and k ∈ [0, 1, . . . , b359/rc]. Substi-
tuting Equation (7) into Equation (1) and (2), we get the
following equation for estimating the motion x̃:

x̃ = (a1 − a0) (Ĩ0 − I0)/(I1 − I0) (8)

The estimation error (x̃−x)/b for different motion x us-
ing different baselines b = a1−a0 are shown in Fig. 4. One
can see from Fig. 4(a) that the estimation error remains rela-
tively small for motion x within [0, b] and increases quickly



beyond this region. Region [0, b] is the linear region for mo-
tion estimation. In other words, we can only expect to re-
cover camera motion that is smaller or close to the baseline.
As a zoom in of Fig. 4(a), Fig. 4 (b) shows that while using
a bigger baseline enlarges the linear region, it also causes
greater estimation errors for motions within the linear range.
For instance, using a baseline b = 120 the estimation error
for x = 30 is 5 degrees. In practice, we empirically choose
b = 90 to achieve a balance between the size of the tracking
volume and the tracking accuracy. This means for a partic-
ular scene, we can consider adjusting the camera baseline
to be a quarter of the highest frequency in the image. Or
for a fixed baseline, we should use a low-pass filter whose
threshold wavelength is four times the length of the base-
line. Then we can expect to achieve good estimation for a
motion within the baseline.

 -10 0 10 20 30 40 50 60

 -0.15

 -0.11

 -0.08

- 0.05

- 0.02

0.01

0.04
0.06

x

e
rr

o
r/

b

Error for different b and x

b=30

b=60

b=90

b=120

b=0

 -180  -120  -60 0 60 120 180

- 4

 -2

0

2

4

6

8

x

e
rr

o
r/

b

Error for different b and x

b=30

b=60

b=90

b=120

b=0

(a) (b)

Figure 4. Analysis of motion estimation error. (a) Estimation error
(x̃ − x)/b for specific baselines b = a1 − a0 = [30, 60, 90, 120]
degrees, and x ∈ [−180, 180] degrees. (b) Zoom in of (a) for
x ∈ [−10, 60] degrees.

While the analysis of 1D orthogonal cameras observing
sine signals derives some interesting conclusions, it can not
be directly extended to 3D scenes and perspective cameras.
Here we provide some empirical verification. Consider the
synthetic data set used in section 4.1. The shift of a point
in the image plane is in [0, 4] pixels. According to the pre-
vious analysis, to obtain a linear region of [0, 4], the pixel
displacement with respect to the scene and the camera base-
line should be 4 pixels and the threshold wavelength should
be 16 pixels. That is a 40 cycle signal for a 640×640 image.
From Fig. 2(c) and Table 1, we can see that 95% energy of
a Gaussian filter of σ = 6 is covered by its low-frequency
spectrum inside [−40, 40]. Thus the threshold of this low-
pass filter is 40 cycles. Whereas for the filter with σ = 3,
only 59% energy is within the 40 cycle low-frequency spec-
trum. As shown in Fig. 2(d,e), a good linear approximation
can be computed for images blurred with the first filter but
not for the second one. The results support the analysis.

The above analysis shows that the appropriate tracking
volume is [0, b], which means the estimation error is asym-
metric. To solve this problem, one can consider choosing
the center camera according to the motion direction. For in-
stance, in the 1D case, if the cameras move to the left (see

Gaussian kernel σ 3 6 12
Percentage energy covered by the
low frequency spectrums [-40,40] 59% 96% 99%

Table 1. Energy distribution of Gaussian filters in the frequency
domain.

Fig. 3(a)), we can choose C1 to be the center camera. An-
other solution is to keep C0 as the center camera but use
I0 and I1 captured at the new frame to compute intensity
derivatives. These solutions can be extended to 3D cases.
To use this technique, we need to detect the direction of the
motion. This can be achieved by doing motion estimation
twice, first for the direction and then for the real estimation.
While this solution appears awkward, the additional com-
putation is affordable, as it only involves solving a linear
system that can be done efficiently.

5. Experimental Results

We first present some results based on synthetic data. We
simulated a scene consisting of a textured planar patch and
a curved mirror, both contained inside a cube. The inner six
surfaces of the (surrounding) cube were textured using the
same image. The simulated camera cluster was placed in
front of the curved mirror. Thus the camera cluster viewed
some of the scene beyond the edges of the mirror, and some
of the reflection. Traditional tracking techniques would not
perform well on this data, since the epipolar constraint does
not hold for the distorted scene reflection from the curved
mirror as the camera moves.

Fig. 5 presents some tracking results on the synthetic
scene over 40 frames. An original image (640 × 640) is
shown in Fig. 5(a), where the border of the curved mirror
is marked in green. One can see that the reflection of the
planar patch is distorted by the curved mirror. When gen-
erating the image sequences, we restricted the maximum
extent of the camera motion so that the pixel motion for
frontal scene points would be less than 4 pixels. We gener-
ated blurred images (shown in Fig. 5(e)) using a Gaussian
kernel of 160 × 160 with σ = 24 and sub-sampled them at
32 cycles (20 pixels). We choose a σ that was larger than
the analysis result shown in section 4.2 to accommodate the
reflection of the rear scene, which could move faster in the
image plane than the front scene. We show the translation
and rotation estimates in Fig. 5 (b-d) and (f-h). The horizon-
tal axes represent frame numbers and the vertical axes rep-
resent the accumulated motion across the previous frames.
The red (solid) curves represent the true value, and blue
(dashed) curves represent the estimated value. The trans-
lation and rotation of the camera is defined in a global coor-
dinate system that is aligned with the coordinate system of
the center camera at the initial frame.



In a second experiment, we tracked a real camera cluster.
The cluster was built using four PointGrey Flea digital color
cameras (see Fig. 1). The baselines are 34 mm in the X and
Y direction, and 66 mm in the Z direction. As described in
section 3.2, geometric and photometric consistencies were
enforced across the four cameras. The color images were
converted to grayscale for scene appearance samples.

To obtain some form of a ground-truth reference mo-
tion path we moved the camera cluster along some pre-
determined grid points marked on a table (the X-Z plane)
while imaging the scene. Prior to data collection, the cam-
eras were manually adjusted to obtain parallel principal
axes across frames. The results are shown in Fig. 6. An
original image and its blurred version is shown in Fig. 6(a)
and (e). The resolution of the original image is 1024× 768.
The image was blurred using a Gaussian kernel of 160×160
with σ = 24, and then sub-sampled at a ratio of 20 to
1. The accumulated translations and rotations are shown in
Fig. 6(b-d) and (f-h). Again, the translations and rotations
are defined in the coordinate of the center camera at the ini-
tial frame. One can see that the algorithm achieves good
estimates of X and Y translations, and the estimated rota-
tions and Z translations are small. We believe the exhibited
error is due primarily to inherent drift in any (incremental)
approach, and registration error introduced by our manual
alignment process.

Our third experiment demonstrates the tracking of a
hand-held camera cluster over 200 frames. As the ground
truth motion was unknown, we illustrate the tracking accu-
racy using projection error. Seven reference scene points
were used. Their 2D coordinates in two camera images
of the initial frame were extracted and matched using a
standard OpenCV KLT tracker at sub-pixel accuracy. We
then back-projected and computed their 3D positions in the
world coordinates defined by the pose of the center cam-
era at the first frame. As the cluster moved, its incremen-
tal motion at every frame was estimated and the accumu-
lated motion between the current frame and the first frame
was computed. These accumulated motion parameters were
then used to compute a projection matrix of the center cam-
era at its current pose. We used the estimated projection ma-
trix to project the reference 3D points onto the current cen-
ter image, and indicated the projections with white patches
surrounded by red circles (see Fig. 7). Fig. 7(a) shows the
reference points in the center image of the initial frame.
Their projections using the estimated motion parameters are
shown in Fig. 7(b-f). Since the reference points are initially
back-projected using small baseline stereo, the computed
3D positions may be considerably off from their true val-
ues. Therefore the final projection result contains error from
both the incremental tracking and the initial triangulation
process.

In the fourth experiment, a hand-held camera cluster was

tracked in a scene with semi-transparency. We pointed the
cameras to a large window and captured image sequences
at dawn. The indoor lighting environment was adjusted
such that the cameras see both the outside and the reflec-
tion of the inside (see Fig. 8). Typical feature based track-
ing algorithm would encounter difficulties extracting and
matching features, since the image is a superimposition of
two layers undergoing different motion. Like we did in the
third experiment, we computed the projection matrices from
the camera motion estimate and project the reference scene
points onto the center image (Fig. 8(b-f)). However, as the
standard KLT method does not handle semi-transparency
well, the reference points are manually selected in the ini-
tial frame (Fig. 8(a)) at an integer pixel accuracy.

6. Conclusions

We presented a novel method for incrementally tracking
camera motion through sampling and linearizing the local
appearance manifold. We have demonstrated the method
using both simulation and a real prototype camera cluster.

One area of future work we envision is related to the
imaging component of the cluster. We have some ideas
for using custom optics to effectively achieve the same cen-
ter, translational, and rotational images using a single image
sensor. This could make the unit more compact, while also
helping address color, geometry, and speed issues.

In addition, the simple and regular nature of the com-
putation could lead to a fast system for on-line estimation,
perhaps using specialized embedded hardware such as FP-
GAs. As the processing speed increases, the inter-frame
time could be decreased, improving the linear approxima-
tions and some other aspects of the approach.

Finally, because the method is inherently incremental
(estimating and integrating dP ), it is likely that in prac-
tice one would want to periodically use some of the im-
ages for more conventional feature-based drift correction.
Like MPEG and other video encoding schemes, future hard-
ware could send a continuous dP stream with periodic
key frames to the host computer, enabling fast incremental
tracking with drift estimation and correction.
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Figure 5. Tracking in a synthetic scene with a curved mirror over 40 frames. (a) An image of the synthetic scene. The border of the
curved mirror is marked in green. (e) A blurred image. (b)-(d) Estimation of camera translations (in mm) in X, Y and Z directions. (f)-(h)
Estimation of camera rotation angles (in degree) around Y, X and Z axes. Red (solid) curves represent the true values of the accumulated
motion, blue (dashed) curves represent the estimated values of the accumulated motion.
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Figure 6. Tracking a controlled camera motion over 20 frames. (a) A image of the real scene. (e) A blurred image. (b)-(d) Estimation of
camera translations (in mm). (f)-(h) Estimation of camera rotation angles (in degree). Red (solid) curves represent the true values of the
accumulated motion, blue (dashed) curves represent the estimated values of the accumulated motion.
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