
Fast Image Segmentation and Smoothing
Using Commodity Graphics Hardware

Ruigang Yang and Greg Welch

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill, North Carolina

Abstract. We present a novel use of commodity graphics hardware to perform
real-time image segmentation and image morphology operations. Our prelimi-
nary results show a performance increase of over 30% using an nVidia GeForce4
when compared to an implementation using Intel MMX optimized code on a
2.2 Ghz Intel P4 CPU.

1 Introduction

Modern commodity graphics hardware systems offer increasingly powerful performance
in terms of speed and programmability. In this paper, we introduce the use of such
graphics hardware to perform real-time image segmentation—one of the central tasks in
computer vision. While there have been many noteworthy hardware advances, we make
use of register combiner and blending technology in particular. A register combiner,
first proposed and implemented by nVidia [7], is a texture compositing unit that can
perform fixed function arithmetic on a per-pixel basis [6]. The blending functions are
used to control how the source color (new color fragment from the OpenGL pipeline)
and the destination color (usually the pixels in the frame buffer) are combined. Using
these features, we can perform image segmentation and subsequent image morphology
operations, completely within the graphics hardware. Our basic implementation, run-
ning on an nVidia GeForce4, is 3–5 times faster for image thresholding and over 30%
faster for image morphological operations, compared to a highly optimized software
implementation running on a 2.2 Ghz Intel P4 CPU. Our method, which is limited by
the AGP bus bandwidth, offers the greatest advantage for applications where the seg-
mented images are to be used as textures for subsequent rendering.

2 Methods

The task of image segmentation is to classify pixels as belonging to foreground or back-
ground objects [8]. A common approach is to use pixel thresholding. Such techniques,
which make decisions based on local pixel information, can be effective when the pixel
intensities are clearly above or below the threshold [2]. However things are rarely so
clear, in particular around object boundaries. Furthermore, thresholding is quite sensi-
tive to image noise. As such, thresholding is usually followed by morphological oper-
ations to smooth the object boundaries and remove spurious pixels. We present here a
method to implement these two steps completely on the graphics hardware.

2.1 Segmentation

To implement image segmentation we use the register combiners available in nVidia’s
graphics board to compute the squared difference between pixels, then use the alpha
test to perform pixel thresholding. We use two stages of register combiners to compute
the squared difference between an input and background image as follows. Let Ci be
the color of a input pixel, and Cb be the color of the corresponding background pixel.
We want to compute

∆ = ||Ci − Cb||2 = (Ci − Cb) · (Ci − Cb). (1)

We render the two images using orthogonal projection and program the register com-
biner to compute the squared difference ∆ and store in the alpha channel of the frame
buffer. The pseudo code to set up the register combiner is shown in Algorithm 1.

Algorithm 1 Set up the register combiners to compute the squared difference
Require: The input image is stored in texture unit 0, while the background image is stored in

texture unit 1.

{ \\FIRST stage of general combiner,
\\compute tex0-tex1
spare0.rgb = tex0 + signed_invert(tex1);

}

{\\ SECOND stage of general combiner,
\\compute dot product
state0.rgb = dot(spare0, spare0);

}

\\final combiner stage,
\\output the delta in the alpha channel
out.rgb = tex0, out.alpha = spare0.b;

Then we enable the standard alpha test to only accept pixels with a high enough
alpha value (the squared difference). The exact value of the threshold is a user defined
parameter. The resulting frame buffer contains the segmented image.

The entire segmentation process only requires two texture units and two register
combiner stages, which are available even on relatively inexpensive commodity graph-
ics boards. Note that it is possible to use a per-pixel threshold based on the local statis-
tics of the background image. This requires an additional texture unit and an additional
register combiner stage. The standard deviation of the background is stored in the extra
texture unit, and the extra register combiner stage is used to compare ∆ with the stan-
dard deviation of the background. Typically if ∆ is greater than three times the standard
deviation (the standard “3σ” rule), the pixel will be classified as a foreground pixel. The
alpha test is not necessary using this approach.

2.2 Image Morphology

The morphological operations [8] we implemented are simple erosion and dilation of
an image. The erosion operation is defined as follows: the output pixel is set to the min-
imum of the corresponding input pixel and its 8 neighboring pixels. If the input image
is a color image, then each channel is treated independently. The dilation operation is
very similar except it sets the output pixel to the maximum of the corresponding input
pixel and its 8 neighboring pixels.

OpenGL Version 1.2 supports new blending functions to determine how the source
and destination colors are combined. Of particular interest are GL MIN and GL MAX,
which implement a component-wise minimum (or maximum) of the source and desti-
nation colors. To achieve dilation we set the blending function to GL MAX, then shift
and redraw the image 8 times, each with a one-pixel offset in a different direction. To
achieve erosion we use GL MIN. The idea of shifting images has been used to achieve
a number of effects, most notably scene antialiasing and depth of field [9].

While the above algorithm is relatively easy to implement, using eight passes is
quite slow, even on the latest graphics board. We use multi-texture support to combine
multiple passes into one. In our current implementation, we use two texture units to
reduce the rendering passes by one half. Because the texture blending function does not
support min-max style blending, we have to program the register combiner to do the
trick. We use the multiplex function in the register combiner to select the minimum (or
maximum) of two pixels. Note that the register combiner cannot select the three RGB
channels independently. The code presented in Algorithm 2 selects the pixel based on
the alpha value. It is designed to work with the image segmentation routine in Algo-
rithm 1, where the squared difference is stored in the alpha channel. It will also work
with single channel (monochrome) images.

Algorithm 2 Select the minimum
{ // FIRST combiner stage;

// spare0 = tex1 - tex0 + 0.5
spare0.alpha = tex1 - half_bias(tex0);

}

{ // SECOND combiner stage
// select the color with the smaller alpha;
// spare0 =(spare0.alpha < 0.5)?(tex1):(tex0);

spare0.rgb = mux();

// select the smaller alpha value
spare0.alpha = mux();

}

{ // final output
out = spare0;

}

Note that if we want to perform dilation (selecting the maximum value), we only
need to swap texture 0 and texture 1 in the first combiner stage.

The imaging subset defined in the OpenGL Specification 1.3 [1] includes a set of
filtering functions, however we choose not to use these for two reasons. First, image
morphology applied to intensity images is not a linear operation. Second, even if we
restrict ourself to binary images where dilation can be performed in a linear fashion
by applying a 3 × 3 all-ones filter, the filter functions (glConvolutionXX) are not
hardware accelerated in any existing commodity graphics board. We have tested the
filter functions and they are over ten times slower than the texture-shifting method.

3 Results

We implemented our methods using OpenGL under Microsoft Windows 2000. For com-
parison we also implemented a software-only version using Intel’s Image Processing
Library (IPL) [4]. IPL provides a set of low-level image manipulation functions in the
form of standard DLLs and static libraries. Functions in IPL are optimized for each
of Intel’s Pentinum class processors, allowing the users to obtain optimal performance
with a specific processor. While IPL has direct support for image dilation and erosion,
we are unaware of any background segmentation routine. As such we used the IPL
routines iplSubtract() and iplSquare() to compute the squared difference,
and wrote a tight loop to perform the thresholding. We tested both the graphics hard-
ware implementation and the software implementation on a number of processors and
graphics board.

We first show some qualitative results using the graphics hardware implementation.
Figure 1 shows thresholding results with different intensity thresholds in the second
row, and the corresponding final smoothed images (two erosion iterations, three dilation
iterations, followed by one final erosion iteration) in the third row. Figure 2 presents
color and binary examples after some morphological operations using our hardware
implementation. Results from the software implementation are identical.

We tested our implementation on four different PCs, timing the image segmentation
and morphological operations with input images of different sizes. For each image, we
ran the segmentation followed by five erosions and dilations, using both the software
and hardware implementations. We report the average times for 50+ repetitions in Ta-
ble 1 and Figure 3. Our experiments indicate that (a) the time elapsed increases almost
linearly with respect to the size of the image, and (b) the performance of the graphics
hardware implementation is almost completely independent of the CPU speed. (Com-
pare the numbers on the first PC and the third PC.) In Figure 4 we compare the timing
for different combinations of CPUs and graphics boards using VGA image resolution.
Our hardware version of the image segmentation is an obvious winner, over five times
faster than our software version.1 For image morphology operations, the hardware ver-
sion using multi-textures on a GeForce4 is over 30% faster than the software version on
a 2.2 Ghz CPU.

1 We suspect that the threshold loop in the software implementation could be improved by writ-
ing in assembly code.

Fig. 1. Image Segmentation. The input and background images are shown on the left and right
(respectively) of the top row. The segmented images with thresholds of 10, 15, and 20 (from left
to right) are shown in the second row. The corresponding images after morphological operations
are shown in the third row.

We also measured the time to load images from main memory to the video mem-
ory, butt did not include this in our previous comparisons since the image had to be
uploaded to the graphics board to be rendered. Doing segmentation in the hardware
actually reduces the memory bandwidth requirement by 25% since there is no need to
send the alpha channel. We plot the results in Figure 5. The normalized curve is the
transfer time divided by the number of pixels and then multiplied by 640 × 480 (using
VGA resolution as the baseline). From the plot we can see that the transfer rate is almost
independent of the CPU clock rate, and linear with respect to the number of pixels (the
normalized curve is flat). Our measurements confirm that the AGP bus is still the bot-
tleneck for displaying live images. The advantage of doing processing on the graphics
hardware will be diminished if the image data has to be read back for future analysis.

4 Future Work

While our existing implementation already shows a performance increase of over 30%
using an nVidia GeForce4 compared to an implementation using Intel MMX optimized
code on a 2.2 Ghz Intel P4 CPU, it can be improved in both quality and performance.

First, It is possible to convert from RGB space to a different color space and perform
the segmentation there [3]. For example, we can convert to a YCrCb color space and
only use the Cr or Cb channel for segmentation. This approach reduces the effect of
luminance changes and makes the segmentation less susceptible to shadows. With the
help of the register combiner, we can segment the image in a different color space on

Fig. 2. Color and binary images after morphological operations. The top row shows the original
images. The bottom row shows the results of hardware-based morphological operations on each
original image. The first and third images show the results of three dilation iterations, the second
and fourth images show the results of three erosion iterations (on the original images). Results
from the software implementation are identical.

the fly. Here we show an example to use the Cr channel for segmentation. The formula
to convert from RGB to YCrCb is [5]

Y = 0.257 ∗ R + 0.504 ∗ G + 0.098 ∗ B + 16
Cr = 0.439 ∗ R − 0.368 ∗ G − 0.071 ∗ B + 128
Cb = −0.148 ∗ R − 0.291 ∗ G + 0.439 ∗ B + 128

We only need to change the code in the first register combiner stage (in Algorithm
1) to the following:

const0 = {0.439, 0.368, 0.071};
spare0.rgb = tex0*const0 + signed_invert(tex1)*const0;

This is possible because the register combiner actually computes E = A∗B+C∗D
at each stage. The code in Algorithm 1 is implicitly using a const0 of {1, 1, 1}.

It is also possible to provide adaptation of the background differencing model to
changes of lighting conditions and background scenes. The static background image
can be replaced with running average of the input images with foreground excluded.
That only requires one extra rendering pass.

With respect to performance, we see more opportunities for improvement even with
the existing graphics boards. For example, for backward compatibility reasons, we only
used two texture units in our implementation, while the GeForce4 card has four tex-
ture units. Using all of them can further reduce the number of rendering passes. The
other place for improvement is to use the render-to-texture method, which has recently
been made available in OpenGL. We can render the shifted images into two textures in
alternating fashion, thus avoiding copies from the frame buffer to texture memory.

1.2Ghz GF4 1.5Ghz GF2 1.9Ghz GF4 2.2Ghz GF3
Seg. Morph Xfer Seg. Morph Xfer Seg. Morph Xfer Seg. Morph Xfer

IPL 4.09 10.94 1.55 12.52 1.78 10.17 0.94 8.2
QVGA HW 0.29 9.95 1.78 0.9 26.28 1.85 0.82 8.98 1.73 0.38 15.32 1.75

HW MT 6.88 17.9 6.57 10.45
IPL 20.46 58.47 6.12 48.01 6 38.25 4.89 34.84

VGA HW 1.2 39.19 7.12 3.66 108.62 7.27 1.2 39.45 6.66 1.63 61.84 6.99
HW MT 27.88 76.04 26.47 42.39

IPL 31.96 87.49 9.42 73.87 9.59 60.04 7.33 52.97
SVGA HW 1.91 63.16 10.96 5.37 166.28 11.31 1.91 62.36 10.34 2.54 96.86 10.76

HW MT 43.72 114.72 41.6 66.47
IPL 41.95 146.95 16.25 118.75 15.59 97.48 11.93 85.81

XGA HW 3.14 109.85 17.74 8.56 270.34 18.49 3.09 105.51 16.91 4.19 158.7 17.69
HW MT 72.89 186.07 70.86 109

Table 1. Performance data using different methods on four PCs. The numbers are in milliseconds.
“HW MT” stands for hardware implementation using multi-texture functions. The numbers for
image morphology (“Morph”) reflect the total time for ten iterations.

References

1. OpenGL Specification 1.3, August 2001. http://www.opengl.org/developers/documentation/version13/glspec13.pdf.
2. Bernard Chazelle. Application challenges to computational geometry: Cg impact task force

report. Technical Report TR-521-96, Princeton University, April 1996.
3. I. Feldmann, S. Askar, N. Brandenburg, and O. Schreer P. Kauff. Real-Time Segmentation for

Advanced Disparity Estimation in Immersive Videoconference Applications. In Proceeding
of WSCG 2002, 10th Int. Conference on Computer Graphics, Visualization and Computer
Vision, Plzen, Czech Republic, Feb. 2002.

4. Intel. Image Processing Library. http://www.intel.com/software/products/perflib/ipl/.
5. Keith Jack. Video Demistified: A Handbook for the Digital Engineer. Brooktree, first edition,

1993.
6. Mark J. Kilgard. A Practical and Robust Bump-mapping Technique for Today’s GPUs. In

Game Developers Conference 2000, San Jose, California, March 2000.
7. Nvidia. http://www.nvidia.com.
8. R.C.Gonzalez and R.E.Woods. Digital Image Processing. Prentice Hall, second edition, 2002.
9. Mason Woo, Jackie Neider, and Tom Davic. OpenGL Programming Guide. Addison-Wesley,

second edition, 1996.

QVGA VGA SVGA XGA
0

50

100

150

200

P
ro

ce
ss

in
g

T
im

e
(m

s)

1.2 Ghz CPU with a Geforce4

IPL segment
IPL morph
HW segment
HW morph
HW segment
HW MultiTexture

QVGA VGA SVGA XGA
0

50

100

150

200

P
ro

ce
ss

in
g

T
im

e
(m

s)

1.5 Ghz CPU with a Geforce2

IPL segment
IPL morph
HW segment
HW morph
HW segment
HW MultiTexture

QVGA VGA SVGA XGA
0

50

100

150

200

P
ro

ce
ss

in
g

T
im

e
(m

s)

1.9 Ghz CPU with a Geforce4

IPL segment
IPL morph
HW segment
HW morph
HW segment
HW MultiTexture

QVGA VGA SVGA XGA
0

50

100

150

200

P
ro

ce
ss

in
g

T
im

e
(m

s)

2.2 Ghz CPU with a Geforce3

IPL segment
IPL morph
HW segment
HW morph
HW segment
HW MultiTexture

Fig. 3. Visual plot of the performance data

0

5

10

15

20

25

 ← 1.2Ghz

 ← 1.5Ghz ← 1.9Ghz
 ← 2.2Ghz

 ← GeForce2
 ← GF3 ← GeForce4

P
ro

ce
ss

in
g

T
im

e
(m

s)

Image Segmentation Time

20

30

40

50

60

70

80

 ← 1.2Ghz

 ← 1.5Ghz

 ← 1.9Ghz
 ← 2.2Ghz

 ← GeForce2

 ← GeForce3

 ← GeForce4

P
ro

ce
ss

in
g

T
im

e
(m

s)

Image Morphology Time

Fig. 4. Performance data using different methods on four PCs

QVGA VGA SVGA XGA
0

5

10

15

20

T
ra

ns
fe

r
tim

e
(m

s)

1.2Ghz, GF4
1.5Ghz, GF2
1.9Ghz, GF4
2.2Ghz, GF3
Normalized Rate

Fig. 5. Texture transfer time

