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Abstract—The synchronized phasor measurement unit (PMU),
developed in the 1980s, is considered to be one of the most
important devices in the future of power systems. While PMU
measurements currently cover fewer than 1% of the nodes in the
U.S. power grid, the power industry has gained the momentum
to advance the technology and install more units. However, with
limited resources, the installation must be selective.

Previous PMU placement research has focused primarily on
the network topology, with the goal of finding configurations
that achieve full network observability with a minimum number
of PMUs. Here we present a new approach that also includes
stochastic models for the signals and measurements, to char-
acterize the observability and corresponding uncertainty of any
given configuration of PMUs, whether that configuration achieves
full observability or not. We hope that this approach can provide
planning engineers with a new tool to help choose between PMU
placement alternatives.

Index Terms—Power systems, Power transmission, Power
transmission planning, Power system planning, Power system
simulation, Power system state estimation.

I. INTRODUCTION

S
TATE estimation plays a crucial role in determining the

health of a power system. System state can be estimated

using the available measurements and network information.

The phasor measurement unit (PMU), measures both the mag-

nitude and phase angle of the electrical waves in a power grid.

With the ability to impact future power system monitoring and

operation methods, the PMU has been identified as one of the

key enabling technologies for the future “smart grid.”

Traditionally, power grid measurements are provided by

remote terminal units (RTU) at the substations. RTU mea-

surements include real/reactive power flows, power injections,

and magnitudes of bus voltages and branch currents. The most

commonly used state estimation measurement are:

• Line power flow measurements: the real and reactive

power flow along the transmission lines or transformers.

• Bus power injection measurements: the real and reactive

power injected at the buses.

• Voltage magnitude measurements: the voltage magnitudes

of the buses.

Under certain circumstances such as state estimation of dis-

tribution systems, the line current magnitude measurements

may be considered, which provide the current flow magnitudes
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along the transmission lines or transformers. The installation of

PMUs makes two additional types of measurements available:

• Voltage phasor measurements: the phase angles and mag-

nitudes of voltage phasors at system buses.

• Current phasor measurements: the phase angles and mag-

nitudes of current phasors along transmission lines or

transformers.

Recent developments of phasor measurement technologies

provide high-speed sensor data (typically 30 samples/second)

with precise time synchronization [1], [2]. Synchronized pha-

sor measurements are commonly referred to as synchropha-

sors. This is in comparison with traditional Supervisory Con-

trol And Data Acquisition (SCADA) RTU measurements,

which have cycle times of five seconds or longer and are not

time synchronized.

Widely scattered in the power system network and synchro-

nized from the common global positioning system (GPS) radio

clock, PMUs can provide real-time synchrophasor data to the

SCADA system to facilitate the time-critical applicatons such

as dynamic state estimation and dynamic stability analysis [3].

With properly placed and sufficient numbers of PMUs, time

stamped synchrophasors can be used to estimate the whole

system status in real-time.

Significant previous work has been dedicated to the selec-

tion of the best locations to install new PMUs [4]–[7]. Several

algorithms have been developed, primarily with the aim of

utilizing a minimum number of PMUs to ensure full network

observability. However, two issues caught our attention:

• First, the observability of the entire system is not an “all

or nothing” problem. Due to various resource limitations,

we do not have the luxury of installing a complete set of

PMUs throughout the power grid. Yet we are not starting

from scratch either. In practice PMUs are added to the

grid incrementally, and it would be useful to have some

guidance on where to install them.

• Second, the power system networks usually have complex

topologies in practice, so that more than one solution for

the same minimum number of PMUs will be obtained. In

such cases, the planning engineers need to make a choice

from among these solutions.

In this paper, we focus on these two issues. Instead of

searching for the minimum set of PMUs to cover the entire

power system, we present an approach to determine the effects

of the existing PMUs on the estimation of the network state.

Furthermore, to help the engineers make decisions regarding

different candidate plans, we quantify the impact of the plans

based on state space models and steady-state uncertainty

estimates.



II. BACKGROUND AND RELATED WORK

The phasor measurement unit (PMU) was first developed

and utilized in [1], [2]. Considering partially observable sys-

tems (with an inadequate number of PMUs) the authors in

[8] presented an estimation algorithm based on singular value

decomposition (SVD), which did not require the complete

network system to be observable prior to estimation.

Optimal PMU placement for full observability was studied

in [4]. An algorithm for finding the minimum number of PMUs

required for power system state estimation was developed, in

which simulated annealing optimization and graph theory were

utilized in formulating and solving the problem.

In [7] the authors focused on the analysis of network observ-

ability and PMU placement when using a mixed measurement

set. They developed an optimal placement algorithm for PMUs

using integer programming. In [5], a strategic PMU placement

algorithm was developed to improve the bad data processing

capability of state estimation by taking advantage of the

PMU technology. Furthermore, the PMU placement problem

was re-studied and a generalized integer linear programming

formulation is presented in [6].

Our work, however, is taking a different approach: we

provide a method for evaluating any candidate PMU placement

design, which can be especially useful when there are multiple

placement candidates.

III. PMUS IN THE POWER SYSTEM STATE ESTIMATION

With the advent of satellite clock synchronization via GPS,

PMUs have achieved a level of precision that typically exceeds

the conventional measurements, which makes phasor telemetry

a valuable source of measurements. Nowadays, PMUs are

becoming more and more attractive in various power system

applications such as system monitoring, protection, control,

and stability assessment.

The benefit of PMUs is especially evident when it comes

to power system state estimation. Conventional power system

state estimation uses real and reactive power as measure-

ments, to estimate the bus phasor voltages, As a result, the

relationship between measurements and states is non-linear.

The solution is always obtained by linearizing the model and

solving it in an iterative fashion.

The invention of PMUs alleviates this problem by providing

the phasors of voltages and currents measured at a given

substation. Hence, by measuring the bus phasor voltages and

line phasor currents, the relationship between measurements

and states becomes linear. When the measurement equation

is linear, the estimation algorithm is direct and significantly

faster than the non-linear ones.

IV. OBSERVABILITY CHECKING

For modeling power systems, we consider two types of

measurements: PMU measurements and zero injection mea-

surements.

A PMU installed at a specific bus is capable of measuring

not only the bus voltage phasor, but also the current phasors

along all the lines incident to the bus. Hence in addition to the

phasor voltage at this bus, we are able to compute the phasor

voltages of all of its neighboring buses.

If a bus has neither generators nor loads, then the sum

of flows on all the associated branches to the bus is zero.

This equality normally corresponds to a pseudo measurement

called the zero injection measurement, which has proven to be

useful in system state estimation [7]. According to Kirchhoff’s

current law, we know that at any bus in the power grid, the sum

of currents flowing into that bus is equal to the sum of currents

flowing out of that bus. Thus, for an injection-measured bus

and its n neighbors ((n+1) buses total), if the phasor voltages

at any n out of the (n + 1) buses are known (observable),

then the remainder can also be computed and hence become

observable.

Based on these assumptions, we developed the observability

checking algorithm shown in Algorithm 1.

Algorithm 1: Observability checking for a given set of

PMU locations and zero injection buses.

Input: PMU buses location P bus and zero injection

buses location Z bus
Output: Observable buses location O bus
O bus = ∅
O bus = P bus (the buses that can be measured directly

by PMUs)

for i ← 1 to |P bus| do
O bus = O bus ∪ neighbors(P busi)

(adding the buses that can be estimated through at least

one adjacent PMU bus)

flag = 1
while flag do

flag = 0
for j ← 1 to |Z bus| do

if (|Z busj ∪ neighbors(Z busj)) ∩O bus| =
|Z busj ∪ neighbors(Z busj)| − 1 then

O bus =
O bus ∪ Z busj ∪ neighbors(Z busj)
flag = 1
(adding the buses that can be estimated using

the zero injection information. According to

the Kirchhoff’s law. For a zero injection bus

and its neighborhood, if all but one is known,

then the unknown one can be estimated )

V. PMU PLACEMENT EVALUATION

Ideally, we want the PMU placement to be optimal in the

sense that it maximizes observability while minimizing cost.

This is especially true for large-scale complex systems. The

authors in [6], [7] presented a numerical formulation of this

problem, and developed an optimal placement algorithm for

PMUs using integer linear programming. This formulation

allows easy analysis of the network observability and concerns

about the full coverage of the system. However, the integer

linear programming approach may not be sufficient for deter-

mining the optimal locations of PMUs. The reason is that very



often there will be multiple optimal solutions with the same

minimum number of PMUs. In such cases, one would want

a means for comparing the different solutions, as some will

actually offer lower estimate uncertainty and latency.

Built on the previous work [9], [10], our approach is to use

a stochastic estimate of the asymptotic or steady-state error

covariance, as a quantitative metric for the performance eval-

uation. Our approach is generalized for any PMU placement

layout, without requirements for achieving full observability.

To estimate the steady-state error covariance, we first con-

sider the relevant state space models.

A. State Space Models

The state space models are the most basic yet extensively

used mathematical models in power system state estimation.

An assumed linear system can be modeled as a pair of linear

stochastic process and measurement equations

xk = Axk−1 + wk−1 (1)

zk = Hxk + vk (2)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement

vector, A is a n×n matrix that relates the state at the previous

time step k−1 to the state at the current step k in the absence

of either a driving function or process noise1, and H is a

m × n matrix that relates the state to the measurement zk.

The process noise wk and measurement noise vk are assumed

to be mutually independent random variables, spectrally white,

and with normal probability distributions

p(w) ∼ N(0, Q) (3)

p(v) ∼ N(0, R), (4)

where the process noise covariance Q and measurement noise

covariance R matrices are often assumed to be constant.

For any state estimate x̂k the estimate error can be defined as

ek ≡ xk− x̂k and estimate error covariance as Pk ≡ E[eke
T
k ].

For the state estimate x̂k at the time step k, the estimate error

covariance Pk contains important information, reflecting the

uncertainty of the estimation. Methods such as the Kalman

Filtering techniques [11], [12], estimate the state by minimiz-

ing the a posteriori estimate error covariance, in a recursive

prediction-correction manner.

B. Steady State Estimation

Although the a posteriori estimate error covariance Pk

changes over time, the steady-state error covariance can be

described as

P∞ = lim
k→∞

E[eke
T
k ], (5)

where x and x̂ represent the true and estimated states re-

spectively, and E denotes statistical expectation. Note that we

do not actually attempt to estimate xk and x̂k . Instead we

estimate P∞ directly from state-space models of the system

using stochastic models for the various noise sources.

1In practice, the matrix A may change with each time step, but it is assumed
to be constant here.

The Discrete Algebraic Riccati Equation (DARE) represents

a closed-form solution to the steady-state covariance P∞ [13].

Assuming the process and measurement noise elements are

uncorrelated, the DARE can be written in this form:

P∞ =AP∞AT +Q (6)

−AP∞HT (R+HP∞HT )−1HP∞AT

We use the MacFarlane-Potter-Fath “Eigenstructure Method”

[13] to calculate the DARE solution P∞ as follows. Given the

model parameters A, Q, H , and R from the last subsection,

we first calculate the 2n×2n discrete-time Hamiltonian matrix

Ψ =

[
A+QA−THTR−1H QA−T

A−THTR−1H A−T

]
. (7)

We then form [
B
C

]
= [e1, e2, ..., en] (8)

from the n characteristic eigenvectors [e1, e2, ..., en] of Ψ.

Finally, using B and C we can compute the steady-state error

covariance as

P∞ = BC−1. (9)

P∞ indicates the expected state estimation uncertainty cor-

responding to a candidate design. Intuitively, given PMU

placements leading to the same level of observability, the lower

the uncertainty is, the more we prefer this design.

C. The Process Model

For modeling the state and covariance changes over time,

there are several ways to identify the parameters A and Q, both

a priori and on line [10], [13]. We consider the power system

to be reasonably stable; hence following the methodology

described in [14], a quasi-static model of a power system

has been used in our approach. The oscillations in the state

variables of this model are assumed to be small, thus the states

of the power system at time step (k+1) are the same as those

at time step k, except for some zero mean, white Gaussian

noise. Hence our process model reduces to

xk = xk−1 + wk−1. (10)

D. The Measurement Model

Traditionally, real and reactive power measurements are

used in the power system state estimation, resulting in non-

linear measurement models. An iterative algorithm must be

employed in order to solve for the state of the system. Now

with the help of PMUs, the measurement model becomes

linear: we simply let the phasor bus voltages be the state, while

phasor bus voltages and phasor currents be the measurements.

In this way we are able to use non-iterative estimation algo-

rithms, which makes the computation much faster. For a power

system, the measurement model can be written in the general

form

z = Hx+ v, (11)

where x ∈ Rn is the complex state vector, z ∈ Rm

is the complex measurement vector, and H is a m × n



complex matrix that relates the state to the measurement

zk. The measurement noise elements in v are assumed to

be mutually independent random variables, white, and with

normal probability distributions

p(v) ∼ N(0, R). (12)

For computational convenience, we convert the complex val-

ued measurement model into a real valued measurement model

as in [8]:[
Re(z)
Im(z)

]
=

[
Re(H) −Im(H)
Im(H) Re(H)

] [
Re(x)
Im(x)

]

+

[
Re(v)
Im(v)

]
(13)

where Re(·) and Im(·) stand for the real and imaginary parts

of the corresponding vector/matrix respectively.

After the procedure of observability checking, all the ob-

servable buses are divided into one or more levels, according to

the “directness” of their observations: with Level 1 containing

the most directly observable buses, and the buses with more

“indirect” observations labeled with higher levels. Notice that

if the power grid only uses PMU measurements, the observ-

able buses belong to either Level 1 or Level 2; however, if

both PMU measurements and injection measurements (which

could be zero injection pseudo-measurements) are taken into

account, there may be more than two levels of observable

buses.

1) Level 1 buses: If the bus i is in Level 1 (meaning that

there is a PMU placed on this bus), the measurement equation

is

zi = xi + vi, (14)

where zi is the measured complex voltage at bus i, xi is

the “true” complex voltage at bus i and vi is the complex

measurement noise of this PMU. Thus for all the buses in

Level 1, we can write the measurement equation in the matrix

form

zV = I · xL1
+ vV , (15)

where zV is the complex voltage measurement subvector, I is

the identity matrix, xL1
is the complex state subvector (“true”

complex voltages at all Level 1 buses) and vV is the voltage

measurement noise subvector.

2) Level 2 buses: If the bus i is in Level 2 (meaning that

there is at least one PMU placed on an adjacent bus), then for

each PMU placed at some adjacent bus j, the measurement

equation will be

zji =
[
Yji −Yji

] [ xj

xi

]
+ vj , (16)

where zji is the measured complex current at bus j (towards

bus i), Yji is the admittance of line (j, i), xj and xi are the

“true” complex voltages at bus j and i respectively, and vj
is the complex measurement noise of this PMU. So for all

the buses in Level 1 and Level 2, we have the measurement

equation

zC =
[
YCL1

YCL2

] [ xL1

xL2

]
+ vC , (17)

where zC is the complex current measurement subvector, YCL1

and YCL2
are the line admittance matrices that relates Level

1 and Level 2 bus voltages to zC respectively, xL1
and xL2

are the complex state subvector (“true” complex voltages at all

Level 1 and Level 2 buses), and vC is the current measurement

noise subvector. In this equation, the measurement matrix[
YCL1

YCL2

]
has each row sum up to zero. If the number

of PMUs installed is sufficient, or the power grid is well-

connected, it is quite possible that a Level 2 bus has more than

one PMU-installed neighbor buses. In such case, we allow the

contributions from each adjacent PMU to be fused at this bus.

3) Level 3 or above buses: If the bus i is in Level 3

or above (meaning that the bus voltage can be calculated,

but there is no PMU placed on itself or any adjacent bus),

then the complex bus voltage must be obtained by using the

information about the net injection current measurements, and

applying Kirchhoff’s Current Law. Generally there are two

possibilities:

• an injection measurement is taken at bus i; or

• an injection measurement is taken at bus j, which is

adjacent to bus i.

Overall, assuming there are totally l levels of observable buses,

the measurement equation can be written as

zI =
[
YIL1

YIL2
YIL3

· · · YILl

]
⎡
⎢⎢⎢⎣

xL1

xL2

...

xLl

⎤
⎥⎥⎥⎦+ vI ,

(18)

where zI is the complex injection current measurement sub-

vector (zero pseudo-measurements), YIL1
through YILl

are the

node admittance matrices of all observable buses that related

to zI , xL1
through xLl

represent the complex state subvector

for all observable buses, and vI is the current measurement

noise subvector.

Combining the above three cases, the complete measure-

ment model can be expressed as

⎡
⎣ zV

zC
zI

⎤
⎦ =

⎡
⎣ I 0 0 · · · 0

YCL1
YCL2

0 · · · 0
YIL1

YIL2
YIL3

· · · YILl

⎤
⎦
⎡
⎢⎢⎢⎣

xL1

xL2

...

xLl

⎤
⎥⎥⎥⎦

+

⎡
⎣ vV

vC
vI

⎤
⎦ . (19)

The measurement model can be converted into real valued

model using the technique mentioned before.

VI. SIMULATION RESULTS

In this section, we first apply our observability checking and

estimation uncertainty analysis to two multi-machine systems.

We then apply our approach to the evaluation of four different

optimal PMU placement alternatives, to find the best one.



A. Observablity Checking and Estimation Uncertainty

Given the sets of PMU buses and zero injection buses,

our observability algorithm returns a list of observable buses

classified at different levels. Then the steady state error co-

variance P∞ of these observable buses is computed, with

each diagonal element P∞

ii (i.e. the variance) indicating the

estimation uncertainty of the corresponding bus. The estima-

tion uncertainty of any unobservable bus is set to P∞

ii = ∞.

To better illustrate the results, we define 1/
√
P∞

ii to be the

estimation “certainty” (information) of the corresponding bus.

In this way, the certainty of any unobservable bus is set to

be zero; whereas for any observable bus, the higher certainty

value it has, the better it can be estimated.

(a) The 3-machine 9-bus system. Figure repro-
duced from [3].

(b) The certainty analysis of test case 3.

Fig. 1. The small test system and the plotting result of case 3

We executed our algorithm on one small test system con-

sisting of three machines in a looped network of nine buses

as shown in Fig. 1(a). Table I presents the observability

analysis of three test cases, and Fig. 1(b) illustrates one of the

certainty plots. In all the following certainty plots, the green-

colored numbers in cirles represent the PMU buses, while the

blue-colored numbers in squares represent the zero-injection

buses. Then similarly, our method was tested on a larger 16-

machine 68-bus system as shown in Fig. 2(a), representing

interconnected New England Test system (NETS) and New

York Power System, with also three cases shown in Table II

and the certainty analysis of the last one in Fig. 2(b).

B. Comparison Among Multiple Optimal Solutions

In this subsection, we used the small test system in Fig. 1(a)

as an example and only considered PMU measurements. Using

TABLE I
OBSERVABILITY CHECKING FOR THE 3-MACHINE 9-BUS SYSTEM

Case PMU buses 0-inj buses Observable buses

1 1, 2 None L1: 1, 2

L2: 4, 8

2 1, 2, 3 None L1: 1, 2, 3

L2: 4, 6, 8

3 1, 2, 3 9 L1: 1, 2, 3

L2: 4, 6, 8

L3: 9

TABLE II
OBSERVABILITY CHECKING FOR THE 16-MACHINE 68-BUS SYSTEM

Case PMU buses 0-inj buses Observable buses

1 1, 11, 21, None L1: 1, 11, 21

L2: 2, 6, 10, 12, 16, 22,

27, 30, 31, 47

2 1, 11, 21, None L1: 1, 11, 21, 31, 41, 51

31, 41, 51 L2: 2, 6, 10, 12, 16, 22,

27, 30, 38, 40, 42, 45,

47, 50, 62, 66

3 1, 11, 21, 12, 38, 40, L1: 1, 11, 21, 31, 41, 51

31, 41, 51 42, 50 L2: 2, 6, 10, 12, 16, 22,

27, 30, 38, 40, 42, 45,

47, 50, 62, 66

L3: 13 48 52

L4: 67

the linear integer programming method, we could in fact

obtain four “optimal” solutions, with PMUs installed at buses

{1, 6, 8}, {2, 4, 6}, {3, 4, 8} and {4, 6, 8} respectively. They

can be called “optimal” in the sense that they all make the

entire system observable by using a minimum number of

PMUs. To determine which PMU placement strategy is the

best, we demonstrate the certainty plots of them in Fig. 3-

6. Furthermore, it is up to the users to decide what criterion

they prefer using to make their specific choices. For instance,

one can use the maximum, the minimum, the mean of these

“certainties” (Fig. 7), or even some weighted function of them.

In our example, we can immediately tell that by all means, the

PMU placement at buses {4, 6, 8} outperforms other strategies.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a stochastic framework to estimate the

steady-state performance of any candidate PMU placement

design, and example visualizations of the results. The results

can be readily computed without running the actual estimation

procedure; and it is general enough to accommodate any PMU

placement design, regardless of achieving full observability.

While we have initially chosen to work with quasi-static

process models, we plan to incorporate more dynamic models.

We are also beginning to investigate the incorporation of

nonlinear models such as would be required to estimate the

internal states of generators. We also plan to extend the

measurement set to include conventional RTU measurements.

Finally, we plan to employ our steady-state approach in a

system-wide sensor placement optimization framework.



(a) The 16-machine 68-bus system. Figure reproduced from [15].
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(b) The certainty analysis of test case 3

Fig. 2. The large test system and the plotting result of case 3
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Fig. 3. PMUs installed at buses 1, 6 and 8
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Fig. 4. PMUs installed at buses 2, 4 and 6
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Fig. 5. PMUs installed at buses 3, 4 and 8
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Fig. 6. PMUs installed at buses 4, 6 and 8

Fig. 7. The comparison of the four ”optimal” solutions, based upon three
criteria: max, min and mean
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