
Reduced Measurement-space Dynamic State
Estimation (ReMeDySE) for Power Systems

Jinghe Zhang, Student Member, IEEE, Greg Welch, Member, IEEE,
Gary Bishop and Zhenyu Huang Senior Member, IEEE

Abstract—Applying Kalman filtering techniques to dynamic
state estimation is a developing research area in modern power
systems. Compared to traditional steady state estimators, the
Kalman filter is able to track dynamic state variables both
efficiently and accurately. However, in large-scale and wide-
area interconnected power systems, the combination of compu-
tational complexity—primarily due to the very large number of
measurements—and slow processing speeds present a significant
challenge. To help address this challenge we have developed an
approach we call Reduced Measurement-space Dynamic State
Estimation (ReMeDySE). We present the method in the context
of the Kalman filter, however it can also be applied to other
state estimation methods such as particle filters. In addition,
although we present the method in the context of power systems,
it is suitable for real-time and massive calculations in any large-
scale state tracking systems. Finally, the method lends itself
well to modern parallel computation techniques for further
improvements.

Index Terms—Power systems, Dynamic State Estimation, Dy-
namic Measurement Selection, Power system simulation, Kalman
Filter, Parallel Compuatation

I. INTRODUCTION

STATE estimation is a fundamental and very important
function in modern power system operations. It seeks to

produce a reliable dynamic database for use in critical opera-
tional functions including real-time security monitoring, load-
forecasting, economic despatch, and load-frequency control.

There are typically four steps involved in any state estima-
tion procedure:

1) Modeling. In this step, network topology is determined,
preliminary data are checked and calculated.

2) Observability determination. Various sensor measure-
ments are classified as either critical or redundant. Crit-
ical measurements are necessary to achieve the system
observability, so if some critical measurements are lost,
pseudo measurements can be included. On the other
hand, redundant measurements can be removed without
affecting the system observability.

3) State estimation. Typically, a state estimator receives
telemetered measurements from a Supervisory Control
And Data Acquisition (SCADA) system in the time
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interval of several seconds. From the measurements
and an assumed steady state system model, the state
estimator generates a set of static state variables that
reflect a best estimate of the system conditions.

4) Detection and identification of gross measurement errors
and/or errors in network structure.

Kalman filtering techniques have been applied to improve
the computational performance of the traditional state estima-
tion process in power system applications since the 1970’s [1],
[2]. However under the assumption of a steady state system
model, none of the dynamic characteristics of a power system
are reflected in the estimation. This has not been an issue
historically as SCADA measurements are too infrequent to
capture the system dynamics. This changed with the intro-
duction of Phasor Measurement Unit (PMU). PMUs primarily
make two types of measurements available: voltage and current
phasors, from which line power flow and bus power injection
can be derived. Recent developments of phasor measurement
technologies provide high-speed sensor data (typically 30
samples/second) with precise time synchronization [3], [4],
motivating the reexamination of the exclusion of dynamic
states in the state estimation process. For example, in [5]
we investigated the feasibility of applying Kalman filtering
techniques to include dynamic state elements in the state
estimation process, e.g., generator rotor angles and generator
speeds, in addition to the static state elements of voltage
magnitudes and phase angles. The study results present a
promising path forward for the implementation of Kalman
filter based dynamic state estimation in conjunction with the
emerging phasor measurement technologies.

As a result of the increasing size and complexity of the
interconnected power networks, the computational complexity
of full state estimation remains an obstacle to be overcome.
Even with modern supercomputers, the massive data process-
ing is still a very challenging task given the time and space
(memory) complexities. This is despite significant work aimed
at accelerating the calculations via parallel implementations
such as OpenMP [7] and Global Arrays [8].

Here we introduce a different approach to reduce the
computational burden. Previously we introduced an estimation
approach called single-constraint-at-a-time (SCAAT) [9]. The
idea behind the SCAAT approach is to use a Kalman filter to
estimate a globally observable system using low dimensional
measurements from potentially unobservable subspaces. The
benefits include higher sampling rates, lower latencies, and
improved accuracy. The approach inspired us to design LoDiM
[10], a SCAAT-based approach to state tracking for large-scale
systems. In this paper, we present ReMeDySE, a lightweight



yet efficient estimation approach to capture the dynamic states
in power systems. Furthermore, our method is compatible
with other powerful tools such as hierarchical estimation,
distributed estimation, and parallel computation techniques.

The remainder of this paper is organized as follows. Sec-
tion III presents the motivation of our approach with some
discussion of historical circumstances and some related work.
In , we formulate the power system dynamic state estimation
problem, and present our new approach, which is aimed at
dramatically reducing the computational requirements without
sacrificing the tracking quality. In Section IV we present
simulated results of tests on a multi-machine system model, to
demonstrate how it could benefit the dynamic state estimation
process. Finally we offer concluding thoughts in Section V.

II. BACKGROUND AND RELATED WORK

The phasor measurement unit (PMU) was first developed
and utilized in [3], [4]. In [5] we investigated the feasibility
of applying Kalman filtering techniques to include dynamic
state variables in the estimation process. The results indicated
a promising path forward for the implementation of Kalman
filter based dynamic state estimation, in conjunction with the
emerging PMU measurement technologies.

In applications such as power systems, computational load
is always a concern. Significant previous work has attempted
to reduce the computational complexity. For example, in [12]
the authors proposed a measurement reduction approach for
systems where there are more measurements than states. They
described an equivalent state-space system can be used where
the number of measurements equals the number of states.
However, they assumed the system is static and linear, and
did not take the preparation overhead into account.

In [13] the authors illustrated a measurement selection
procedure for Extended Kalman filters. Nevertheless, as stated
by the authors, an inherent limitation of the proposed method
is that measurement selection is based entirely on the steady-
state sensitivity matrix. However in this approach, the actual
information content of the candidate measurements under typ-
ical operating conditions is not considered; the measurement
rankings obtained are local and dependent on the steady state
chosen as the base case; and dynamic and nonlinear effects
are neglected.

Previously in [9], we presented SCAAT, a Kalman filter-
based incremental tracking algorithm. It estimates a globally
observable system using only measurements from locally
unobservable systems. The underlying principle is that the
single observations provide some information about the user’s
state, and thus can be used to incrementally improve a previous
estimate. We then developed LoDiM with more sophisticated
measurement selection procedure [10], such that the estimation
has higher reporting rates and lower latency than the classic
Kalman filter. Here we take the dynamic states of power sys-
tems into consideration and present ReMeDySE, a lightweight
yet efficient estimator that is suitable for reflecting power
system dynamic characteristics.

III. REDUCED MEASUREMENT-SPACE DYNAMIC STATE
ESTIMATION

The ReMeDySE approach employs an estimator such as
the Kalman filter, but with a twist: while the filter is running
in the foreground, it also performs a measurement selection
procedure in the background, where the selection is designed
to optimally reduce the measurement dimension. As a result,
during each cycle it yields much smaller computational load
and hence lower latency. In this section, we first describe
the relevant dynamic state space models, then provide a
brief introduction to the Kalman filter (used to illustrate the
approach), and then discuss the principles and structure of
ReMeDySE.

A. The Power System Dynamic State Space

An assumed linear system can be modeled as a pair of linear
stochastic process and measurement equations

xk = Axk−1 + wk−1 (1)
zk = Hxk + vk (2)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement
vector, A is a n×n matrix that relates the state at the previous
time step k−1 to the state at the current step k in the absence
of either a driving function or process noise1, and H is an
m × n matrix that relates the state x to the measurement z.
The process noise w and measurement noise v are assumed to
be mutually independent random variables, spectrally white,
and with normal probability distributions

p(w) ∼ N(0, Q) (3)
p(v) ∼ N(0, R), (4)

where the process noise covariance Q and measurement noise
covariance R matrices are often assumed to be constant.

In practice the process to be estimated and (or) the mea-
surement relationship to the process are usually nonlinear, for
example when the objective is to estimate the dynamic states
of a power system. A nonlinear system can be modeled using
nonlinear stochastic process and measurement equations

xk = a(xk−1, wk−1) (5)
zk = h(xk, vk). (6)

One can approximate the states and measurements by

xk = a(xk−1) (7)
zk = h(xk). (8)

These nonlinear functions can then be linearized about the
point of interest x in the state space. To do so one needs to
compute either or both of the Jacobian matrices

A =
∂a(x)

∂x
|x (9)

H =
∂h(x)

∂x
|x (10)

where A and H are the partial derivatives of a and h
(respectively) with respect to the elements of the state x.

1In practice, the matrix A may change with each time step



The specific state elements we consider here are generator
rotor angles and generator speeds. Without loss of generality,
in a power system that consists of n generators and m
buses, let us consider the generator i which is connected to
the generator terminal bus i. We use a classical model for
the generator composed of a voltage source |Ei|∠δi with
constant amplitude behind an impedance X ′di . The nonlinear
differential-algebraic equations regarding generator i can be
written as{

dδi
dt = ωB(ωi − ω0)
dωi

dt = ω0

2Hi
(Pmi

− |Ei||Vi|
X′

di

sin(δi − θi)−Di(ωi − ω0))

(11)

where state variables δ and ω are the generator rotor angle
and speed respectively, ωB and ω0 are the speed base and the
synchronous speed in per unit, Pmi

is the mechanical input, Hi

is the machine inertia2, Di is the generator damping coefficient
and |Vi|∠θi is the phasor voltage at generator terminal bus i.

For the state vector x = [δ1, ω1, δ2, ω2, ..., δn, ωn]T , the
corresponding continuous time change in state can be modeled
by the differential equation

dx

dt
= Acx+ wc, (12)

where wc is an 2n × 1 continuous time process noise vector
with 2n×2n noise covariance matrix Qc = E[wcw

T
c ], and Ac

is a 2n× 2n continuous time state transition Jacobian matrix.
The detailed derivations of the corresponding discrete-

time state transition matrix A and discrete-time process noise
covariance Q are described in [5] and [6]. According to the
process model from equation (1) we have

xk = Axk−1 + wk−1 (13)
= (I +Ac ·∆t)xk−1 + wk−1, (14)

where w is the process noise with normal probability distri-
bution p(w) ∼ N(0, Q).

Power system measurments include bus voltages, bus angles
and line flows. The measurement equations thus can be derived
using the nodal admittance matrix and bus voltage reconstruc-
tion matrix, according to the expanded system nodal equation:

Yexp

(
E
V

)
=

(
YGG YGL
YLG YLL

)(
E
V

)
=

(
IG
0

)
(15)

where E = [|E1|∠δ1, |E2|∠δ2, ..., |En|∠δn]T is the
vector of internal generator complex voltages, V =
[|V1|∠θ1, |V2|∠θ2, ..., |Vn|∠θn]T is the vector of bus complex
voltages, IG represents electrical currents injected by genera-
tors, Yexp is called the expanded nodal matrix, which includes
loads and generator internal impedances: YGG, YGL, YLG
and YLL are the corresponding partitions of the expanded
admittance matrix. Therefore the relationship of bus voltages
V to generator voltages E can be expressed as:

V = −Y −1LL YLGE = RV E (16)

2The mechanical power Pmi and machine inertia Hi should not be
confused with the error covariance P and measurement Jacobian H from the
preceding section. While potentially confusing these are the variables used by
popular convention in the respective fields.

where RV is defined as the bus reconstruction matrix. In a
power flow model, the line flows are functions of bus voltages
V , hence can be easily constructed as functions of generator
voltages E using (16).

The measurement model, which is discussed in [5] and [6],
can be expressed in the form of equation (2) after linearization

z = Hx+ v (17)

where H is the corresponding Jacobian matrix, and v is
the measurement noise with normal probability distribution
p(v) ∼ N(0, R). The measurement noise covariance R can
be determined experimentally, by off-line testing of the mea-
surement devices over time and (if desired) under different
conditions.

B. The Kalman Filter

We define x̂−k ∈ Rn to be the a priori state estimate at
time step k given the knowledge of the process prior to k, so
e−k ≡ xk − x̂

−
k is called the a priori estimate error and P−k ≡

E[e−k e
−T
k ] is called the a priori estimate error covariance.

Similarly, We define x̂k ∈ Rn to be the a posteriori state
estimate at time step k given measurement zk, so ek ≡ xk−x̂k
and Pk ≡ E[eke

T
k ] are called the a posteriori estimate error

and the a posteriori estimate error covariance respectively.
The Kalman filter [11] estimates the state by minimizing

the a posteriori estimate error covariance, in a recursive
prediction-correction manner.

The prediction step is realized by the time update equations:

Prediction

{
x̂−k = Ax̂k−1
P−k = APk−1A

T +Q
(18)

The time update equations are responsible for projecting
forward (in time) the previous state xk−1 and error covariance
estimates Pk−1 to obtain the a priori estimates for the next
time step k. The correction step is carried out by a set of
measurement update equations:

Correction


Kk = P−k H

T (HP−k H
T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k )
Pk = (I −KkH)P−k

(19)

where K is a n×m matrix called the Kalman gain matrix, zk is
the actual measurement at time step k, Hx̂−k is the predicted
measurement at time step k, and (zk − Hx̂−k ) is called the
measurement residual or innovation.
K reflects how we trust the actual measurement zk versus

the predicted measurement Hx̂−k . From its expression, one
can tell that larger values of R place more weight on the
predicted value while smaller values of R place more weight
on the measured values. The measurement update equations
are responsible for the feedback, i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved
a posteriori estimate.

C. Reduced Measurement-space Estimation

As one would expect, performing dynamic state estima-
tion with the KF/EKF (and in fact, any filter) can be a
computationally intensive process. For the small system in



[5], a regular PC was able to perform the computation fast
enough for real time control applications. However there are
three factors that increase the computational effort: the size
of the system, the complexity of model components, and the
number of measurements to be processed. In the “Correction”
phase corresponding to equation (19), we have noticed the
expensive cost of calculating the Kalman gain Kk. Because it
involves the inversion of an m ×m matrix (HP−k H

T + R),
with complexity of O(m3). This is a potential computation
bottleneck when the number of measurements m is too large,
which unfortunately, is true for the modern power systems.

On the other hand, if we could reduce the measurement
space dimension, i.e., only use a subset of measurements in
each Kalman filter cycle to update (perhaps a subset of) the
states, the computation can be sped up dramatically, according
to SCAAT [9]. Now the question boils down to deciding which
measurement subset to use at each cycle. Should we take the
naive random approach? Or is there a much wiser method
to help? We set our sights on the state space. Via principal
component analysis (PCA) of the error covariance, we can “pin
down” the subspace with the largest estimation uncertainty, i.e.
the subspace most in need of corresponding measurements.

Due to the fact that covariance matrices are always sym-
metric and positive semidefinite, there are several important
properties about them. Before the measurement update (“Cor-
rection” phase (19)) begins, let us consider the PCA of the a
priori error covariance matrix P− = U ·D · UT :

1) There exists an orthonormal basis U (UUT = UTU =
I where I is the identity matrix), whose columns are
the eigenvectors of P−, such that the error covariance
matrix expressed in this basis is diagonal. The axes of
this new basis are called the Principal Components of
P−.

2) As the off-diagonal elements of this new diagonal co-
variance matrix D are 0, the new variables defined by
this new basis (the projections of the a priori estimate
error e− = x − x̂− on the Principal Components) are
uncorrelated.

3) The diagonal elements of this new matrix D are the
eigenvalues of P−. So the variances of the projections
of error e− on the Principal Components are equal to
the corresponding eigenvalues of P−.

4) The eigenvalues in D are ordered decreasingly. The mth

eigenvalue corresponds to the mth eigenvector.

The principal components that correspond to the largest
elements of D, indicate the axes in the state space that have
the largest estimation uncertainties. We prefer to reduce these
uncertainties first, thus need to find the subset of measurements
that reduce the uncertainties most. This makes intuitive sense
in any type of state estimation process. For example, in a 3D
tracking application, if we use several cameras to estimate the
location of a certain object, and we noticed the uncertainty
is growing rapidly in one direction, then in the next cycle of
filtering we would ideally use a camera which is looking in
an orthogonal direction.

D. Measurement Selection Procedure

Similar to SCAAT, ReMeDySE also constrains the un-
knowns over time and refines the estimation continually,
rather than waiting for a complete collection of observations
to form. Nonetheless, it is the measurement selection that
differs ReMeDySE from SCAAT. In ReMeDySE, we select the
measurements that benefit our estimate the most (i.e. reduce
estimation uncertainty most effectively) during each iteration.

After the “Prediction” phase (18) of each Kalman filter
iteration, we have the n× n a priori error covariance matrix

P− = U ·D · UT (20)

where D is the diagonal matrix consisting of the eigenvalues
of P− in decreasing order, and U is the orthonormal basis
whose columns are the corresponding eigenvectors. Notice that
the full PCA can also be a quite time consuming process,
especially if the state space is large. For this reason, in
this paper we only investigate the first eigenvector u1 in U ,
which represents the directions that we are most uncertain
about in the state space. The largest eigenvalue and the
corresponding eigenvector u1 can be conveniently obtained
by existing algorithms such as the power method.

Now consider the measurements. We can rewrite the mea-
surement equation as

z = Hx+ v = HUUTx+ v = (HU)x′ + v = H ′x′ + v
(21)

Where x′ = UTx is the new state vector defined by the new
basis U , H ′ is the corresponding m × n new measurement
Jacobian matrix, and v is the unchanged measurement noise
vector with p(v) ∼ N(0, R). Here we assume R to be an
m×m diagonal covariance matrix, i.e. the measurement noise
sources are uncorrelated.

Because the basis U are composed of unit vectors, H ′ij can
also be considered as the magnitude of the projection (i.e. the
scalar projection) of the ith measurement direction vector in
the direction of the jth basis in U . Notice that we now have

Hu1 = [H ′11 H ′21 H ′31 . . . H
′
m1]T . (22)

Intuitively, for the same basis, say u1, the larger H ′i1 is,
the better the corresponding ith measurement could reduce
the uncertainty in this basis direction. However we should
also keep in mind that different measurements have different
amounts of noise. Thus for u1 we create a ranking vector r1
from H ′ and R using the following adjustment:

r1 = [
H ′211
R11

H ′221
R22

H ′231
R33

. . .
H ′2m1

Rmm
]T (23)

where R is the measurement noise covariance matrix. The
m × 1 vector r1 provides a means to evaluate the expected
effectiveness of each measurement by scaling the correspond-
ing Jacobian elements by the corresponding expected measure-
ment noise levels. Now we are going to prove the following:

Lemma 1: The larger H′2
i1

Rii
is, the more effectively the ith

measurement can reduce the uncertainty along direction u1.



Proof: It has been shown in [14] that the error covariance
update in the “Correction” phase (19)

P = (I −KH)P−

= (I − P−HT (HP−HT +R)−1H)P−

= P− − P−HT (HP−HT +R)−1HP− (24)

is equivalent to

P−1 = (P−)−1 +HTR−1H (25)

The inverse of the error covariance, P−1, is often called the
information matrix. According to (20), we have

P−1 = (UDUT )−1 +HTR−1H

= U−TD−1U−1 + U−TUTHTR−1HUU−1

= U−T [D−1 + (HU)TR−1(HU)]U−1

= U−T (D−1 +H ′TR−1H ′)U−1 (26)

Let us denote the matrix (D−1+H ′TR−1H ′) in equation (26)
by Σ, then Σ11 is the “information” we now have regarding
the new state variable in the direction u1, which we were most
uncertain about. This information value is increased/improved
from D−111 to Σ11 by

(Hu1)TR−1(Hu1) =

m∑
i=1

H ′2i1
Rii

(27)

So if we are only willing to incorporate mσ measurements
(instead of the full m measurements) into the measurement
update equation, the ones with the largest H ′2i1/Rii ratios
would be our choice.

We are able to easily locate the mσ measurements with the
largest values among these m elements in vector r1 (23). Thus
when our budget of computation time and memory space is
tight, we could choose to use only mσ measurements in the
next step but still achieve stable estimation results. Using this
approach to reduce state estimation uncertainty is similar to
fighting the Hydra in Greek mythology: if we are not able to
destroy all the “heads” at once, at least we can aim at and cut
off the most threatening “head” during each round.

E. ReMeDySE Structure

With modern shared-memory multi-core high performance
computers, we can parallelize the algorithm to improve the
computational efficiency of ReMeDySE in large-scale system
dynamic state estimations.

Consider the power system dynamic state estimation model
described in III-A, with a large measurement space. ReM-
eDySE utilizes the LoDiM algorithm [10] to have its main
dynamic state estimation process running in the foreground;
while the auxiliary measurement selection process as described
in subsection III-D runs in the background. The ReMeDySE
process can be expressed by the flow chart in Figure 1.

Fig. 1. The ReMeDySE flow chart

IV. SIMULATION RESULTS

We used the ReMeDySE approach on the standard 16-
generator 68-bus model representing the New England/New
York interconnected system. We simulated a three-phase fault
at bus 29, starting from t = 1.1 and lasting for 0.05 second, as
the dynamic event, representing a large disturbance emergency.

We simulated the dynamic state variables (the rotor angles
and speeds of each generator) and recorded them as the actual
dynamic states. The measurement set consisted of simulated
PMU measurements: voltages and phase angles, combined
with 1% random noise. In this paper, we made the strong
assumption that all bus voltages and phase angles are measured
by PMUs. In the future we will relax this assumption.

Fig. 2 depicts the actual and the estimated speed (using
ReMeDySE with only 20 PMU measurements per cycle,
and regular EKF with all PMU measurements per cycle) of
generator 2 within 10 seconds from t = 0 to t = 10, to
capture its reaction to this large disturbance. The estimate
resolution of ReMeDySE is 0.01 second; while the estimate
resolution of regular EKF is 0.2 second, due to the much larger
measurement set involved in the computation. The detailed
time complexities will be discussed in our future work.

For a better comparison. Fig. 3 zooms in the green dashed-
line window, and gives us a close-up look of the short window
from t = 2 to t = 5 of our simulation. Similarly, Fig. 4 shows
the rotor angle estimation results at this same generator during
the same window. Generator 10 offers another example. Fig. 5
and Fig. 6 illustrate the rotor speed and angle estimation results
at generator 10 respectively.

These plots demonstrate that under the experimental con-
ditions, our proposed ReMeDySE approach outperforms the
traditional EKF approach with higher accuracy. The primary
reason is that with the standard batch approach to EKF-based
dynamic state estimation, the entire measurement set is used as
input, resulting in a lower estimation rate and higher latency.
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Fig. 2. Estimation of rotor speed at generator 2 using ReMeDySE and regular
EKF, with a 3-phase fault at bus 29
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Fig. 3. The performance of ReMeDySE comparing to the regular EFK,
during the short period shown in the dotted-line box from Fig. 2
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Fig. 4. Estimation of rotor angle at generator 2 using ReMeDySE and regular
EKF
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Fig. 5. Estimation of rotor speed at generator 10 using ReMeDySE and
regular EKF
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Fig. 6. Estimation of rotor angle at generator 10 using ReMeDySE and
regular EKF

The dynamic nature of the state variables introduces additional
noise (uncertainty) into the process, and this noise increases
as the latency increases. Typically when latency is small, the
measurement device noise dominates; when latency is large,
the process noise dominates. In ReMeDySE, only a small,
dynamically selected subset of the measurements is used.
The result is a faster estimation cycle, combined with high
accuracy PMU measurements, making it possible to achieve
better dynamic state estimations under normal conditions.

V. CONCLUSIONS

In this paper we have proposed ReMeDySE, the Reduced
Measurement-space Dynamic State Estimation method, an
optimal measurement selection approach that can be applied
to the traditional Kalman filter for dynamic state estimation
problems such as power systems, where the measurement
spaces are exceptionally large. The parallelized dynamic mea-
surement selection procedure incorporates only the most crit-
ical measurement subspace into the computation, resulting in



higher reporting rate and lower latency. Together with high
frequency and accuracy PMU data, ReMeDySE can provide
better estimation of large-scale dynamic state spaces such as
power systems.

The PMU data in our simulations are ideal; while in prac-
tice, they can suffer from corruption and loss beyond noise. In
the future we plan to explore methods for robust measurement
selection based on statistical likelihood. Also, selecting certain
measurement subspaces inherently delays the selection of the
entire (remaining) measurement space, which could potentially
delay the observance of an important state change. We plan
to investigate the addition of measurement prioritization based
on factors such as unexpected (deviating from prediction) state
changes throughout the entire state space.
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