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Abstract�—Power system measurement devices continue to
evolve towards higher accuracy and update rate. On the other
hand, the computation required for processing the enormous
amounts of measurement data associated with large complex
power systems makes real-time estimation a major challenge.
In this paper we present the Lower Dimensional Measurement-
space (LoDiM) state estimation method for large-scale and wide-
area interconnected power systems. We present the method in
the context of the Kalman lter and Extended Kalman lter,
however our measurement selection procedure is not lter-specic,
i.e. it can also be applied on other state estimation methods such
as particle lters and unscented lters. Our method can also
take advantage of large-scale parallel computation techniques for
further improvement. Moreover, the concept of LoDiM should
be applicable to other large-scale, real-time and computationally-
intensive state tracking systems beyond the power systems, such
as weather forecasting systems, gas-pipeline systems, and other
critical infrastructure.

I. INTRODUCTION
State estimation plays a basic yet very important role in

modern industries. Particularly for power systems, state esti-
mation provides critical data for driving other operation func-
tions including real-time security monitoring, load-forecasting,
economic dispatch, and load-frequency control.
Because of the increasing size and complexity of intercon-

nected power networks, state estimation computation remains
one of the primary obstacles to overcome. Even with modern
supercomputers, the massive data processing is still time
consuming and memory challenging. Much previous work has
also been dedicated to the acceleration of calculations, e.g., via
parallel mathematical systems such as OpenMP [1] and Global
Arrays [2].
However in this paper, we introduce a different approach to

reduce the computational burden. In our previous research [3],
a tracking method called single-constraint-at-a-time (SCAAT)
was proposed. The idea behind the SCAAT approach, which
is typically implemented with a Kalman lter, is to estimate
a globally observable system using only measurements from
locally unobservable systems. As a result, in each ltering cy-
cle SCAAT deals with much lower dimensional measurement
data. Although SCAAT does not inherently dictate any partic-
ular measurement selection, it inspired our design of LoDiM,
a SCAAT-based algorithm featuring dynamic measurement
selection for state tracking of large-scale systems (power
systems, weather forecasting systems, etc.). Furthermore, our

method is expected to signicantly facilitate power system
operations, supporting hierarchical and distributed estimation,
as well as parallel computation techniques for more improve-
ment.
The remainder of this paper is organized as follows. Sec-

tion II introduces the background. In Section III, we present
our new approach to perform Kalman ltering upon dy-
namically select measurements, in order to reduce the com-
putational requirement dramatically, without sacricing the
tracking quality. Our method is tested on a multi-machine
system model in Section IV to demonstrate how it could
benet the power system state estimation process. Finally,
conclusions and acknowledgement are stated in Section V and
Section VI respectively.

II. BACKGROUND AND RELATED WORK

As described in [4], Kalman ltering techniques are exten-
sively used for power system state estimation. Recent work [5]
also employed them for the detection of bad data (outliers) in
power systems.
However in applications such as power systems, compu-

tational load is always a concern. Signicant previous work
has attempted to reduce the computational complexity. For
example, in [8] the authors proposed a method for systems that
have more measurements than states. They described how an
equivalent state-space system can be used where the number
of measurements equals the number of states. However, they
assumed the system is static and linear, and did not take the
preparation overhead into account.
Another alternative to solving the computational challenge

was presented in [6], where the authors used Petri net (PN)
theory to achieve the optimum utilization of processors, in a
state estimator based on the Kalman lter.
[9] illustrated a measurement selection procedure for Ex-

tended Kalman lters. Nevertheless, as stated by the authors,
an inherent limitation of the proposed method is that measure-
ment selection is based entirely on the steady-state sensitivity
matrix. The shortcomings of this approach include: (1) the
actual information content of the candidate measurements
under typical operating conditions are not considered; (2) the
measurement rankings obtained are local and dependent on
the steady state chosen as the base case; and (3) dynamic and
nonlinear effects are neglected.
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Previously in [3], we presented SCAAT, a Kalman-lter-
based incremental tracking algorithm using incomplete in-
formation. It estimates a globally observable systems using
only measurements from locally unobservable systems. The
underlying principle is that the single observations provide
some information about the user�’s state, and thus can be used
to incrementally improve a previous estimate. Here we present
work on extending SCAAT with a principled measurement
selection procedure, so that the estimation is more stable and
reliable, with higher report rates with lower latency than a
batch-based Kalman lter.

III. LOWER DIMENSIONAL MEASUREMENT-SPACE STATE
ESTIMATION

The LoDiM method employs a Kalman lter that incor-
porates lower dimensional (sub-space) measurements in each
cycle. It employs a special measurement selection procedure
to strategically reduce the measurement-space dimension. As
a result, it yields a much smaller computational load, lower
latency, and most importantly: reliable performance. In this
section, we will rst give a brief introduction to the Kalman
lter, then discuss our dynamic measurement selection method
and the structure of LoDiM.

A. The Kalman Filter

The Kalman lter [7] has been used in a wide range of
applications from radar tracking to weather forecasting. It is
an efcient recursive lter that estimates the state of a process,
in a way that minimizes the mean of the squared error.
An assumed linear system can be modeled as a pair of linear

stochastic process and measurement equations

xk = Axk−1 + wk−1 (1)
zk = Hxk + vk (2)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement
vector, A is a n×n matrix that relates the state at the previous
time step k−1 to the state at the current step k in the absence
of either a driving function or process noise1, and H is a
m × n matrix that relates the state to the measurement zk.
The process noise wk and measurement noise vk are assumed
to be mutually independent random variables, spectrally white,
and with normal probability distributions

p(w) ∼ N(0, Q) (3)
p(v) ∼ N(0, R), (4)

where the process noise covariance Q and measurement noise
covariance R matrices are often assumed to be constant.
In reality, the process to be estimated and (or) the mea-

surement relationship to the process is usually nonlinear,
especially when the objective is to estimate the dynamic states

1In practice, the matrix A may change with each time step, but it is assumed
to be constant here.

of a power system. A nonlinear system can be modeled using
nonlinear stochastic processes and measurement equations

xk = a(xk−1, wk−1) (5)
zk = h(xk, vk). (6)

One can approximate the states and measurements by

xk = a(xk−1) (7)
zk = h(xk). (8)

These nonlinear functions can then be linearized about the
point of interest x in the state space. To do so one need to
compute either or both of the Jacobian matrices

A =
∂a(x)

∂x
|x (9)

H =
∂h(x)

∂x
|x (10)

where A and H are the partial derivatives of a and h
(respectively) with respect to x.
We dene x̂−

k ∈ Rn to be the a priori state estimate at
time step k given the knowledge of the process prior to k, so
e−k ≡ xk − x̂−

k is called the a priori estimate error and P−

k ≡
E[e−k e

−T
k ] is called the a priori estimate error covariance.

Similarly, We dene x̂k ∈ Rn to be the a posteriori state
estimate at time step k given measurement zk, so e≡k xk − x̂k

and P≡

k E[ekeTk ] are called the a posteriori estimate error and
the a posteriori estimate error covariance respectively.
The Kalman lter estimates the state by minimizing the a

posteriori estimate error covariance, in a recursive prediction-
correction manner. The prediction step is realized by a set of
time update equations:

Prediction :
{

x̂−

k = Ax̂k−1

P−

k = APk−1AT +Q
(11)

The time update equations are responsible for projecting
forward (in time) the previous state xk−1 and error covariance
estimates Pk−1 to obtain the a priori estimates for the next
time step k.
The correction step is carried out by a set of measurement

update equations:

Correction :






Kk = P−

k HT (HP−

k HT +R)−1

x̂k = x̂−

k +Kk(zk −Hx̂−

k )
Pk = (I −KkH)P−

k

(12)

where K is an n×m matrix called the Kalman gain matrix, zk
is the actual measurement at time step k, Hx̂−

k is the predicted
measurement at time step k, and (zk − Hx̂−

k ) is called the
residual.
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B. Principle of Design

As one would expect, performing dynamic state estimation
with a KF/EKF (and in fact, any lter) is a rather computa-
tionally intensive process. For small systems, the computation
could be fast enough for real time control applications. How-
ever there are three factors that increase the computational
effort: the size of the system, the complexity of model compo-
nents, and the number of measurements to be processed. In the
�“Correction�” phase, corresponding to equation (12), we have
noticed the expensive cost of calculating the Kalman gain Kk,
primarily because it involves the inversion of a m×m matrix
(HP−

k HT +R), with complexity of O(m3). This makes the
computation intractable when the number of measurements m
is too large, which unfortunately, is true for the modern power
systems.
On the other hand, if we could reduce the measurement-

space dimension, i.e. only use a subset of measurements in
each Kalman lter cycle to update (perhaps a subset of) the
states, the computation can be sped up dramatically, according
to SCAAT. Now the question boils down to deciding which
measurement subset to use at each cycle. Previous studies
suggested pre-determined measurement subsets; however the
dynamic nature of power systems compelled us to seek an
improved method. We set our sights on the state space.
Through principal component analysis (PCA) of the dynamic
error covariance we can �“pin down�” the the subspace with the
largest estimation uncertainty, i.e. the subset of the state space
that needs to be updated more urgently.
Due to the fact that covariance matrices are always sym-

metric and positive semidenite, there are several important
properties about them. Before the measurement update (�“Cor-
rection�” phase (12)) begins, let us consider the PCA of the a
priori error covariance matrix P− = U ·D · UT :
1) There exists an orthonormal basis U (UUT = UTU =

I , where I is the identity matrix), whose columns are
the eigenvectors of P−, such that the error covariance
matrix expressed in this basis is diagonal. The axes of
this new basis are called the Principal Components of
P−.

2) As the off-diagonal elements of this new diagonal co-
variance matrix D are 0, the new variables dened by
this new basis (the projections of the a priori estimate
error e− = x − x̂− on the Principal Components) are
uncorrelated.

3) The diagonal elements of this new matrix D are the
eigenvalues of P−. So the variances of the projections
of error e− on the Principal Components are equal to
the corresponding eigenvalues of P−.

4) The eigenvalues in D are ordered decreasingly. Themth

eigenvalue corresponds to the mth eigenvector.
The principal components that correspond to the largest

elements of D, indicate the axes in the state space that have
the largest estimation uncertainties. We prefer to target these
uncertainties rst, i.e. we want to nd the set of measurements
that can be used to reduce those uncertainties most efciently.

This makes perfect sense in any type of state estimation
process: in a 3D tracking application example, if we use
several cameras to estimate the location of a certain object, and
we noticed the uncertainty is growing rapidly in one direction,
then in the next cycle of ltering we would ideally use a
camera which is looking in an orthogonal direction.

C. Measurement Selection Procedure

Similar to SCAAT, LoDiM also constrains the unknowns
over time and renes the estimation continually, rather than
waiting for a complete collection of observations to form.
Nonetheless, it is the measurement selection that distinguishes
LoDiM from SCAAT. In LoDiM, we select the measurements
that benet our estimate the most (i.e. reduce estimation
uncertainty most effectively) during each iteration.
After the �“Prediction�” phase (11) of each Kalman lter

iteration, we have the n× n a priori error covariance matrix

P− = U ·D · UT (13)

where D is the diagonal matrix consisting of the eigenvalues
of P− in decreasing order, and U is the orthonormal basis
whose columns are the corresponding eigenvectors. Notice that
computing the full PCA can be a time consuming process,
especially if the state space is large. For this reason, in
this paper we only investigate the rst eigenvector u1 in U ,
which represents the directions that we are most uncertain
about in the state space. The largest eigenvalue and the
corresponding eigenvector u1 can be conveniently obtained
by existing algorithms such as the power method [13].
Now consider the measurements. We can rewrite the mea-

surement equation as

z = Hx+ v

= HUUTx+ v

= (HU)x′ + v

= H ′x′ + v

where x′ = UTx is the new state vector dened by the new
basis U , H ′ is the corresponding m × n new measurement
Jacobian matrix, and v is the unchanged measurement noise
vector with p(v) ∼ N(0, R). Here we assume R to be am×m
diagonal covariance matrix, i.e. the measurement noise sources
are uncorrelated.
Because the basis U is composed of unit vectors, H ′

ij can
also be considered the magnitude of the projection (i.e. the
scalar projection) of the ith measurement direction vector in
the direction of the jth basis in U . Notice that we now have

Hu1 = [H ′

11 H ′

21 H ′

31 . . . H
′

m1]
T (14)

Intuitively, for the same basis, say u1, the larger H ′

i1 is, the
better the corresponding ith measurement could reduce the
uncertainty in this basis direction. However we should also
keep in mind that different measurement has different amount
of noise. Thus for u1 we create a �“ranking�” vector r1 from
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H ′ and R using the following adjustment:

r1 = [
H ′2

11

R11

H ′2
21

R22

H ′2
31

R33

. . .
H ′2

m1

Rmm
]T (15)

where R is the measurement noise covariance matrix. The
m×1 vector r1 evaluates the uncertainty calibration abilities of
each measurement regarding the most signicant uncertainty
component, scaled by the corresponding measurement noise
level.
We are able to easily locate the mσ measurements with the

largest values among thesem elements in vector r1 (15). Thus
when our budget of computation time and memory space is
tight, we could use only mσ measurements in the next step
but still achieve stable estimation results. Using this approach
to reduce state estimation uncertainty is similar to ghting the
Hydra in Greek mythology: if we are not able to destroy all
the �“heads�” at once, at least we can aim at and cut off the
most threatening �“head�” during each round!

D. LoDiM Architecture
In this section, we explore the idea of employing modern

shared-memory multi-core high performance computers, to
improve the computational efciency in large-scale Kalman-
lter-based state estimations. We propose a better architecture
for our new method, LoDiM, consisting of algorithm paral-
lelization and parallel implementation.
To generalize our approach, let us consider a nonlinear

system described by equations (5) and (6), with a presumably
large measurement space. LoDiM has its main state estimation
process, which is similar to SCAAT algorithm, running in the
foreground:
1) Compute the time ∆t since the previous estimate.
2) Predict the state and error covariance. Share the pre-
dicted error covariance P− with the background process.

{

x̂− = a∆t
(x̂t−∆t

, 0)
P− = A∆t

Pt−∆t
AT

∆t
+Q∆t

(16)

3) If this is the rst cycle, choosemσ measurements (which
is a much smaller measurement subset) randomly; other-
wise, choose the mσ best measurements nominated by
the background process. Predict the measurement and
compute the corresponding Jacobian.

{

ẑ = hσ(x̂
−

t , 0)
H = Hσ(x̂

−

t , 0)
(17)

4) Compute the Kalman gain.

K = P−HT (HP−

k HT +Rσ,t)
−1 (18)

5) Correct the predicted state estimate and error covariance
from (16) using the actual sensor measurement zσ,t.

{

x̂t = x̂− +K(zσ,t − ẑ)
Pt = (I −KH)P−

(19)

Concurrently, LoDiM uses an auxiliary measurement selec-
tion process as described in subsection III-C, running in the
background:

1) Compute the principal component u1 of the error co-
variance P− predicted in the foreground.

2) Compute Hu1 according to (14) and the ranking vector
r1 according to (15).

r1 = (Hu1). ∗ (Hu1)./diag(R) (20)

where .∗ and ./ denote element-by-element multiplica-
tion and division (respectively).

3) Select the mσ measurements that correspond to the mσ

largest elements in r1, to be used by the foreground
process.

IV. SIMULATION RESULTS
In this section, we investigate the performance of the

proposed LoDiM state estimation using a 16-generator 68-
bus system, which represents the New England/New York
interconnected system [11]. We simulate an emergency event:
a three-phase fault at bus 29 that happens at time t = 1.1,
and is then cleared in 0.05 seconds. This event represents a
relatively large disturbance emergency.
For this 68-bus system, we simulate the 135 state variables

and record them as the �“true�” system states. There are 272
simulated Phasor Measurement Unit (PMU) measurements,
combined with random noise. PMUs, as their name implies,
provide both voltage phasor and current phasor measurements,
at a higher frequency and accuracy level [12].
Without a loss of generality, we visualize the state estimate

results for bus 60, a generator bus. Fig. 1 depicts the voltage
magnitude tracking result of bus 60 during the 10 seconds
from t = 0 to t = 10, using the conventional Kalman lter.
The black solid line plots the true state, while the red dot-dot
line plots the estimated state. The entire measurement set is
used as input in the regular EKF dynamic state estimation,
resulting in lower estimation rate.
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Fig. 1. Bus 60 Voltage magnitude estimation using conventional Kalman
lter

Next, we exam the performance of the reduced
measurement-space state estimation with a naive approach:
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a small subset of the measurements (70 measurements in
our experiment) is chosen randomly during each shorter
estimation cycle. The tracking result is demonstrated in Fig.
2: the green dash-dot line records the estimation of the true
state, which is plotted by black solid line.
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Fig. 2. Bus 60 Voltage magnitude estimation using randomly chosen
measurements

Our LoDiM state estimation method use the same number
of dynamically selected measurements (70 measurements also)
as input during each short estimation cycle. In contrast, the
small measurement subset is selected by the measurement
selection procedure described in section III-C. Fig. 3 shows
the voltage magnitude tracking result of the same bus during
the same period, using LoDiM method. The black solid line
still represents the true state, while the blue dash-dash line
plots the estimated state.
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Fig. 3. Bus 60 Voltage magnitude estimation using our LoDiM method for
measurement selection.

Finally, let us take a closer look at the performance of the
different state estimation methods described above. Within a

short time period from t = 4 to t = 6 seconds at bus 60, the
true state and the estimated states using these three approaches
respectively, are plotted in Fig. 4 for a better comparison.
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Fig. 4. The performance comparison of generator bus 60 state estimation
with full measurement-space (in red), with randomly selected measurements
(in green) and with LoDiM (in blue), from t = 4 to t = 6

Another comparison is performed similarly at bus 26, a
load bus. The zoom-in gure (Fig. 5) also demonstrates how
our proposed LoDiM method, appearing both smooth and
accurate, outperforms the other two methods.
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Fig. 5. The performance comparison of load bus 26 state estimation from
t = 4 to t = 6

V. CONCLUSIONS
We have presented LoDiM, a new method for measurement

selection in state estimation. During each estimation cycle,
unlike the traditional batch methods of KF/EKF state estima-
tion methods, which handle the entire measurement-space, it
only needs to deal with a lower dimensional measurement-
space thus reducing the computation time and increasing the
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estimate rate. And unlike previous methods that process lower
dimensional (or sequential) measurements, LoDiM seeks to
choose the most valuable measurement at each cycle. The
smaller measurement-space results in higher reporting rates,
and the associated measurement selection results in more
accurate estimates. LoDiM can be further parallelized and
optimized, to benet large-scale real-time state estimations,
for the power systems and beyond.
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