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Abstract—As electricity demand continues to grow and re-
newable energy increases its penetration in the power grid, real-
time state tracking becomes essential for system monitoring and
control. Recent developments in phasor technology make real-
time dynamic state estimation possible with high-speed time-
synchronized data provided by synchronized Phasor Measure-
ment Units (PMU).

In this paper we present a two-stage Kalman filtering ap-
proach to estimate the static states of voltage magnitudes and
phase angles, as well as the dynamic states of generator rotor
angles and generator speeds. Kalman filters achieve optimal
performance only when the system noise characteristics have
known statistical properties (zero-mean, Gaussian, and spectrally
white). However in practice the process and measurement noise
models are usually difficult to obtain. Thus in the first stage, we
estimate the static states from raw PMU measurements, using
a lightweight but efficient adaptive Kalman filtering algorithm
called Adaptive Kalman Filter with Inflatable Noise Variances
(AKF with InNoVa), which can identify and reduce the impact of
incorrect system modeling and/or bad PMU measurements. In
the next stage, the estimated bus voltages are fed into an extended
Kalman filter to obtain the dynamic state estimations. Simulations
demonstrate its robustness to sudden changes of system dynamics
and erroneous PMU measurements.

Index Terms—Power systems, real-time state estimation, robust
state estimation, adaptive Kalman filter, Phasor Measurement
Units (PMU), bad data processing

I. INTRODUCTION

AQuasi-steady-state assumption is typically applied to
operational studies, for which the state estimation is at

the core. Today’s operation is based primarily on a model
that largely ignores dynamics in the power grid—electro-
mechanical interaction of generators and dynamic characteris-
tics of loads and control devices are not included in operational
models. This assumption reduces the computation by several
orders of magnitude, enabling operation studies on standard
computers within the required operational time intervals. The
problem with this assumption is that many studies cannot be
performed in the operational environment. The future grid is
much less quasi-steady-state compared with the power grid in
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the past. In particular, the widespread deployment of renewable
generation, smart load controls, energy storage, and plug-
in hybrid vehicles will require fundamental changes in the
operational concepts and principal components of the grid. In
part due to aggressive public policy goals, such as the U.S.
state of California’s push to generate 33% of its energy from
renewable sources by 2020, this evolution will only accelerate,
resulting in stochastic operating behaviors and dynamics the
grid has never seen nor been designed for.

Nowadays, with the advance of synchrophasor technology,
Phasor Measurement Units (PMUs) are becoming increasingly
attractive in various time-critical power system applications
such as system monitoring, protection, control, and stabil-
ity assessment [1], [2]. They are able to provide real-time
(typically 30 samples/second) synchrophasor data to capture
the dynamic characteristics of the power system: in addition
to estimating relatively stationary state elements such as bus
voltage magnitudes and phase angles (we call these the static
states), PMUs make it possible to estimate more transient
states of a power system such as generator rotor angles and
speeds (we call these the dynamic states).

Weighted least square (WLS) estimation is a classic method
for estimating the static states [3]. In [4] the authors studied
the use of phasor measurements in WLS state estimation, and
how to identify bad data with normalized residual vectors.
To deal with unpredictable process changes, [5] proposed a
reverse prediction adaptive Kalman filtering algorithm, which
adjusted the process noise parameter Q to improve filtering
precision, assuming the measurement model was correct. As
a comparison, [6] adjusted the measurement noise parameter
R instead of Q, to increase the robustness erroneous mea-
surements. An extended Kalman filter (EKF) based approach
to estimate the dynamic states with dynamic power system
models using PMU data was proposed in [7] and [8]. This ap-
proach can achieve satisfying and robust performance in terms
of tracking the dynamic system states, with the assumption that
all PMU measurements are ideal.

In this paper we propose a real-time two-stage Kalman
filtering approach for simultaneously estimating the static
states and the dynamic states in a power system. At every
time step, stage one takes the raw PMU measurements into the
Adaptive Kalman Filter with Inflatable Noise Variances (AKF
with InNoVa), a novel AKF approach we recently developed to
estimate the static states. It adjusts Q and R on-the-fly, allow-
ing dynamic adaptation to unexpected process model changes
and measurement errors. The results are passed on to stage
two, which takes uses an Extended Kalman filter to estimate
the truly dynamic states. Our method is straightforward to



implement, and shown to be effective and robust under various
experimental scenarios.

The remainder of this article is organized as follows. Section
II presents a review of traditional Kalman filtering techniques.
Section III presents the principles and implementation de-
tails of our two-stage Kalman filtering approach. Section IV
presents results that demonstrate robustness under different
unusual but important conditions. The conclusions and ac-
knowledgements are stated in Section V and VI.

II. TRADITIONAL KALMAN FILTERS

In this section we give a brief description of the classic
Kalman filters. Readers can refer to [9] for a more detailed
introduction.

A. The Kalman Filter (KF)

The Kalman filter (KF) has been used in a wide range of
applications from economic analysis to radar tracking. It is an
efficient recursive filter that estimates the state of a process
in a way that minimizes the mean of the squared error when
the process and measurement models are accurate and obey
certain statistical and spectral properties.

An assumed linear system can be modeled as a pair of linear
stochastic process and measurement equations

xk = Axk−1 + wk−1 (1)

zk = Hxk + vk (2)

where x ∈ Rn is the state vector, z ∈ Rm is the measurement
vector, A is a n×n matrix that relates the state at the previous
time step k−1 to the state at the current step k in the absence
of either a driving function or process noise 1, and H is a
m × n matrix that relates the state to the measurement zk.
The process noise wk and measurement noise vk are assumed
to be mutually independent random variables, spectrally white,
and with normal probability distributions

p(w) ∼ N(0, Q) (3)

p(v) ∼ N(0, R), (4)

where the process noise covariance Q and measurement noise
covariance R matrices are often assumed to be constant.

We define x̂−
k ∈ Rn to be the a priori state estimate at

time step k given the knowledge of the process prior to k, so
e−k ≡ xk − x̂−

k is called the a priori estimate error and P −
k ≡

E[e−k e−T
k ] is called the a priori estimate error covariance.

Similarly, We define x̂k ∈ Rn to be the a posteriori state
estimate at time step k given measurement zk, so ek ≡ xk−x̂k

and Pk ≡ E[ekeT
k ] are called the a posteriori estimate error

and the a posteriori estimate error covariance respectively.
The Kalman filter estimates the state by minimizing the a

posteriori estimate error covariance, in a recursive prediction-
correction manner. The prediction step is realized by a set of
time update equations:

Predict

{
x̂−

k = Ax̂k−1

P−
k = APk−1A

T + Q
(5)

1In practice, the matrix A may change with each time step, but it is assumed
to be constant here.

The time update equations are responsible for projecting
forward (in time) the previous state xk−1 and error covariance
estimates Pk−1 to obtain the a priori estimates for the next
time step k.

The correction step is carried out by a set of measurement
update equations:

Correct

⎧⎨
⎩

Kk = P−
k HT (HP−

k HT + R)−1

x̂k = x̂−
k + Kk(zk − Hx̂−

k )
Pk = (I − KkH)P−

k

(6)

where K is a n × m matrix called the Kalman gain matrix,
zk is the actual measurement at time step k, Hx̂−

k is the
predicted measurement at time step k. Kalman gain K reflects
how we trust the actual measurement zk versus the predicted
measurement Hx̂−

k . From its expression, one can tell that
larger values of R place more weight on the predicted values
while smaller values of R place more weight on the measured
values. The measurement update equations are instrumental in
the feedback, i.e. for incorporating a new measurement into the
a priori estimate to obtain an improved a posteriori estimate.

B. The Extended Kalman Filter (EKF)

In reality, the process to be estimated and (or) the measure-
ment relationship to the process are often nonlinear. This is
certainly true when estimating the dynamic states of a power
system. A nonlinear system can be modeled using nonlinear
stochastic process and measurement equations corresponding
to the linear equations (1) and (2):

xk = a(xk−1, wk−1) (7)

zk = h(xk, vk). (8)

One can approximate the states and measurements by

x̃k = a(x̂k−1, 0) (9)

z̃k = h(x̃k, 0). (10)

These nonlinear functions can then be linearized about the
point of interest x in the state space. To do so one need to
compute the Jacobian matrices

A =
∂a(x)
∂x

|x, W =
∂a(x)
∂w

|x, H =
∂h(x)

∂x
|x, V =

∂h(x)
∂v

|x
(11)

where A and W are the partial derivatives of a with respect to
x and w, H and V are the partial derivatives of h with respect
to x and v, respectively, at each time step.

An Extended Kalman filter (EKF) is essentially a Kalman
filter modified to linearize the estimation about the current
mean and covariance. Similar to the KF equations, the EKF
can be expressed as follows:

Predict

{
x̂−

k = a(x̂k−1, 0)
P−

k = AkPk−1A
T
k + WkQk−1W

T
k

(12)

Correct

⎧⎨
⎩

Kk = P−
k HT

k (HkP−
k HT

k + VkRkV T
k )−1

x̂k = x̂−
k + Kk(zk − h(x̂−

k , 0))
Pk = (I − KkHk)P−

k

(13)



III. TWO-STAGE KALMAN FILTERING APPROACH

A. Stage One

The inputs to stage one are the raw measurement data
collected from PMUs installed in the system. The outputs
are the relatively static states: bus voltage magnitudes and
phase angles, which can be estimated using the available
measurements and system models. The same system model
from our previous research [10] is used in this particular power
system state estimation problem. Per [4], we use a rectangular
coordinate formulation where the real and imaginary parts of
bus voltages are considered state variables, to avoid numerical
startup problems associated with current phasors.

For the process model, the power system is assumed to
be reasonably stable, hence a quasi-static model of a power
system has been employed for the base process model. Note
that this assumption could be incorrect (sub-optimal) but our
models dynamically adapt as indicated below.

For the measurement model, we assume all measurements
are provided by PMUs. In addition to higher precision and
higher rate measurements, PMUs have the advantage that they
measure bus voltage phasors and line current phasors, so the
relationship between measurements and states is linear. This
is in contrast to conventional power system state estimators
which use real and reactive power as measurements, so the
measurement-state relationship is non-linear. We also assume
that a PMU installed at a specific bus can measuring not only
the bus voltage phasor, but also the current phasors along all
the lines incident to the bus. A more detailed measurement
modeling can be found in [10].

Ideally, the chosen base models are the “true” models,
with accurately modeled noise characteristics. However when
the chosen models do not match the actual system behavior,
and/or PMU measurements contain significant errors, the state
estimates could deviate from the true states rapidly. Thus we
developed AKF with InNoVa in the first stage to deal with un-
known system dynamics and erroneous PMU measurements.

With our adaptive Kalman filter we treat all un-modeled
PMU measurement errors as noise. By definition, these errors
are unknown and unpredictable, so they cannot be reflected
in the measurement noise covariance R. Similarly, we treat
deviations from the true process model as un-modeled noise
that is not reflected in the process noise covariance Q. Multi-
ple/switching process models are not considered for now.

Throughout we refer to the conventional Kalman filter in-
novation (zk−Hx̂−

k ) as the a priori innovation, to distinguish
it from the a posteriori innovation (zk −Hx̂k). Traditionally,
to assess the performance of a filter people examine the a
priori innovation I−

k = (zk − Hx̂−
k ), which should have

a normal distribution with zero mean and covariance Sk =
HP−

k HT + R [11]. When the implemented process model
does not match reality, the mean of the innovation can shift,
and the magnitude grow, such that eventually the normalized
a priori innovation (normalized by its covariance Sk) exceeds
a predetermined threshold. However, it is usually impossible
to determine whether the shift/growth is caused by a process
model mismatch, a measurement model mismatch, or both.
Note that Q and R are already blended (indistinguishable)

in Sk. This is why we want to investigate the a posteriori
innovation Ik = (zk − Hx̂k) as well: its ideal covariance Tk

can be used to identify un-modeled PMU measurement errors.
Lemma: Ideally, the a posteriori innovation Ik = (zk −

Hx̂k) should be normally distributed with zero mean and
covariance RS−1

k R.
Proof: According to the a posteriori state estimate in (6)

by incorporating the measurement, we have

x̂k = x̂−
k + Kk(zk − Hx̂−

k )
Hx̂k = Hx̂−

k + HKk(zk − Hx̂−
k )

zk − Hx̂k = (zk − Hx̂−
k ) − HKk(zk − Hx̂−

k )
zk − Hx̂k = (I − HKk)(zk − Hx̂−

k ), (14)

where I is the identity matrix. Then the mean of the a
posteriori innovation is

E(zk − Hx̂k) = (I − HKk)E(zk − Hx̂−
k ) = 0, (15)

and the covariance of the a posteriori innovation is

cov(zk − Hx̂k) = (I − HKk)cov(zk − Hx̂−
k )(I − HKk)T

= (I − HKk)Sk(I − HKk)T . (16)

Next we will show that I − HKk = RS−1:

I − HKk = I − HP−
k HT (HP−

k HT + R)−1

= R(HP−
k HT + R)−1

= RS−1
k . (17)

Combining (16) and (17) we can now write

cov(zk − Hx̂k) = RS−1
k Sk(RS−1

k )T

= R(S−1
k )T RT

= RS−1
k R, (18)

because the a priori innovation covariance Sk and measure-
ment noise covariance R are both symmetric matrices. We
define Tk = RS−1

k R as the a posteriori innovation covariance.

The basic idea of our approach is as follows. To simplify
the notation we omit the time step count k. Within each
filtering cycle, after the prediction step, we compute the ideal
a priori innovation covariance S and the normalized a priori
innovation vector Ĩ− where

Ĩ−
i = |I−

i |/
√

Sii. (19)

If Ĩ−
i > τ for some threshold τ , then i ∈ Out, where Out

holds the outlier indices. In our experiments, we used τ = 3
(measurement units). First we assume the outliers are caused
by unknown process noise, so we want to “inflate” Q by a
diagonal matrix ΔQ, such that P − is also inflated by ΔQ.
Thus S is consequently inflated by ΔS = H(ΔQ)H T and

Ĩ−
i = |I−

i |/
√

Sii + ΔSii ≤ τ i = 1, 2, ...n, (20)

where

ΔSii =
n∑

j=1

H2
ijΔQj = (H(i, :) · H(i, :))([ΔQ1, ...ΔQn]T ),

(21)



and “·” denotes dot product. We use a linear programming
approach to solve the optimization problem:

min
n∑

i=1

ΔQi (22)

s.t. ΔSii = (H(i, :) · H(i, :))([ΔQ1, ...ΔQn]T )
≥ (|I−

i |/τ)2 − Sii, ∀i ∈ Out

ΔQ1 ≥ 0, ΔQ2 ≥ 0, ...ΔQn ≥ 0.

The inflated Q is then incorporated in the correction step. Sim-
ilarly, we compute the ideal a posteriori innovation covariance
T and the normalized a posteriori innovation vector Ĩ where

Ĩi = |Ii|/
√

Tii. (23)

If Ĩi > τ , then i ∈ MeasOut where MeasOut holds the mea-
surement outlier indices, indicating abnormal measurements.

Now we can separate the measurement “noise” elements
from the process “noise” elements. Let us denote ProcOut =
Out\MeasOut = {i : i ∈ Out and i /∈ MeasOut} as
the set difference between Out and MeasOut. If MeasOut
is not empty, we will recalculate the ΔQ as in optimization
problem (22), except only for ∀i ∈ ProcOut, and update Q
to Q + ΔQ. As for the measurements, we “inflate” R in this
way: for ∀i ∈ MeasOut, Rii is inflated to λiRii. As a result,
T = RS−1R is also inflated such that the ith diagonal element
is now λ2

i Tii and

Ĩi = |Ii|/λi

√
Tii ≤ τ, i = 1, 2, ...n. (24)

It is relatively straightforward to compute the λ i values by

λi = (|Ii|/
√

Tii)/τ, i ∈ MeasOut. (25)

Finally, with the inflated Q and R, we recompute the correc-
tion step (6) to obtain a more robust state estimation. The Q
and R are also updated and carried on to the next cycle.

Furthermore, Q and R should also be deflatable if the
abnormal process/measurement problems are only temporary
and eventually resolved. Our solution is to employ an ex-
ponential decay process to enable automatic deflation of the
parameters over each cycle. The decay time constant can be
customized by users, according to their expectation and the
specific circumstances.

B. Stage Two

In stage two, the estimation results from stage one are fed
directly into an Extended Kalman Filter (EKF) as “measure-
ments.” The output are the dynamic states: generator rotor
angles and generator speed. As mentioned before, measure-
ments can be expressed in terms of the state variables either
using the rectangular or the polar coordinates. In this method,
our measurements are in their rectangular forms, i.e. the real
and imaginary parts of all bus voltages, so the process and
measurement models need to be modified as follows.

C. The Process Model

Without loss of generality, in a power system that consists of
n generators, let us consider the generator i which is connected
to the generator terminal bus i. We use a classical model
for the generator composed of a voltage source |E i|∠δi with
constant amplitude behind an impedance X ′

di
. The nonlinear

differential-algebraic equations regarding the generator i can
be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dδi

dt = ωB(ωi − ω0)
dωi

dt = ω0
2Hi

(Pmi − |Ei|
X′

di

sin δi|Vi| cos θi

+ |Ei|
X′

di

cos δi|Vi| sin θi − Di(ωi − ω0))

= ω0
2Hi

(Pmi − |Ei|
X′

di

sin δiRe(Vi)

+ |Ei|
X′

di

cos δiIm(Vi) − Di(ωi − ω0))

(26)

where state variables δi and ωi are the generator rotor angle
and speed respectively, ωB and ω0 are the speed base and
the synchronous speed in per-unit (pu) quantities, Pmi is
the mechanical input, Hi is the machine inertia2, Di is the
generator damping coefficient and V i = |Vi|∠θi is the phasor
voltage at the generator terminal bus i (which is a function of
δ1, δ2, ..., δn).

For the state vector x = [δ1, ω1, δ2, ω2, ..., δn, ωn]T , the
corresponding continuous time change in state can be modeled
by the linearized equation

dx

dt
= Acx + wc, (27)

where wc is an 2n × 1 continuous time process noise vector
with 2n×2n noise covariance matrix Qc = E[wcw

T
c ], and Ac

is an 2n×2n continuous time state transition Jacobian matrix,
whose entries for i ∈ {1, ..., n} and j ∈ {1, ..., n} (i �= j) are
the corresponding partial derivatives

Ac[2i−1,2i−1] = 0 (28)

Ac[2i−1,2i] = ωB (29)

Ac[2i,2i−1] = − ω0|Ei|
2HiX ′

di

[
cos δiRe(Vi) + sin δi

∂Re(Vi)
∂δi

(30)

+ sin δiIm(Vi) − cos δi
∂Im(Vi)

∂δi

]

Ac[2i,2i] = − ω0

2Hi
Di (31)

Ac[2i−1,2j−1] = 0 (32)

Ac[2i−1,2j] = 0 (33)

Ac[2i,2j−1] = − ω0|Ei|
2HiX ′

di

[
sin δi

∂Re(Vi)
∂δj

− cos δi
∂Im(Vi)

∂δj

]

(34)

Ac[2i,2j] = 0. (35)

2The mechanical power Pmi and machine inertia Hi should not be
confused with the error covariance P and measurement Jacobian H from the
preceding section. While potentially confusing these are the variables used by
popular convention in the respective fields.



Hence the update of the state vector x from time step (k−1) to
k over duration Δt has the complete corresponding discrete-
time state transition matrix

A = I + Ac · Δt. (36)

The discrete-time process noise covariance Q can be formu-
lated by integrating the continuous time process equation (27)
over the time interval Δt as described before:

Q =
∫ Δt

0

eActQce
AT

c tdt (37)

Hence the process model is written as

xk = Axk−1 + wk−1 (38)

= (I + Ac · Δt)xk−1 + wk−1, (39)

where w is the process noise with normal probability distri-
bution p(w) ∼ N(0, Q).

D. The Measurement Model

The expanded system nodal equation can be expressed as:

Yexp

(
E
V

)
=

(
YGG YGL

YLG YLL

) (
E
V

)
=

(
IG

0

)
, (40)

where E is the vector of internal generator complex voltages,
V is the vector of bus complex voltages, IG represents electri-
cal currents injected by generators, Yexp is called the expanded
nodal matrix, which includes loads and generator internal
impedances: YGG, YGL, YLG and YLL are the corresponding
partitions of the expanded admittance matrix.

According to the expanded system nodal equation, all node
voltages phasors can be expressed in terms of the internal
generator voltages and angles by using the bus voltage recon-
struction matrix RV :

V = −Y −1
LL YLGE = RV E (41)

Thus in a system with n generators and m buses, we have⎛
⎜⎜⎜⎝

V1

V2

...
Vm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

RV11 RV12 · · · RV1n

RV21 RV22 · · · RV2n

...
...

. . .
...

RVm1 RVm2 · · · RVmn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

E1

E2

...
En

⎞
⎟⎟⎟⎠ , (42)

where Vi = |Vi|∠θi is the phasor voltage at bus i, and Ej =
|Ej |∠δi is the voltage source at generator j.

In rectangular form, we have

Re(Vi) = |RVi1 ||E1| cos(∠RVi1 + δ1) (43)

+ |RVi2 ||E2| cos(∠RVi2 + δ2)
+ · · · + |RVin ||En| cos(∠RVin + δn)

Im(Vi) = |RVi1 ||E1| sin(∠RVi1 + δ1) (44)

+ |RVi2 ||E2| sin(∠RVi2 + δ2)
+ · · · + |RVin ||En| sin(∠RVin + δn)

The “measurements” obtained from the stage-one AKF can
now be written as

z = h(x) + v, (45)

where z = [Re(V1), Im(V1), ..., Re(Vm), Im(Vm)]T is the
2m × 1 measurement vector that consists of real and
imaginary parts of each estimated bus voltage, x =
[δ1, ω1, δ2, ω2, ..., δn, ωn]T is the state vector and v is the
normally distributed measurement noise with covariance P
estimated by the stage-one AKF.

After linearization, the measurement model is

z = Hx + v, (46)

where H is the corresponding Jacobian matrix defined as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Re(V1)
∂δ1

∂Re(V1)
∂ω1

· · · ∂Re(V1)
∂δn

∂Re(V1)
∂ωn

∂Im(V1)
∂δ1

∂Im(V1)
∂ω1

· · · ∂Im(V1)
∂δn

∂Im(V1)
∂ωn

∂Re(V2)
∂δ1

∂Re(V2)
∂ω1

· · · ∂Re(V2)
∂δn

∂Re(V2)
∂ωn

∂Im(V2)
∂δ1

∂Im(V2)
∂ω1

· · · ∂Im(V2)
∂δn

∂Im(V2)
∂ωn

...
...

. . .
...

...
∂Re(Vm)

∂δ1

∂Re(Vm)
∂ω1

· · · ∂Re(Vm)
∂δn

∂Re(Vm)
∂ωn

∂Im(Vm)
∂δ1

∂Im(Vm)
∂ω1

· · · ∂Im(Vm)
∂δn

∂Im(Vm)
∂ωn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(47)

More specifically, for i = 1, 2, ..., m and j = 1, 2, ..., n, we
have

∂Re(Vm)
∂δn

= −|RVmn ||En| sin(∠RVmn + δn) (48)

∂Im(Vm)
∂δn

= |RVmn ||En| cos(∠RVmn + δn) (49)

∂Re(Vm)
∂ωn

=
∂Im(Vm)

∂ωn
= 0 (50)

IV. CASE STUDY

Our two-stage Kalman filtering approach has been tested on
several multi-machine systems under various conditions. The
ideal testing cases are omitted in this paper, because we are
more interested in the filtering performances under adverse
circumstances.

We will show the testing results for a 16-generator-68-
bus system (Fig. 1), representing New England Test System
and New York Power System (NETS-NYPS). Five seconds
are simulated in steps of 0.01 seconds. At t = 1.1 seconds
a three-phase fault at bus 29 occurs, and is then cleared
at 0.05 seconds. This event represents a large disturbance
(an emergency) causing voltage oscillations and rotor speed
changes. PMU data is assumed to contain 1% random noise.
In the following four subsections, four abnormal cases are
simulated to illustrate the robustness of our proposed algo-
rithm. In each case we executed three two-stage Kalman
filtering (KF) scenarios for a more informative comparison:
Scenario 1 uses traditional KF at stage one, while Scenario
2 uses naive robust KF (RKF) (using largest normalized
innovation test to identify and exclude bad measurements,
without adjusting model parameters) and Scenario 3 uses AKF
with InNoVa. Without loss of generality, we visualize the
voltage tracking results for bus 22 in 3D. At stage two, the
outputs of these three filters are processed by separate EKFs
to estimate the system’s dynamic states. We chose generator
58 to demonstrate and compare the dynamic states tracking
results.



Fig. 1. The 16-generator-68-bus system

A. Case 1: small Q and R initialization

Here we initialize each process element with a very small
variance (2.5e−5) as if the user was very confident the system
was stable. We then initialize the measurement covariance 1%,
but simulate an actual PMU measurement noise of 2%. Fig. 2
shows the two-stage tracking results of the three scenarios.
In this and the following simulations, we always use a black
solid line for the true state, a red dash-dash line for Scenario 1,
a green dash-dot line for Scenario 2, and a blue dot-dot line
for Scenario 3—our proposed approach. From Fig. 2(a) we
can tell that the KF and naive RKF are both strongly affected
by the small Q—the estimated voltages have slow and small
oscillations. Yet the AKF with InNoVa closely tracks the true
state. We have observed that bus 29 voltages have the largest
process variance (0.1180) which is no surprise because the
fault is simulated at bus 29. The average measurement noise
has grown to 1.4% in 5 seconds. Fig. 2(b) illustrates the
corresponding dynamic state estimations. It can be seen the
Scenario 3 outperforms the others.

B. Case 2: small Q with a malfunctioning device

Here we initialize Q as above, and this time set R correctly.
We then introduce a problem: a malfunctioning PMU at bus
22. The simulated voltage measurements provided by this
PMU contain systematic errors, with a normal distribution
N (1, 0.12). Fig. 3 illustrates the results. Fig. 3(a) shows
that the naive RKF has identified and dropped the bad
measurements. However it is still impacted by the small Q
initialization. The AKF with InNoVa not only adjusted Q (bus
29 still has the largest variance), but also identified the bad
measurement. Although our algorithm does not exclude the
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(a) Performance comparison of the three scenario after stage one in case 1:
small Q and R initialization
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(b) Performance comparison of the three scenarios after stage two in case 1

Fig. 2. Performance comparison of the three scenario in case 1

measurement—we seek to avoid unobservable conditions by
maintaining sufficient redundancy—the noise of this erroneous
measurement becomes 41.21%, which is significantly larger
than the others (1%). Hence this measurement is not weighted
as heavily, and has a negligible impact on the estimated states.
Fig. 3(b) also shows that while Scenario 2 does improve,
Scenario 3 stays the closest to the truth.

C. Case 3: large Q with a malfunctioning device

Now we increase Q significantly: the process variance of
each state element is initialized to 1. This time the voltage
measurement errors at bus 22 are even larger, with distribution
N (2.8, 0.12). The results are depicted in Fig. 4. Interestingly
in Fig. 4(a), the naive RKF rarely detects the systematic error.
Because Q is set so large (hence S is so large) the normalized
a priori innovations almost always fall under the threshold.
However the error is always detected by the a posteriori
innovations testing in AKF with InNoVa. Thus, as shown in
Fig. 4(a) and 4(b), Scenario 3 still performs the best.
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(a) Performance comparison of the three scenarios after stage one in case 2:
small Q initialization with a malfunctioning device
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(b) Performance comparison of the three scenarios after stage two in case 2

Fig. 3. Performance comparison of the three scenarios in case 2

D. Case 4: large Q with different types of interferences

With the same large Q as in case 3, case 4 has more
complicated noise interferences: at t = 1, bus 22 voltage
measurements are increased by a constant value of 4 for 0.1
second; at t = 2, bus 23 voltage measurements are interfered
by a normally distributed noise N (0, 52) for 0.2 second; at
t = 3, line 22 − 21 current measurements are interfered
by a uniformly distributed noise U(0, 10) for 0.3 second; at
t = 4, line 23 − 22 current measurements are decreased by a
constant value of 15i for 0.4 second. Note that although errors
are treated as Gaussian white noises, they do not have to be
Gaussian and white. The tracking results can be seen in Fig. 5.

It is clear the traditional KF is the most vulnerable to
these disturbances. When the disturbance is large enough
(e.g., t = 1), the naive RKF is capable of detecting the bad
measurements and calibrating the estimates, but otherwise it
underperforms. Fortunately, the AKF with InNoVa remains
robust throughout. Moreover, as the corresponding measure-
ment noise variances suddenly become abnormally large, the
inflated R can be used to signal humans of a need to inspect
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(a) Performance comparison of the three scenarios after stage one in case 3:
large Q with a malfunctioning device

0 1 2 3 4 5
0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

1.0025

Time in seconds

G
en

er
at

or
 s

pe
ed

 in
 p

u

Generator 58 speed estimation

 

 
True state
Traditional KF
Naive RKF
AKF with InNoVa

0 1 2 3 4 5

25

30

35

40

45

50

55

Time in seconds
ge

ne
ra

to
r 

an
gl

e 
in

 d
eg

re
es

Generator 58 angle estimation

 

 
True state
Traditional KF
Naive RKF
AKF with InNoVa

(b) Performance comparison of the three scenarios after stage two in case 3

Fig. 4. Performance comparison of the three scenarios in case 3

and repair devices. Fig. 5(a) and 5(b) both show that various
noise disturbances do not affect Scenario 3.

V. CONCLUSIONS

This paper presents a more comprehensive dynamic power
system state estimation technique with a two-stage Kalman
filtering approach. With real-time phasor measurements pro-
vided by PMUs, this algorithm enables on-line robust power
system state estimations.

In stage one, AKF with InNoVa is designed to deal with
incorrect system modeling as well as bad measurements, by
adjusting noise modeling parameters on-the-fly. It utilizes
a normalized a priori innovation test and a normalized a
posteriori innovation test to help separating the process and
measurement factors when facing terrible estimations.The ad-
justed noise parameters provide useful information about the
system: the inflation of process noise covariance Q indicates
fast changing state or even wrong model, while the inflation of
measurement noise covariance R implies potentially bad PMU
measurements. An exponential decay process is employed to
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(a) Performance comparison of the three scenarios after stage one in case 4:
large Q with several noise interfered devices
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(b) Performance comparison of the three scenarios after stage two in case 4

Fig. 5. Performance comparison of the three scenarios in case 4

enable automatic deflation of the parameters if the problems
are resolved. This lightweight yet efficient algorithm gives
better bus voltage phasor estimates, hence benefits stage two
EKF in generating more accurate generator state estimation
results. The output of both stages are essential for myriad
time-critical analyses and applications.
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