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Identifying the Optimal Measurement 
Subspace for the Ensemble Kalman Filter 
 
N. Zhou, Z. Huang, G. Welch, and J. Zhang 
 

To reduce the computational load of the ensemble Kalman filter while 
maintaining its efficacy, an optimization algorithm based on the 
generalized eigenvalue decomposition method is proposed for 
identifying the most informative measurement subspace. When the 
number of measurements is large, the proposed algorithm can be used to 
make an effective trade-off between computational complexity and 
estimation accuracy. 

 
 
Introduction: The ensemble Kalman filter (EnKF) [1] is an important 
tool for estimating dynamic states of a non-linear system. The 
computational load for a Kalman filter (KF) is significant when the 
number of measurements is large [2]. This computational problem is 
exacerbated for an EnKF because it uses a collection of samples 
(referred as ensembles) to represent and propagate uncertainty. To 
reduce the computational load of an EnKF while maintaining its 
efficacy, this paper proposes an optimization algorithm to identify the 
most informative measurement subspace. The paper is structured as 
follows. First, the EnKF algorithm is briefly reviewed.  Next, the major 
computational load is identified and the problem of identifying the most 
informative measurement subspace is formulated to reduce the 
computational complexity. Finally, a solution based on the generalized 
eigenvalue decomposition method is proposed, and its properties in 
balancing computational complexity and estimation efficacy are 
discussed.   

 
Review of EnKF:  A non-linear system can be described by a discrete 
state space model as in (1).  
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where 
kx~  is a state vector at time step k; 

kz~  is a measurement vector; f~  

is a system transition function; h~  is a measurement function; and the 
vectors 

1
~

−kw  and 
kv~  represent the process and measurement noise 

respectively. When h~  is non-linear, (1) is usually transformed into (2) 
which has a linear measurement model to facilitate computation [1]. 
The transformation can be done by augmenting the model states as 

[ ]Tk
TT

kk xhxx )~(~~=  [1].  
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Here, 1×∈ n
kx R ; 11: ×× → nnf RR ; 1×∈ m

kz R ; nmH ×∈R  is a 

measurement matrix; and 1
1

×
− ∈

n
kw R  and 1×∈ m

kv R  follow Gaussian 

white noise assumptions (i.e., ),0(~ QNwk  and ),0(~ RNvk ). 

After initialization, an EnKF recursively estimates the states through 
prediction and correction steps. In the prediction step, states are 
propagated to the next time step using (3),  

( ) ][ˆ][ˆ][ˆ 11 iwixfix kkk −−
− +=  (3) 

where the index ‘[i]’  is for the ith member of the total N ensembles, the 
circumflex (^) indicates estimation, and the superscript ‘-’ indicates the 
a priori states. Unlike the traditional KF, the a priori error covariance 
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×− ∈Rˆ  for an EnKF does not have to be propagated explicitly 

because it can be calculated from the ensembles of states using 
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In the correction step, each state member is updated by assimilating 
information from the measurement data using (4).  
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where ][izk  is the perturbed measurement defined as ][][ ivziz kkk +=
Δ ; 

and R̂  is the estimate of R. The objective of the KF is to minimize the 

trace of the a posteriori covariance [3]. Equation (5) shows how the a 
posteriori covariance 

kP̂  is related to the a priori covariance −
kP̂ . 
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Problem Definition: Equation (4) can be computationally intensive 
when a model has a large number of measurements.  As pointed out by 
[1], “If the number of measurements is larger than the number of 
ensemble members, the matrices T

k HPH
−ˆ  and R̂  will be singular and a 

pseudo inversion must be used.” Computing the pseudo inverse of 
RHPH T

k
ˆˆ +−  in (4) is the dominant computational load in the EnKF 

algorithm, because the computational complexity of the pseudo inverse 
is )( 4

4
27 mO  [4].  

 To reduce the computational load, this paper proposes to formulate a 
measurement selection problem as described below. Given 
measurements 1×∈ m

kz R , we construct a new set of measurements 
1×∈ d

ky R . These measurements are linear combinations of zk and have 
a lower dimension (i.e., d<m), so that when yk is used in EnKF (instead 
of zk), the trace of the a posteriori covariance matrix (as defined in (5)) 
is minimized. Because yk has a lower dimension than zk, the 
computational complexity of the pseudo inverse can be reduced to 

)( 4
4

27 dO  from )( 4
4

27 mO .  
Specifically, the problem can be defined as follows. The newly 

constructed measurements yk can be written as (6).  
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where dmC ×∈R  is a matrix to be determined. Because ),0(~ RNvk , it 

follows that ),0(~ RCCNvC T
k

T . Therefore, if yk is used as the 

measurements instead of zk, the covariance matrix of the a posteriori 
states can be calculated using (7). 
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Consistent with the KF objective, C can be determined by solving the 
optimization problem defined by (8):  

{ })(ˆmin CPtr k
C

 
(8) 

where the notation ‘tr’ stands for the matrix trace operator. 
 
Solution: Because )()()( BtrAtrBAtr −=−  and )()( BAtrABtr = , (8) 

and (9) are equivalents. 
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Note that (9) is a generalized Rayleigh-Ritz quotient problem. 
Therefore, its solution is the subspace spanned by the first ‘d’ number 
of the dominant eigenvectors of the matrix pair defined by (10) [5]. 
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More specifically, assume that the generalized eigenvalues of the 
matrices in (10) are 0121 ===>≥≥ + mλλλλλ µµ … , whose 

corresponding eigenvectors are 
muuu ,,, 21   (i.e., 

( ) ( ) i
T

kii
T

kk uRHPHuHPPH ˆˆˆˆ += −−− λ ). Here, the symbol ‘µ’ is the total 

number of the non-zero eigenvalues and ),min( nm≤µ . Then, the 

solution to (9) is [ ]KuuuC d21
* = . Here, ddK ×∈R  can be any 

full-rank constant matrix. In addition, for the optimal solution C*, the 
objective function of (9) takes the value of (11). 
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(11) 

 
Discussion: To implement the proposed method, it is required to 
calculate ‘d’ dominant eigenvalues and eigenvectors for the matrices in 
(10), whose one-step computational complexity is )( 2mdO using the 

Arnoldi method [6]. In addition, using the measurement subspace only 
requires inverting a matrix of size dXd, whose computational 
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complexity is )( 4
4

27 dO . Therefore, when d<<m, the computational 

complexity using the proposed measurement subspace is much less than 
that of the original matrix pseudo inverse, i.e. )( 4

4
27 mO . Note that the 

reduction of computational complexity may come at the cost of reduced 
estimation efficacy. The relative estimation efficacy of *

ky  can be 

defined as ( ) { }
{ } %100ˆˆ

ˆˆ*
*

×=
−

−Δ
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−
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kyeff . As indicated by (11), when 

1* * ×∈= d
k

T
k zCy R  is used for the measurements, 
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. In comparison, when 1×∈ m

kz R  is used, 
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j
jkkk zPPtr . Therefore, to retain 100% estimation 

efficacy, ‘d’ needs to be greater than or equal to ‘µ’. The estimation 
efficacy will be less than 100% when d<µ.   

Simulations were performed using MATLAB 2010a™. The function 
‘pinv’ was used to calculate a pseudo-inversion, and the function ‘eigs’ 
was used to perform the generalized eigenvalue decomposition. To 
perform the calculations, we used a laptop computer with a 2.5-GHz 
CPU, and 8 GB of memory. For m=3000, n=300, µ=30, the 
computation time and estimation efficacy for the original pseudo 
inversion method, Goris method [2], and the proposed method 
(including the generalized eigenvalue decomposition and the reduced-
size pseudo inverse) are compared in Table 1 for different number of 
measurements. Note that compared with the original method, both Goris 
method and the proposed method can significantly reduce the 
computation load by constructing a new set of measurements of lower 
dimension. To maintain 100% estimation efficacy, Goris method 
reduces the number of measurements to ‘n’. In comparison, the 
proposed method can reduce the dimension to ‘µ’ (note that 
µ≤min(m,n)).  In addition, the proposed method can further reduce the 
number of measurements to a value less than µ if the estimation efficacy 
is allowed to be less than 100%. Also note that when d=300, Goris 
method uses less computation time than the proposed method, which 
indicates that Goris method is computationally more efficient when the 
number of measurements is same. 
 
Table 1: The method comparison 
 
 # of Meas (d) Comp Time (s) ( )*kyeff  

Org Method 3000 259.95 100% 
Goris Method 300 5.30 100% 

Proposed 
Method 

300 18.80 100% 
100 6.33 100% 

30 2.68 100% 
20 2.29 99% 
15 2.06 83% 

 
Conclusion: A new algorithm is developed to identify the most 
informative measurement subspace for an EnKF. When the number of 
measurements is large and number of non-zero eigenvalues is small, the 
proposed algorithm can help users make a well-informed trade-off 
between computational complexity and estimation efficacy.  
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