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Abstract— Accurate information about dynamic states and 
parameters is important for efficient control and operation of a 
power system. To improve the estimation accuracy of states and 
parameters, this paper applies a local sequential ensemble 
Kalman filter (EnKF) method to simultaneously estimate 
dynamic states and parameters using phasor-measurement-unit 
(PMU) data. Based on simulation studies using multi-machine 
systems, the proposed method performed favorably in tracking 
both states and parameters in real time. 

I.  INTRODUCTION 
Electromechanical dynamic models are used widely to 

study problems involving transient and small signal stability in 
power systems. Accurate information about states (e.g., rotor 
speeds, angles) and parameters is essential for efficient control 
and operation of a power system. States are the minimum set 
of variables that can determine the current status of a dynamic 
system [1]. Parameters are the coefficients that relate the 
input, output, and state variables of a model. A dynamic 
model with accurate parameters and states can faithfully 
reveal system responses. Therefore, the model can be used to 
enhance stability control and establish accurate operation 
limits, which in turn improve the reliability and efficiency of 
the power system.  

Traditionally, component-based approaches are used to 
build a dynamic model. The model parameters are derived 
from equipment manuals or staged tests [2]. A dynamic model 
can be used to answer ‘what-if’ questions regarding transient 
and small signal stability problems, provide dynamic security 
assessments for power system operations[3], and guide 
controller design. Yet, because of the large number of 
components in a typical power grid, efforts to build and 
maintain an accurate, comprehensive model are not trivial. 
This often results in a model that does not adequately reflect 
true system behaviors. For example, the initial model for 
simulating the U.S. Western Interconnection breakup on 
August 10, 1996 could not replicate the oscillations that were 
measured during the event [4]. The discrepancy between 
responses measured during a real event and responses from a 

simulation clearly reveals the inadequacy of the model. Low 
confidence in the accuracy of a model usually leads to 
conservative operation and reduces asset utilization. To 
improve model accuracy, many studies involving staged tests 
have been carried out to identify parameters [5,6]. However, 
most staged calibration methods require injecting probing 
signals and maneuvering real/reactive power, and therefore 
cannot capture parameter changes during normal operations. It 
would be of significant value if some parameters of dynamic 
models can be calibrated on line using event data. 

The real-time states of electromechanical dynamics reflect 
the current status of a power system and can be used to 
coordinate controllers in a wide area. Traditionally, estimating 
dynamic states (e.g., rotor speeds, angles) over a wide area 
was not possible because data from the Supervisory Control 
and Data Acquisition (SCADA) system are normally sampled 
once every 2 to 4 seconds. This sampling rate is too low for 
the data to reveal electromechanical dynamic responses. In 
addition, SCADA data are not well synchronized. As a result, 
most controllers (e.g., power system stabilizers) for 
controlling the electromechanical dynamics only use local 
states to achieve local objectives. Compatibility among 
controllers is only studied in planning models during offline 
studies. Without global objectives and systematic coordination 
over wide areas, the influence of local controllers at the grid 
level may not always be desirable. For example, the wide area 
small signal problem has been associated with, “… the 
introduction of high gain, and low time constant automatic 
voltage regulators” [7]. 

The parameters and states of dynamic models can be 
estimated in real time using measurement data from phasor 
measurement units (PMU). These data typically have a 
sampling rate of 30 or 60 samples per second, are well 
synchronized with the Global Positioning System clock, and 
can continuously capture the dynamic responses of a power 
system under normal and abnormal conditions. Prior work by 
[8] revealed the benefits and potential of using PMU data with 
the extended Kalman filter (EKF) for online parameter 
identification and state estimation. Ghahremani et al.   
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extended EKF to simultaneously estimate the generator states  
and unknown inputs [9],  as well as using the unscented 
Kalman filter for estimating states using a single machine 
infinite bus system [10]. However, the required sampling rate 
of data in those studies are 2,000 samples per second and 
10,000 samples per second, which is higher than what can be 
provided by a commercial PMU.  

To overcome the difficulty, this paper proposes a local 
sequential ensemble Kalman filter (EnKF) method to 
simultaneously estimate dynamic states and parameters using 
PMU data. The paper is organized as follows. Section II 
formulates the state and parameter tracking problem using 
classical generator models and then generalizes the problem 
for other dynamic components. Section III provides an 
overview of the basic EnKF. Section IV presents a local 
sequential EnKF method. Section V introduces the inflation 
method for the proposed EnKF. Section VI evaluates the 
performance of the proposed EnKF using simulation models. 
In Section VII, conclusions and future work are discussed. 

II.  PROBLEM FORMULATION 
This section introduces the problem of tracking states and 

parameters using PMU data. First, a classical generator model 
is used as an example. The problem then is generalized using a 
non-linear dynamic model.  

A.  Classical Generator Model 
A classical generator model can be described by (1) and 

(2) [2]:  
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where δ is the rotor angle and Δω is the rotor speed deviation. 
The symbol Tm is the mechanical torque, Te is the electric air-
gap torque, H is the inertia constant, and KD is the damping 
factor. The symbol ω0 is the rated value of the rotor speed. 
The generator is connected to a terminal bus through a 
transient reactance dX ʹ′ . The symbol E is the internal voltage 
magnitude of the generator. Assume that PMU measurements 
of voltage and current phasors are available at the terminal bus 
of the generator. The state and parameter tracking problem for 
a classical generator model then can be stated as follows. 

Using PMU measurements of voltages ( θ∠=VV~ ) and 
currents ( I~ ) at the generator buses, estimate the states of δ, 
Δω, and model parameters of H, KD,

dX ʹ′ . 

Note that (1) and (2) are models only for a dynamic 
component (in this case, a generator) in a power grid. All the 
component models are coupled through the grid network 
model to form the full system model [2]. All the other 
variables (including V~  and I~ ) can be derived from the states 
using the full system model.  

B.  Generalized Dynamic Model 
To generalize the problem formulation, non-linear 

differential algebraic equations are used to describe power 
system dynamics as expressed in (3). 
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where vector nxx R∈  represents state variables; vector 
αα nR∈  represents the parameters to be identified (for a 

classical generator; the parameters are H, KD,
dX ʹ′ ); 

vector mz R∈  represents available measurements (e.g., PMU 
measurements V~  and I~  at generator buses); the function h(*) 
is the measurement function; the symbol “c” indicates the 
continuous form of the model; and the random variables 

nx
cw R∈ , αε n

c R∈ , and m
cv R∈  represent process, parameter, 

and measurement noise, respectively. For a classical generator 
model, the states are δ and Δω as shown in (1) and (2). 

Assuming a sampling interval of Δt seconds, the discrete 
form of the model corresponding to (3) can be written as (4).  
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where subscript “k” denotes variables and quantities at time 
kΔt. The state transition function f(*) in (4) can be 
implemented through numerical integration of fc(*) in (3). The 
process, parameter, and measurement noise are assumed to be 
white noise with a mean value of zero and a covariance matrix 
of Q and R as defined by (5) and (6):
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The generalized state and parameter tracking problem then 
can then be stated as follows. 

Using the PMU measurement sequence of z1, z2, …, zk, and 
model structure (4), (5), and (6), estimate the states of xk and 
the parameters of αk. 

Note that unknown parameters α propagate over time in a 
way that is similar to the states x in (4). By treating parameters 
as special states, and given sufficient measurements such that 
the system is observable, the state and parameter tracking 
problem can be solved using a Kalman filter. 

III.  REVIEW OF AN ENSEMBLE KALMAN FILTER 
In this paper, EnKF is chosen for tracking states and 

parameters because it has been successfully applied in 
oceanographic studies (under the term “data assimilation”) to 
track states of high-order nonlinear dynamic systems [11]. 
Compared to traditional EKF [8, 10], EnKF propagates the 
mean and covariance of states through ensembles by 
simulation. Therefore, users do not have to perform the 
linearization procedure required by EKF. A brief review of the 



notation and algorithm for a basic EnKF [11] are given as 
follows. 

A.  Notation 
• Superscript b is for background or prior states/ 

parameters. For example, b
kx  denotes the estimated 

states at time step k before the current measurement zk is 
used in the estimation. 

• Superscript a is for analysis or post state/parameters. 
For example, a

kx  denotes the estimated states at time 
step k after the current measurement zk is used in the 
estimation. 

• N is the total number of the ensembles (or samples). 
• Superscript (i) is the ith instance of the ensembles. 

Usually, i=1, 2, ···, N. 

B.  Algorithm of the Basic EnKF 
After initialization, the basic EnKF assimilates data one 

snapshot at a time. For one snapshot of data, there are two 
stages, i.e., a prediction stage and a correction stage. During 
the prediction stage, the states are propagated one time step 
ahead and form the background (or prior) states. During the 
correction stage, the analysis (or posterior) states are generated 
by correcting the background states with information from the 
latest measurements. 

    1)  Initialization 
Generate the ensembles for initial states and parameters to 

represent the probability distribution functions as follows:  

nx
x

ia Pxnormx R∈),(~ 00
)(

0
 for i=1, 2, …, N; 

α
ααα nia Pnorm R∈),(~ 00

)(
0

 for i=1, 2, …, N; 

The norm term stands for normal distribution. MATLAB© 
function ‘randn’ is used to generate the ensembles for 
parameters and states that follows normal (or Gaussian) 
distributions.  

    2)  Prediction 
First, for all i, propagate the states to the next time step 

using (4) to form background states and parameters as 
follows:
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where the ensembles )(
1
i
kw −  and )(

1
i
k−ε are generated to represent 

the distribution of process and parameter noise as in (5). 

Then, construct the Kalman gain ( kK ) using (8). The 
superscript “+” stands for the matrix pseudo-inversion 
operation. Note that neither measurement Jacobian matrix Hk 
nor priori covariance matrix Pk

b needs to be calculated 
explicitly. By applying the observation matrix-free 
implementation from section 4.2 of Mandel’s publication [12], 
the terms in (8) can be estimated using (9), (10) and (11).
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where ensembles mi
k Rnormv R∈),0(~)(  are generated to 

represent the distribution of measurement noise. To make 

estimates unbiased, make sure that 0
1

)( =∑
=

N

i

i
kv when N is a 

finite number [13]. In addition, the state error ensembles 
( )(ib

kxΔ ) and parameter-error ensembles ( )(ib
kαΔ ) are defined by 

(12) and (13). The output error ensemble ( )(ib
kzΔ ) is defined by 
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    3)  Correction 

After a new set of measurements ( kz ) is obtained at time 
step k, the measurements are perturbed to generate the 
measurement ensembles ( )(i

kz ) as in (15). The information 

from measurements kz  is included in the analysis results 

through (16).
 

The mean of analysis ensembles )( a
k

a
kx α  

defined by (17) is the estimate of the states and parameters by 
the basic EnKF method for time step k.
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After the correction step, set k=k+1 and go to step 2. The 
prediction and correction procedure is repeated when a new 
measurement is available. It is known that the basic EnKF 
may suffer performance degradation problems [13]. To 



improve its applicability, extensions on the EnKF have been 
proposed. Two extensions adopted in this paper are described 
in the following sections. 

IV.  LOCAL SEQUENTIAL ENKF 
While the basic EnKF (described above in Section III) 

simultaneously assimilates all data in one snapshot, a 
sequential EnKF assimilates one subset of data at a time. To 
understand this concept, assume that the measurement data at 
step k can be divided into G subgroups, as shown in (18). 
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When the noise of the measurement data in different 
groups are uncorrelated, the data subset jkz , can be 
assimilated sequentially, one group at a time [14]. 
Assimilating data sequentially is a valid implementation of a 
Kalman filter as long as the measurements whose noise is 
correlated are assimilated in one block. The sequential EnKF 
can be programmed so that each subset of data can be 
processed as soon as they are available. There is no need to 
wait for all the data to arrive to start the correction procedure. 
Therefore, the sequential EnKF can be implemented with 
lower latency. 

To improve estimation accuracy, it was proposed that a 
state be updated only with ‘local’ measurements [15], which 
leads to a local sequential EnKF. Local measurements refer to 
measurements that are highly correlated to the state of interest. 
These measurements are usually located close to the state; 
hence, they are named ‘local’ measurements.  

There is noise in ensemble covariance matrixes, Pk, of the 
states. The noise usually leads to underestimation of prior 
covariance. Hamill and co-workers [15] showed that, when the 
noise levels in a covariance estimate is higher than the signal 
levels, assimilating corresponding data can degrade instead of 
improve the state (or parameter) estimate. In addition, [15] 
showed that estimation noise (or the variance of the estimates) 
increases when the magnitude of correlation is low. Therefore, 
to improve the accuracy of estimates, a local EnKF is used to 
reduce the influence of the observations (or measurements) 
that are weakly correlated to the states.  

There are different approaches for implementing the local 
EnKF. In this paper, only the measurements taken at the 
generator terminal bus are used as local measurements to track 
states of the corresponding generator. Combined with the 
sequential EnKF described above, a local sequential EnKF can 
be implemented as follows. Assume that only a subset of 
states, ( )xk gx  and ( )αα gk , has a strong correlation with 
measurement group 

gkz ,
. Here, gx and gα are the index 

sequences that point to the states and parameters strongly 
correlated to measurement group g. Assume that the 
correlation between gkz , and the remaining states and 
parameters is weak. Therefore, the correlation is considered to 
be zero to avoid degradation resulting from estimation errors. 
Then, the local sequential EnKF can be implemented by 
replacing (8) through (16) with the following steps and (19) 
through (25):

 

 

    1)  Initialize the analysis step 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)(

)(

)(
0,

)(
0,

ib
k

ib
k

ib
k

ib
k xx

αα
and g=0; (19) 

    2)  g=g+1 
    3)  Construct the Kalman gain 
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    4)  Perform the observation perturbation 
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    5)  Update the states and parameters according to (24)
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    6)  If g<G, go to step 1); otherwise, go to step 7). 
    7)  When g=G (i.e., all the measurement subsets have been 
processed for the correction step), assign 
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and proceed to the prediction step for next time instance 
(k=k+1). 

V.  INFLATION METHOD 
In addition to the localization method, an inflation 

approach has been used to deal with underestimation of the 
covariance of background states [13]. Because of sampling 
errors associated with EnKF in calculating the Kalman gain, 
the estimated covariance matrix can become smaller than the 
true covariance. This, in turn, results in overweighting 
background states over new observations, and may eventually 
lead to the divergence of EnKF. An inflation method is 
implemented to increase the covariance of ensembles to 
counteract the overweighting on the background states by 
adding inflation equations (i.e., (26) and (27)) after (24).
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Here, 
xγ and 

αγ are inflation factors with values slightly 
larger than 1. For simplicity, this paper uses a fixed inflation 
factor of 1.01 as suggested by [13]. 



VI.  CASE STUDIES 
Simulation studies are carried out to evaluate the 

performance of the proposed local sequential EnKF. An IEEE 
3-machine 9-bus model (Fig. 1) [16] is used illustrate the 
applicability of the proposed method. All the generators were 
modeled using the classical model as described by (1) and (2). 
Using the Power System Toolbox (PST) [17], dynamic 
responses are generated by simulating a three-phase-to-ground 
fault with all correct parameters. The fault is applied at bus 6 
at 1.0 second and is cleared in 0.05 seconds. The simulation is 
performed at a sampling rate of 1000 samples/sec. 

 
Fig. 1. A three-machine nine-bus system. 

Assume that PMUs are available at all the generator buses 
to measure the voltage and the current phasors at a sampling 
rate of 25 samples/s. PMU measurements are generated by 
adding noise to the simulated responses. According to IEEE 
Standard C37.118-2005 [18], PMU measurement errors shall 
be lower than 1% of total vector errors. Accordingly, 1% of 
the total-vector-error white noise is added to the dynamic 
responses to simulate PMU measurements. The PMU 
measurements at each generation bus are converted into bus 
voltage magnitudes, bus voltage angles, real powers, and 
reactive powers from the generators. Measurements at 
generation bus “g” are grouped into one data subset zk,g and 
are treated as local measurements for the corresponding 
generator’s states and parameters. 

Assume parameter errors exist in generator models. To 
simulate the modeling errors, the parameters of generators 
(e.g., inertia H, reactance 

dX ʹ′ , and damping coefficient KD) 
are perturbed, and the resulting perturbed parameters are 
summarized in Table I and used as initial values in EnKF. The 
true parameters and states are used as a yardstick to evaluate 
the tracking accuracy and speed. 

The local sequential EnKF is set up to track the dynamic 
states (δ, Δω) and parameters (H, KD,

dX ʹ′ ) of classical 
generator models. The ensemble size N is set to be 75. Both 
the state-transition and measurement functions in the 
prediction step of (7) can be implemented through the 
simulation functions available in the PST. The second-order 
Euler method is used for the numerical integration. To reduce 
errors, the integration time step is selected to be 10 ms. Since 
the PMU sampling interval (i.e., Δt) is 40 ms, (3) needs to be 
integrated over four time steps for each prediction step. 

The parameter tracking results from the basic EnKF and 
the proposed local sequential EnKF are compared, using 
relative errors, in Fig. 2, 3, and 4. Relative error of 0% 

indicates perfect tracking. The state tracking results for 
generator 1 are compared in Fig. 5. 

TABLE I.  PERTURBED VALUES OF THE GENERATOR PARAMETERS 

 H  dX ʹ′   KD 
G1 16.37 +20%* 0.0730 +20%* 14.40 +50%* 
G2 7.68 +20%* 0.0958 -20%* 1.25 -50%* 
G3 2.41 -20%* 0.2176 +20%* 1.50 -50%* 

* The relative errors of the perturbed parameters with respect to the true 
values. 
 

 
Fig. 2. Relative errors of estimated inertia (H)  

 
Fig. 3. Relative errors of estimated damping factor (KD)  

As can be seen from the figures, all the parameters 
converge well towards their true value for both methods, but 
the local sequential EnKF method exhibits better overall 
tracking accuracy and faster convergence. For inertia (H) in 
Fig. 2, the local sequential EnKF has slightly better accuracy 
and much faster convergence. For the damping coefficient 
(KD) in Fig. 3, the local sequential EnKF has much better 
accuracy, while the basic EnKF has errors that stay around 
25%. For the transient reactance (

dX ʹ′ ) in Fig. 4, the 
convergence rates of the two methods appear to be similar. 

Note that the values of
dX ʹ′  are tracked during steady-state 

responses. As it can be seen from (2), 
dX ʹ′  influences the 

steady-state responses and is therefore identifiable during the 
steady-state responses. In contrast, H and KD do not track the 
true values during the steady-state responses. They only 
converge to true values during the transient responses.  This is 
due to H and KD only influencing the transient responses in 



(1). Changing H and KD does not change the steady-state 
responses.  Also note that H can be tracked relatively faster 
than KD. This observation reveals that the tracking capability 
of EnKF is different for different parameters for the same 
measured data. 

 
Fig. 4. Relative errors of estimated transient reactance (

dX ʹ′ )  

 
Fig. 5.  States tracking results for generator 1 

As seen in Fig. 5, both methods can track the rotor speed 
deviation (Δω1) and rotor angle (δ1) of generator 1 very well. 
The mean absolute errors (MAE) of the estimated states for all 
the generators are summarized in Table II. As can be observed 
from the data, the local sequential EnKF yields much smaller 
MAEs than the basic EnKF, which indicates that the local 
sequential EnKF performs better than the basic EnKF. 
TABLE II. MAES OF THE ESTIMATED ROTOR ANGLE (δ  IN DEGRESS) AND 

SPEED DEVIATION (Δω in pu) 

MAE δ1 δ2 δ3 Δω1 Δω2 Δω3 

Basic 0.80 1.03 0.84 1.3X10-4 1.3X10-4 1.9X10-4 

Local 
Sequential 0.21 0.26 0.22 0.6X10-4 0.9X10-4 1.2X10-4 

 
VII.  CONCLUSIONS AND FUTURE WORK 

The local sequential EnKF method is successfully 
formulated and applied to simultaneously track the states and 
parameters of power system dynamic models using PMU 
measurements. The proposed EnKF method is non-intrusive 
simulation based approach in that it propagates the mean and 

covariance of states through ensembles by simulation The 
performance of the proposed method is validated through 
simulation studies on classical generator models. Testing 
under realistic conditions of phasor data speed, measurement 
noise, and parameter errors in the simulation studies 
demonstrates the applicability of the proposed method for 
real-world problems.  
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