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Dynamic State Estimation of a Synchronous
Machine Using PMU Data:
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Abstract—Accurate information about dynamic states is impor-
tant for efficient control and operation of a power system. This
paper compares the performance of four Bayesian-based filter-
ing approaches in estimating dynamic states of a synchronous
machine using phasor measurement unit data. The four methods
are extended Kalman filter, unscented Kalman filter, ensemble
Kalman filter, and particle filter. The statistical performance of
each algorithm is compared using Monte Carlo methods and a
two-area-four-machine test system. Under the statistical frame-
work, robustness against measurement noise and process noise,
sensitivity to sampling interval, and computation time are evalu-
ated and compared for each approach. Based on the comparison,
this paper makes some recommendations for the proper use of
the methods.

Index Terms—Ensemble Kalman filter (EnKF), extended
Kalman filter (EKF), particle filter (PF), phasor measurement
unit (PMU), power system dynamics, state estimation, unscented
Kalman filter (UKF).

I. INTRODUCTION

ELECTROMECHANICAL dynamic models are widely
used to study transient and small signal stability problems

in power systems. States are the minimum set of variables
that can determine the status of a dynamic system [1].
A dynamic model with accurate states can faithfully reveal
system responses and, therefore, be used to enhance system
stability, and reliability of a power system.

The real-time states of electromechanical dynamics reflect
the current status of a power system and can be used to
coordinate controllers in a wide area. Traditionally, estimating
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dynamic states (e.g., rotor speeds and angles) over a wide area
was not possible because data from the supervisory control and
data acquisition (SCADA) system is normally sampled every
2–4 s. This sampling rate is too low for the data to reveal
electromechanical dynamic responses. In addition, SCADA
data is not well synchronized. As a result, most controllers
(e.g., power system stabilizers) for controlling the electrome-
chanical dynamics only use local states to achieve their control
objectives. Compatibility among controllers is only studied
in planning models. Without global objectives and systematic
coordination over wide areas, the influence of local controllers
at the grid level may have adverse effects. For example, wide-
area small-signal problems have been associated with “the
introduction of high gain, and low time constant automatic
voltage regulators” [2].

The dynamic states of wide-area power systems can be esti-
mated in real time using data from phasor measurement units
(PMU). The PMU data has a typical sampling rate of ten through
120 samples per second, is well synchronized with the global
positioning system clock, and can continuously capture the
dynamic response of a power system under normal and abnor-
mal conditions. Huang et al. [3]–[5], Fan and Wehbe [6], and
Farantatos et al. [25] revealed the benefits and potential use of
PMU data with an extended Kalman filter (EKF) for online state
and parameter estimation. Ghahremani and Kamwa [7], [8]
used an EKF to simultaneously estimate the generator states
and unknown inputs and an unscented Kalman filter (UKF) to
estimate the dynamic states of a single-machine infinite bus
system. Zhou et al. [9] proposed an ensemble Kalman filter
(EnKF) method to simultaneously estate the states and param-
eters. Zhou et al. [10] proposed an extended particle filter (PF)
to estimate the dynamic states.

The previous work showed the value and feasibility of
estimating dynamic states using PMU data with Bayesian-
based filtering approaches. Yet, little work has been done
on how to choose an appropriate method for various condi-
tions encountered in actual applications. To better understand
how to apply these methods for their optimal use, this paper
systematically examines and compares four commonly used
state estimation algorithms: EKF UKF, EnKF, and PF. First,
this paper evaluates the statistical performance of the algo-
rithms using Monte Carlo methods to reveal the average
behavior of these algorithms under different instances of
noise. In contrast Huang et al. [3], Fan and Wehbe [6],
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and Ghahremani and Kamwa [7], [8] used only one single-
noise instance to evaluate performance. Second, this paper
tests how process noise may influence different algorithms
by using a simple transient model to estimate states from
simulated data using a more detailed sub-transient model
with saturation effects. This setup introduces additional pro-
cess noise and mimics the reality that a dynamic model is
only a simplified description of a real system. Third, this
paper evaluates how measurement sampling rates may influ-
ence the performance of the algorithms. Fan and Wehbe [6]
and Ghahremani and Kamwa [7], [8] used a sampling rate
much higher than 60 samples per second. On the other hand,
Zhou et al. [9], [10] used a sampling rate of 25 samples per
second. Huang et al. [3], [11] pointed out that lower sampling
rate of the PMU measurement may degrade the EKF per-
formance and proposed adding pseudo measurements through
linear interpolation to increase the effective measurement sam-
pling rate. The observation indicated that the sampling rate
of measurement data may greatly affect the state estimation
accuracy. To make a comparison under a realistic scenario,
this paper assumes PMU measurement of 25 samples/second
and uses interpolation to increase the effective sampling rate.
Forth, in addition to adding noise to measurements, missing
data and outliers are intentionally added to test the robustness
of each algorithm when the actual measurement noise does not
strictly follow the assumed noise model. All of these studies
were carried out under a statistical framework using the Monte
Carlo method.

This paper is organized as follows. Section II introduces the
estimation model based on a fourth order generator models.
Section III provides an overview of the EKF, UKF, EnKF,
and PF. Section IV discusses the study approaches. Section V
evaluates and compares the performance of the state estima-
tion algorithms using a two-area-four-machine test system. In
Section VI, the conclusion is discussed.

II. ESTIMATION MODELS

This section introduces estimation models that are used by
all filtering algorithms for estimating states. Also, to apply
the filtering method for discrete measurements, a modified
Euler method is applied to discretize the continuous model.
Note that in real-world applications, estimation models can
be different from simulation models because an available
model is often a simplified description of a real-world sys-
tem. Considering this fact, to mimic real system dynamic
responses, the estimation model can be intentionally set to
be different from the simulation models in some studies. A
simulation model is used to generate PMU data while an
estimation model is used by a filtering method to estimate
states. Readers may refer to [11] and [12] for simulation
models used for mimicking a real system and generating
simulation data.

A. Fourth Order Transient Model

This paper uses positive sequence model (1) to describe a
synchronous machine in local d-q reference frame to estimate

the states
⎧
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ė′
d = 1

T ′
q0

(
−e′

d +
(

xq − x′
q

)
iq

)
. (1d)

In (1), δ is the rotor angles in radian, by which the local q
axis leads the global R axis; �ω is rotor speed deviation; ed’
and eq’ are the transient voltages along local d and q axes; and
id and iq are the stator currents along local d and q axes. The
parameter Tm is the mechanical torque; Te is the electric air-
gap torque; and Efd is the internal field voltage. The parameter
ω0 is the rated value of the angular frequency; H is the inertia
constant, and KD is the damping factor. The parameters Td0’
and Tq0’ are the open circuit time constants in the directions of
the d and q axes, respectively; xd and xq are the synchronous
reactance at d and q axes, respectively; and xd’ and xq’ are
the transient reactance at d and q axes, respectively.

To facilitate the notation, (1) is transformed into a general
state space model as given in (2) and (3)

{
ẋ = fc(x, u) + wc (2a)

y = hc(x, u) + vc (2b)

E
[
wcwT

c

] = Q (2c)

E
[
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c

] = R (2d)
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q e′
d

]T
(3a)

u = [
Tm Efd iR iI

]T (3b)

y = [
eR eI

]T
. (3c)

In (2), x is the state vector, u is the input vector, and y is the
output vector. Functions fc (*) and hc(*) are the state transition
and output functions, respectively. The subscript “c” indicates
the continuous-time model. The vectors wc and vc represent
the process and output noise, respectively. They are modeled
as Gaussian white noise whose covariance matrices are defined
by (2c) and (2d), where E[*] represents statistical expectation.
In (3), eR and eI are the stator voltages along the R and I axes
of the global reference frame. The symbol iR and iI are the
stator currents along the R and I axes of the global reference
frame.

To transform (1) into fc(*) in (2a), id, iq, and Te were written
as functions of x and u using (4)

id = iR sin δ − iI cos δ (4a)

iq = iI sin δ + iR cos δ (4b)

Te ≈ Pt =
(

e′
d + iqx′

q

)
id +

(
e′

q − idx′
d

)
iq. (4c)

Similarly, to implement output function hc(*) in (2b), eI and
eR were written as functions of x and u using (5). Note that id
and iq in (5) are the functions of iR and iI as in (4a) and (4b).
The model defined by (1), (4), and (5) is then discretized and
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used for estimating states
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(

e′
d + iqx′

q

)
sin δ +

(
e′

q − idx′
d

)
cos δ (5a)
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B. Problem Formulation and Model Discretization

Assuming a sampling interval of �t seconds, a real time
dynamic state estimation can be formulated as a filtering
problem as follows.

Given measurements Tm (j�t), Efd(j�t), It(j�t), and Et(j�t)
for j = 1, 2, . . . , k, estimate the synchronous machine states
δ(k�t), � ω(k�t), e’q(k�t) and e’d(k�t). (Here, “j” is the
time step index.)

Here, Et = eR + jeI is the terminal voltage phasor and
It = iR + jiI is the terminal current phasor in the global refer-
ence frame. They are positive sequence variables and can be
measured using PMUs.

To estimate states using the discrete measurements, the con-
tinuous time model in (2) was discretized into a discrete time
model (6), where the subscript k indicates the time at k�t

{
xk = f (xk−1, uk−1) + wk−1 (6a)

yk = h (xk, uk) + vk. (6b)

More specifically, the state transition function (2a) was dis-
cretized by applying the modified Euler method [12] using (7).
In (7), f̃c can be calculated by (8). When �t is small enough,
the discrete process noise wk−1 can be approximated by (9).
Because the continuous time process noise wc is defined by
(2c), the mean of wk−1 is 0 and the covariance of wk−1 can
be calculated as (10). Equation (10) indicates that the vari-
ance of process noise can be increased proportionally with
the sampling interval �t during the state estimation

xk ≈ xk−1 + f̃c�t + wk−1 (7)
{

f̃c = ( fc( x̃k, uk) + fc (xk−1, uk)) /2
x̃k = xk−1 + �t · fc(xk−1, uk−1)

(8)
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Measurement (2b) can be discretized into (11). Here, vk is
the discrete time output noise. Because the continuous time
output noise vc is defined by (2b), the mean value of vk is
0. The covariance of vk depends on how measurement instru-
ments are setup. To simplify the study, this paper assumes no
prefilter. Therefore, the covariance of the vk may be computed
using (12) [14]

yk = hc(xk, uk) + vk (11)

Rd
�= E

(
vkvT

k

) = R. (12)

III. REVIEW OF BAYESIAN-BASED FILTERING METHODS

The Kalman filter is the most widely used Bayesian-based
method. It was named after Rudolf Kalman, who published
his famous recursive method to estimate dynamic states [15].
Assuming Gaussian noise and a linear system, the Kalman
filter provides minimum variance estimates of states through
a recursive approach.

In addition to its original successful applications in linear
systems, there are many publications adapting the Kalman fil-
ter to nonlinear systems. These nonlinear methods include
but are not limited to EK, UKF, EnKF, and PF. One major
difference among these nonlinear Kalman-filter methods is
their approaches to propagating the mean and covariance of
the dynamic states. The EKF [16], [17] linearizes the state
space model using a first-order approximation. The mean and
covariance of states are propagated using Jacobian matrices.
The UKF [18] propagates the mean and covariance of states
using a deterministic-sampling approach to pass the sigma
points through the nonlinear system. The EnKF propagates the
mean and covariance of states using a Monte Carlo sampling
approach [19]. In the EnKF, the distribution of the states is rep-
resented by a collection of samples, referred to as ensembles.
All the above Kalman filters assume the joint Gaussian distri-
bution of both measurements and states, and use the Bayesian
approach to derive the Kalman gain. In contrast, the PF [20]
is a more general Bayesian approach, which does not rely
on Gaussian noise assumption. Similar to the EnKF, the PF
also uses the samples (also known as particles) to represent
the probability distribution of random variables. Different from
the EnKF, the PF directly corrects the states without assuming
Gaussian distribution.

For a linear system with additive Gaussian noise, it is well
known that the KF is an optimal estimator in the sense of
obtaining minimum mean square error (MSE) estimate. In
addition, the KF is a recursive estimator and can be imple-
mented efficiently for many real time applications. Yet, for
a nonlinear system, all available algorithms (such as EKF,
UKF, EnKF, and PF) are only suboptimal estimators. Each
algorithm has its advantages and disadvantages. The EKF is
probably the most widely used estimation algorithm for non-
linear systems and is often considered a standard algorithm
because of its high computational efficiency and high accu-
racy for quasi-linear systems [24]. Yet, when a system is highly
nonlinear, the EKF tends to have poor estimation accuracy and
even diverge. This is because first order Taylor approximation
used in the EKF introduces too much error. In contrast, the
UKF can achieve second or third order Taylor approximation
for a nonlinear system. Therefore, the UKF tends to produce
more accurate estimates than the EKF when system nonlin-
earity is severe and noise is additive. In addition, the UKF
has the same order of the computational complexity as the
EKF [18]. The EnKF was mainly motivated by the needs of
solving a system with a large number of states. For a large
system, the EnKF was shown to have overcome the unbounded
error growth problem of the EKF and to require less compu-
tation time [19]. The applications of EKF, UKF, and EnKF
are restricted by their additive Gaussian noise assumption.
As a result, they are not suitable for analyzing probabilistic
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distributions with multiple modes. In contrast, the PF is more
general by not making the restrictive assumption and, there-
fore, is more applicable to highly nonlinear systems. It was
shown that the PF can give more accurate estimates than the
EKF for the two particular nonlinear models in [27]. Yet, the
PF usually requires a very large number of samples to repre-
sent a probabilistic distribution and, therefore, is not suitable
for a large system. Considering features of the EKF, UKF,
EnKF, and PF, users often need to examine and test filtering
algorithms to select appropriate algorithms according to the
requirement of their specific applications.

Under a Bayesian framework, the implementations of the-
ses algorithms have a similar structure. After initialization,
all the filtering algorithms assimilate one snap shot of data
at every time step. For one snap shot of data, there are two
steps: a prediction step and a correction step. In the predic-
tion step, the mean and covariance of states at time step k are
predicted based on the states at step k-1. In the correction
step, the predicted mean and covariance are corrected based on
new measurements obtained at time step k. The algorithms for
implementing these filtering methods are detailed as follows.

A. EKF

The EKF linearizes the system at the current operating point
using the Jacobian matrices as in (13)–(15), [16].

EKF Prediction

x−
k = f (xk−1, uk−1) k ≥ 1 (13a)

P−
k = Fk−1Pk−1FT

k−1 + Qd. (13b)

EKF Correction
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(14b)
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k ≥ 1 (14c)

Pk = (I − KkHk)P
−
k (14d)

where x−
k and P−

k are known as the a priori mean and covari-
ance (of the states), respectively. They are estimated from the
data up to time step k-1. The symbols xk and Pk are known
as the a posteriori mean and covariance of the states respec-
tively, which are derived by adding the information from zk to
x−

k and P−
k . The symbol Kk is the Kalman gain. The symbol ỹk

is the residual between estimate h(x−
k−1, Vk−1) and measure-

ment zk. Fk and Hk are Jacobian matrices defined by (15). A
perturbation approach is used to numerally derive the Jacobian
matrices in this paper
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∣
∣
∣
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∣
∣
∣
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k
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B. UKF

The UKF uses an unscented transform to pick a set of
samples to represent the probability distribution of states
and propagates these samples through the nonlinear functions
f and h to reconstruct the mean and covariance. The UKF
estimation method is summarized as (16) and (17) [18].

UKF Prediction
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xi
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UKF Correction

xk = x−
k + Kkỹk (17a)
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where xi−
k and Wi are 2n + 1 sigma points and their corre-

sponding weights. κis a scaling parameter that controls the
positions of the sigma points.

C. EnKF

The EnKF uses samples (also known as ensembles) to rep-
resent and propagate the probability distributions of the states.
By using a large number of samples, the probability density
can be approximated with high accuracy. The EnKF can be
summarized by (18) and (19) [19].

EnKF Prediction

xi−
k = f (xi

k−1, uk−1) + wi
k−1 k ≥ 1, i = 1, . . . , nenKF (18a)
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EnKF Correction
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where nenKF is the total number of samples, which are used
to represent the distribution. The variable wi

k−1is a sample
generated according to the Qd to simulate process noise. The
symbol xi

k stands for the samples of a posteriori states. Note
that using (19c) and (19d), the covariance matrix Pk does not
need to be expressively calculated.

D. Basic PF

The PF can be applied to systems with Gaussian and other
distributions. A basic PF approximates a probability distri-
bution function by a set of weighted discrete samples, as
shown in

p (xk−1|u1:k−1, y1:k−1) =
nPF∑

i=1

Wi
k−1δ

(
x − xi

k−1

)
. (20)

After processing several data snapshots, a PF often suffers
from a degeneracy problem (i.e., the weight of only one parti-
cle tends to one while weights of all other particles tend to 0).
To reduce the degeneracy problem, a resampling step is often
added to redisperse the discrete samples by generating a new
set of particles according to the discrete distribution of (20). To
detect degeneracy, the effective sampling size Neff is defined
by (23). The basic PF process is described by the following
equations [20].

PF Prediction

xi−
k = f

(
xi

k−1, uk−1
) + wi

k−1. (21)

PF Correction

W̃i
k = Wi

k−1 · pvk

(
zk|h

(
xi−

k , uk

))
(22a)

Wi
k = W̃j

k

/
nPF∑

j=1

W̃j
k (22b)

xk =
nPF∑

i=1

xi−
k Wi

k. (22c)

PF Resampling if degeneracy is detected using

Neff ≈ 1
∑nPF

i=1

(
Wi

k

)2
. (23)

Here, W̃i−
k is prior weights of the ith state sample.

pvk

(
zk|h

(
xi−

k , uk

))
is the likelihood of zk given the prior states

xi−
k and inputs uk. The likelihood function is determined by the

measurement noise model (i.e., Rd). Symbol nPF is the total
number of samples that are used to represent the probability
distribution of a state.

IV. STUDY APPROACHES

Because each nonlinear filtering algorithm often has its
advantages and drawbacks, it is important to set up a spe-
cific case in a power system for comparison. To mimic
the responses of a real system, the power system tool-
box (PST) [22] was selected to generate simulation data. The
two-area-four-machine test system shown in Fig. 1 (stored as
d2asbeghp.m in PST) is used to generate the system dynamic
responses to a three-phase fault. The fault is applied to bus 3

Fig. 1. Two-area four-machine system [22].

on the line between buses 3 and 101 at 6.1 s. The fault is
cleared at 6.15 s at bus 3 and 6.20 s at bus 101. To capture
the dynamics and reduce integration errors, the simulation time
step is chosen to be 0.001 s.

Assume that PMUs are available at the generator bus 1
to measure the voltage and the current phasors. Filtering
algorithms are set up to estimate the dynamic states of gen-
erator 1. To mimic the measurements from PMUs, the system
responses are down-sampled to a rate of 25 samples per
second. According to IEEE Standard C37.118-2005 [21], a
certain percentage of total vector errors (TVE) are added to
the system responses to mimic measurement noise.

Because of the randomness of the measurement and process
noise, the performance of an algorithm needs to be evaluated
under a statistical framework. To circumvent the difficulties of
analytical solutions, the paper uses the Monte Carlo method to
study the statistical accuracy. The Monte Carlo method gener-
ates various instances of random noise by randomly sampling
noise’s distribution. Through repeated samples and simula-
tions, the probabilistic distribution of estimated states can be
approximated by the resulting samples.

To compare the estimation accuracy of a filtering algorithm,
MSE defined by (24) is used as a metric. To increase the
dynamic range, 10log10(MSE) in dB is used in the studies of
the following section. Here, the symbol xk,True represents the
true state at kth time-step, while x̂k,m is the corresponding esti-
mated states in the mth Monte Carlo test case. The symbol, M,
is the total number of Monte Carlo trials

MSE
(
x̂k

) �= 1

M

M∑

m=1

(
x̂k,m − xk,True

)2
. (24)

Note that M should be large enough to make estimated
MSEs converge and small enough to avoid unnecessary com-
putational burden [26]. To determine a proper M, M = 10,
50, 100, 200, 400 were tried. It was observed that the esti-
mated MSEs did not change significantly after M ≥ 50 for
the studied problems. The observation indicated that the MSE
estimation converged after 50 trials. Therefore, to leave some
safety margins, the paper uses M = 100.

Computation time is another important factor to evaluate
the performance of a filtering algorithm. For example, for
a real time control application, it is often required that the
estimation of current states must be finished before the next
measurement arrives. In another word, a state estimation algo-
rithm must be able to keep up with the measurement data flow.
A computationally efficient algorithm uses less time to finish
state estimation and is therefore, preferred because it lowers
the computation costs. To compare the computational time,
all the algorithms are implemented using MATLAB version
2013a and tested on a computer with a 3.4-GHz processor,
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16 GB of memory, and a 64-bit operating system. The com-
putation timer is started right before the prediction step of the
first measurement and ended right after the correction step of
the last measurement.

V. CASE STUDIES

In this section, dynamic simulation is carried out to com-
pare the performance of the EKF, UKF, EnKF, and PF for the
purpose of estimating dynamic states of a power system.

On the algorithm side, both EnKF and PF use samples to
represent state probability distribution. To evaluate the influ-
ence of the sample number on MSEs, 200 and 2000 samples
were used for testing these algorithms.

On the simulation side, four scenarios are set up to under-
stand major influential factors.

(a) A simple scenario is set up as a benchmark for
comparison. It is assumed that the system models and
noise models are known. All input and output measure-
ments are all available.

(b) A scenario with measurement interpolation is set up
to evaluate how the interpolation method [3], [11]
may influence the algorithms’ performance. Therefore,
all its setups mirror scenario (a). In addition, PMU
measurements are interpolated.

(c) A realistic scenario considering model inadequacy is set
up to understand how algorithms may perform in a more
realistic scenario. In this setup, a more complex model is
used to generate simulation data while a simpler model
is used in filtering algorithm to estimate states. The setup
is to mimic the more common reality where an available
model is a simplified representation of a real system. In
addition, higher levels of measurement noise are added
to mimic noise introduced by potential transformers and
current transformers.

(d) A realistic scenario with missing data and outliers is set
up to understand the influence of missing data and out-
liers on the algorithm performance. This setup mirrors
scenario (c). In addition, missing data and outliers are
intentionally added to PMU measurement.

The four scenarios are described in detail in
Section V-A–V-D. The algorithm estimation accuracy
are compared using MSEs in dB in each subsection. The
computational time is summarized in Section V-E.

A. Simple Scenario

The simulations are set up as follows.
1) To simulate the generators’ dynamic responses, a fourth-

order transient model as shown in (1) is used. Governors
and exciters are included. Sub-transient dynamics and
field saturation effects are not modeled.

2) For the PMU measurements, 1.0% measurement noise
in TVE is added to the voltage and current phasors.
Tm and Efd are recorded with 1.0% measurement noise.
The PMU sampling rate of 25 samples per second used
for generating the measurement data is also used for
estimation.

3) For all the algorithms, the initial states are esti-
mated by setting ẋ = 0 in (2) and then solving (2)

Fig. 2. Comparison of MSEs from the EKF, EnKF, PF, and UKF for 100 sets
of Monte Carlo simulations of a simple scenario.

using the Gauss–Seidel method. To reflect uncer-
tainty of the initial states, covariance P0 is set to be
ten times of the largest changes of the states, i.e.,
P0 = (10max(abs(diff(x1:N))))2. The output variance Rd

is set to be 0.012 corresponding to the 1.0% of errors
added, which is diag([0.01, 0.01])2 for this paper. Qd

is set to be 1.0% the largest changes of the states, i.e.,
Qd = 1.0%*max(abs(diff(x1:N))), which is diag ([0.0474,
0.0042, 0.0289, 0.0137])2 for this paper.

The MSEs of the four states from EKF, UKF, EnKF, and
PF are summarized in Fig. 2. It can be observed from Fig. 2
that the EnKF has the smallest MSE. Increasing the number of
samples in EnKF does not significantly influence its estimation
accuracy. In contrast, the MSEs of the PF noticeably decrease
when the sample number is increased from 200 to 2000. UKF
and PF have larger MSEs than the other methods.

Fig. 3 shows the EnKFs estimation results for all 100 sets of
Monte Carlo simulation with npf = 200 samples. All the 100
EnKF estimates converge to the true states within 1.5 s. Note
that to help the illustration, the true value of generator four
rotor angle is used as the reference angle to generate the first
plot of Fig. 3. For the PF with npf = 2000 samples, 80 sets
out of the 100 PF estimates converged and the other 20 sets
diverged. When the sample number of the PF is reduced from
2000 to 200, the number of converged sets decreases to 47.
For the UKF, only 67 sets of estimates converged. For the
EKF, all 100 estimates converged, but they have larger MSEs
than the EnKF.

B. Scenario With Measurement Interpolation

The goal of this scenario is to evaluate how the inter-
polation method [3], [11] may influence the algorithms’
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Fig. 3. Estimated states from the EnKF with 200 samples of 100 sets of
Monte Carlo simulations for a simple scenario. (All 100 sets converge.)

performance. The interpolation method inserts the additional
pseudo measurement points between two consecutive measure-
ment samples. Introducing additional measurements increases
the effective sampling rate, and reduces the linearization
errors. In this scenario, the sampling rate is increased from
25 sample/s to 200 sample/s by adding seven additional pseudo
measurements between every two measurement points through
linear interpolation.

Note that because of the interpolation, the sampling
time interval �t in (7) is reduced from 40 ms to 5 ms.
Following (10), the process noise covariance Qd is reduced to
1/8 of that in scenario (a). The Rd remains the same as in (12).
All the other setup remains the same as that in scenario (a).

The MSEs from the EKF, UKF, EnKF, and PF are com-
pared in Fig. 4 between the cases with interpolation as in this
scenario and the cases without interpolation as in scenario (a).
It can be observed that the MSEs of the EKF, UKF, and PF
are significantly reduced by the interpolation method. In com-
parison, changes of MSEs for the EnKF are less significant. In
addition, with interpolation, the MSEs of the EKF, UKF, and
EnKF are significantly smaller than those of the PF. With the
interpolation method, all 100 sets of EKF, UKF, EnKF, and
PF estimates converge.

C. Realistic Scenario Considering Model Inadequacy

In this scenario, the simulation model for generating mea-
surement data is more complex than the estimation model used
for estimating state. The goal is to mimic the more common
reality where an available model is often a simplified repre-
sentation of a real system. In addition, the measurement noise
level is increased to include transformer noise. Finally, some

Fig. 4. Comparison of MSEs from the EKF, UKF, EnKF, and PF of 100 sets
of Monte Carlo simulations for the scenarios with measurement interpolation
and without interpolation. (Note: some of the curves for UKF and PF without
interpolation are out of the charts. Refer to Fig. 2 for details.)

model inputs (e.g., Tm and Efd) have to be estimated because
they are not usually measured by PMUs.

1) To simulate generator responses, a sub-transient model
is used. Field saturation effects are modeled by adding
S1 = 0.0654, S2 = 0.4786 [13]. To increase oscillatory
dynamics, the power system stabilizers are intentionally
removed. By adding the sub-transient model and satura-
tion effects, the simulation model is more complex than
the estimation model shown in (1).

2) For the PMU measurements, 5% of measurement noise
in TVE is added to the voltage and current phasors. Note
that additional noise is added to include measurement
noise introduced by current transformers and potential
transformers. In addition, because PMUs may not always
be available near a generator, it is assumed that Efd and
Tm are not measured in this scenario. Efd is estimated as
a special state using the state augmenting method pro-
posed in [3]. Here, Efd,k = Efd,k−1 + wEfd,k−1is used as
the state transition model and initial value is set to be 1.
Tm is estimated by low pass filtering Pe/f [23]. Here, Pe

is the real electric power and f is the system frequency.
The low pass filter is a first order infinite impulse
response filter with a time constant of 0.5 min. (Note
that if the Efd and/or Tm are measured, the measured
values can replace the estimated values.)

3) For all the algorithms, the setup is same as that in sce-
nario (b) (e.g., the data sampling rate is increased to
200 samples/s through linear interpolation), except that
the output variance Rd is set to be diag([0.05, 0.05])2

because the 5.0% measurement noise was added.
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Fig. 5. Comparison of MSEs from the EKF, UKF, EnKF, and PF of 100 sets
of Monte Carlo simulations for the realistic scenario.

The MSEs from the EKF, UKF, EnKF, and PF are sum-
marized in Fig. 5. It can be observed that the EnKF, EKF,
and UKF have similar MSEs. After approximately 4 s the
MSEs of the PF with 2000 samples converge to similar levels.
In contrast, the MSEs of the PF with 200 samples are per-
sistently the largest among all the algorithms, indicating a
performance degradation. All 100 estimates from EKF, UKF,
and EnKF converge. All 100 estimates from PF with 2000
samples converge. In contrast, there are five sets of estimates
that diverge for the PF using 200 samples.

Under this scenario, simulations are also performed with
1% and 3% measurement noise. It is observed that when the
noise level is reduced, the MSEs get smaller.

D. Realistic Scenario With Missing Data and Outliers

The goal of this scenario is to evaluate all the algorithms
when the PMU measurements are corrupted by missing data
and outliers. Missing data may be caused by temporary com-
munication failures, and is often identified via error detection
schemes associated with communication protocols. Outliers
are measurements with significantly large measurement errors
that may be caused by extraordinary disturbances or temporary
sensor failures. By checking the residuals, an outlier detector
may be able to detect some outliers. Yet, because such an out-
lier detector needs to maintain a balance between correct and
erroneous determinations (false positives and false negatives),
it will not be able to detect all outliers. Undetectable outliers
(false negatives) carry misleading information and presented
a major challenge to state estimation algorithms.

To simulate missing data, all (simulated) measurement data
between the 7th and 8th second is chosen to be missing and
marked out. The missing data is then patched through linear

Fig. 6. Comparison of MSEs from the EKF, UKF, EnKF, and PF of 100 sets
of Monte Carlo simulations for the realistic scenario with and without missing
data and outliers.

interpolation. To mimic outliers, errors on the order of 12 times
of the standard deviations of the voltage magnitudes and angles
are added to the voltage phasor measurements between 11.0
and 11.5 s. These outliers are assumed to be undetected (false
negatives) and are processed as normal data by all the filter-
ing algorithms. The remaining setup is the same as that of
scenario (c).

The MSEs of the EKF, UKF, EnKF, and PF are compared in
Fig. 6 between the cases with missing data and outliers as in
this scenario, and the cases without missing data and outliers
as in scenario (c). It can be observed that the MSEs of all the
algorithms are very similar for cases with and without miss-
ing data. This indicates that all algorithms are robust against
missing data that last for 1 s.

On the other hand, the outliers at the 11th second cause
significant increases in the MSEs of all the algorithms. After
the outliers disappear at the 11.5 s, the MSEs of the EKF, UKF
return to the original levels quickly, while it takes more time
for the MSEs of the EnKF to return to the original levels. Note
that EnKF (2000) converge faster than the EnKF (200) because
of more samples used. For the PF (with 2000 samples), five out
of 100 Monte Carlo trials diverged after the outliers occur. The
observation indicates that the EKF and UKF are more robust
to outliers compared to the EnKF and PF.

Fig. 7 shows that all 100 sets of EnKF estimates converge
to the true states. Also, the estimates of the EKF and UKF for
all 100 sets of data converge.

E. Computation Time

For the 20 s of simulated measurements, the computa-
tional time for different algorithms and scenario (a)–(c) are
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Fig. 7. Estimated states from the EnKF of 100 sets of Monte Carlo simu-
lations for the realistic scenario with missing data and outliers. (All 100 sets
converge.)

summarized in Fig. 8. Here, EnKF (200) and EnKF (2000) are
for the EnKF algorithm with 200 and 2000 samples respec-
tively. For scenario (d), the computation time is virtually same
as that of scenario (c) and, therefore, not shown in the figure
to be concise.

For each individual scenario, it can be observed that the
EKF is the most efficient algorithm in computation time. The
UKF is the second most efficient algorithm and its computa-
tion time is of the same order as the EKF. The EnKF (200)
and the PF (200) use similar computation time. They both use
about 8 ∼ 10 times as much computation time as the EKF.
The EnKF (2000) and the PF (2000) use the longest computa-
tion time. The EnKF (2000) and the PF (2000) have ten times
as many samples as the EnKF (200) and the PF (200). As a
result, they use almost ten times as much computation time as
the EnKF (200) and PF (200). The observation indicates that
the computation time of the EnKF and the PF is proportional
to the number of samples used.

Comparison can also be made among different scenarios.
Scenarios (b) has eight times as many measurement points (by
including seven additional interpolation points) as scenario (a).
For the same algorithm, the computation time under sce-
nario (b) is about eight times as long as that under scenario (a).
Because algorithms under scenario (c) add an additional state
for Efd and need to estimate Tm, the computation time for
the same algorithm is a little bit longer than it is under
scenario (b).

To run an algorithm in real time, the computation time must
be less than the measurement time duration, i.e., 20 s. It can be
observed that EKF and UKF can run in real time under all the
studied scenarios. EnKF (200) and PF (200) can only be run

Fig. 8. Computation time of the EKF, UKF, EnKF, and PF under scenario
(a)–(c).

TABLE I
PERFORMANCE COMPARISON AMONG THE EKF, UKF, ENKF, AND PF

(N/A: NOT APPLICABLE)

in real time under scenario (a). EnKF (2000) and PF (2000)
cannot run in real time under any studied scenarios.

VI. CONCLUSION

Accurate information about dynamic states is critical to effi-
cient control of a power system, especially with the increasing
complexity resulting from uncertainties and stochastic vari-
ations introduced by intermittent renewable energy sources,
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responsive loads, mobile consumption of plug-in vehicles, and
new market designs. Using a statistical framework, this paper
compares the performance of an EKF, UKF, EnKF, and PF
for the purpose of estimating dynamic states from real-time
phasor measurements. To summarize the observations from
the simulation using a two-area-four-machine test system,
Table I is constructed for quick comparison. The following
is shown.

1) The EnKF algorithms are more accurate than other algo-
rithms when the typical PMU sampling rate is used for
estimation.

2) Measurement interpolation methods can improve the
estimation accuracy of the EKF, UKF, and PF at the
expense of increasing computation time. The inter-
polation does not show significant influence on the
estimation accuracy of the EnKF.

3) The PF needs more samples than the EnKF to achieve
a reasonably good estimation accuracy. Increasing the
number of samples can improve the estimation accuracy
and convergence of the PF.

4) All of the algorithms are robust to missing data. The
outliers cause some significant errors for all algorithms
if the outliers are processed as normal data. The EKF
and the UKF are more robust to the outliers than the
EnKF and the PF. It takes longer time for an EnKF to
regain accurate state tracking after being disrupted by the
outliers. About 5% of trials in the PF diverged because
of the outliers.

5) The EKF and the UKF are computationally more effi-
cient than the EnKF and the PF for the studied problem.

The proposed algorithms are applied to the system responses
to other faults with different durations and locations. The
estimation accuracy and computation time are similar to the
presented cases.

Based on the above observations, some recommendations
can be made for selecting state estimation algorithms for the
studied problem.

1) To reach a reasonably good accuracy, the PF needs a
large number of samples. As a result, the PF is com-
putationally expensive and is not suitable for estimating
dynamic states in real time. However, it should be noted
that there are still great potentials to further improve PF
accuracy by increasing the effectiveness of samples and
reduce computation time through parallel computation.

2) Using limited number of samples (i.e., 200), the EnKF
can achieve a reasonably good estimation accuracy with-
out relying on the measurement interpolation method.
This observation indicates that by using the sample
covariance, the EnKF are more stable than the EKF
and UKF under lower sampling rate. According to [19],
the computation time advantages of the EnKF over the
EKF may become obvious when number of states is
larger than the number of the EnKF samples. Because
the studied problem involves only 4–5 states (much less
than those in [19]), the computation time of EnKF is
longer than that of the EKF and UKF. The EnKF (200)
can still run in real time under scenario (a) but is more
sensitive to the outliers than the EKF and UKF.

3) The EKF and UKF should be used with the measurement
interpolation method. Adding pseudo measurements, the
measurement interpolation method improves estimation
accuracy of the UKF and EKF by reducing the system
nonlinearity and process noise levels. Although the addi-
tional pseudo measurements increase computation bur-
den, the EKF and UKF can still run in real time because
of their high computational efficiency. In addition, the
EKF and UKF reconverge to the true states more quickly
than the EnKF after being disrupted by the outliers.
Therefore, the EKF and UKF with the measurement
interpolation method are recommended for the studied
problems.

Ongoing and future work includes dynamic state estimation
methods at system levels and sensitivity studies to determine
how parameter errors may influence the state estimation, as
well as efficient, accurate, and flexible methods for estimating
the states in both real time and offline environments.
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