
Institut für Informatik der Technischen Universität München

Management of Tracking
and Tracking Accuracy in Industrial Augmented

Reality Environments

Dissertation

Peter Keitler

Institut für Informatik der Technischen Universität München

Management of Tracking
and Tracking Accuracy in Industrial Augmented

Reality Environments

Peter Keitler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. N. Navab

Prüfer der Dissertation: 1. Univ.-Prof. G. J. Klinker, Ph.D.

2. Prof. G. F. Welch, Ph.D.,
University of North Carolina / USA

Die Dissertation wurde am 27.01.2011 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 25.03.2011 angenommen.

Abstract

Industrial Augmented Reality (IAR) techniques can help to increase the productivity of
certain work processes by augmenting the physical scene with virtual information. IAR
brings together tasks that are traditionally performed off-line on purely virtual data,
such as industrial design, geometric layout, or metrologic evaluations, with on-line tasks
in the domain of physical objects such as prototypes, mockups, facilities or repetition
parts. This allows for a broad range of new, integrated applications. Real-time position
and orientation tracking of physical objects is needed to register these objects with the
virtual world. It can be implemented based on a variety of sensors providing spatial mea-
surements on an optical, inertial, or acoustic basis. However, tracking for IAR is often
difficult to implement, due to the constraints imposed by the working environment such
as electro magnetic interference, dirt/dust, noise, bad illumination conditions, vibrations,
occlusion, and interference with existing work processes. Sometimes, the flexibility to
quickly setup and dismantle the system is required. Nevertheless, the tracking has to be
robust and meet the accuracy requirements imposed by the intended application. Often,
this can only be accomplished by a heterogeneous multi-sensor tracking environment, a
fact that complicates the task of registering the various coordinate frames of tracking
systems, sensors, markers, and display devices with respect to one another.

This thesis describes a generic approach to deal with the complexity of heterogeneous
tracking environments. It supports the IAR engineer throughout the various design and
implementation phases of an industrial IAR scenario. An abstract semantic modeling
concept based on spatial relationship graphs (SRG) and its implementation in a graph-
ical data flow editor is presented. Modeling is based on reusable design patterns which
represent atomic sensor drivers and geometric algorithms as well as complex state-of-
the- art solutions. Real-time data flow networks can be generated automatically from
the SRG and are guaranteed to be semantically correct. Still, the data flow layer re-
mains directly accessible through a round-trip engineering approach. Based on the SRG
concept, simulation and analysis tools for a rigorous management of tracking accuracy
are described. Monte Carlo simulation helps IAR engineers to understand the proposed
system and to identify critical design issues, even before actual hardware deployment.
Expert analysis tools help them in system validation and maintenance where simula-
tion results have to be confirmed based on real measurement data. End-user analysis
tools facilitate recurring quality checks by on-site personnel during regular system op-
eration. The system has been implemented and used successfully in two real industrial
settings. The described approach simplifies and standardizes the setup, operation, and
maintenance of such IAR tracking environments.

i

Zusammenfassung

Techniken der Erweiterten Realität können die Produktivität von industriellen Arbeit-
sprozessen erhöhen, indem die Sicht des Nutzers mit virtuellen Informationen angere-
ichert wird. Dazu muss Position und Orientierung realer Objekte in Echtzeit bestimmt
werden, um sie mit der virtuellen Welt registrieren zu können. Für dieses Objekt-
Tracking werden verschiedene Messprinzipien, insbesondere optische, inertiale oder akus-
tische, verwendet. Oft ist eine Kombination verschiedener Verfahren notwendig, um die
angestrebte Robustheit und Genauigkeit zu erreichen.

Diese Arbeit beschreibt einen generischen Ansatz zum Umgang mit heterogenen Track-
ing-Umgebungen, basierend auf räumlichen Abhängigkeitsgraphen. Das graphische Mo-
dellierkonzept vereinfacht den Umgang mit statischen und dynamischen Abhängigkeiten
erheblich. Darauf aufbauend werden Simulations- und Analysewerkzeuge beschrieben,
die einen umfassenden Umgang mit Tracking-Genauigkeit erlauben.

ii

iii

Acknowledgment

Ganz herzlich danken möchte ich Gudrun Klinker, für die aufopferungsvolle wissenschaft-
liche Betreuung in den vergangenen vier Jahren und für unzählige wertvolle Denkanstöße.
Ich schätze das Vertrauen sehr, das Du in uns setzt.

Sincere thanks also go to Greg Welch who agreed to become my second supervisor
without hesitating. Your feedback was very valuable for me.

Danken möchte ich auch Georg Klinker, der es mir ermöglichte, im industrienahen
Umfeld zu promovieren, ohne dabei den Anschluss an die universitäre Forschung zu
verlieren. Du hast mir gezeigt, den Blick auf das Wesentliche zu lenken.

Besonderer Dank gilt meinen hochgeschätzten Kollegen aus der Industrie. Michael
Schlegel hat unzählige Stunden und Tage mit mir im Versuchsfahrzeugbau bei BMW ver-
bracht. Diese wertvollen Erfahrungen (“Wer misst, misst Mist!”) legten erst den Grund-
stein für ein strukturierteres Vorgehen. Das gemeinsame Auswerten der Messdaten war
zuweilen frustrierend, hat aber auch viel Spass gemacht. Besonderer Dank auch an
Benjamin Becker von EADS Innovation Works, der mich ebenfalls des öfteren mit prax-
isrelevanten Anforderungen versorgte. Seine Fähigkeit zur direkten Kritik schätze ich
sehr. Die Zusammenarbeit mit Euch möchte ich nicht missen.

Des Weiteren möchte ich all jenen danken, die mit ihrer Mitwirkung an Ubitrack die
Basis für diese Arbeit gelegt haben. Dank gilt insbesondere Florian Echtler, Manuel Hu-
ber und Daniel Pustka. Ein Dankeschön auch an alle weiteren Kolleginnen und Kollegen
vom FAR. Nicht nur das Schlittenfahren hat mit Euch sehr viel Spass gemacht! Diese
Kollegialität ist nicht alltäglich.

Danke auch an Martin Groher, Jörg Traub und Marco Feuerstein, die mit mir das
Hauptseminar Augmented Reality besucht haben, was mich überhaupt erst auf das
Thema AR gebracht hat. Die Gruppen-Diplomarbeit mit Euch und unter Gudruns
Betreuung ist für mich noch immer der Inbegriff von gutem Teamwork.

Ich möchte auch meinen Eltern Inge und Josef danken, die es mir erst ermöglicht
haben, ein Hochschulstudium aufzunehmen. Ein Privileg, dass eigentlich keines sein
sollte. Danke auch für die zuverlässige Grundversorung während arbeitsintensiver Wo-
chen auf dem Lande.

Ein ganz besonderer Dank gilt Agnes, für das in mich gesetzte Vertrauen, für das Er-
tragen von entbehrungsreichen Monaten, sowie für die Zubereitung schier unglaublicher
Mengen grünen Tees. Ich liebe Dich!

iv

Contents

Abstract i

Zusammenfassung ii

Acknowledgment iv

Overview x

I. Industrial Augmented Reality 1

1. Motivation 2
1.1. Mixed- and Augmented Reality . 2

1.1.1. Architecture of an Augmented Reality Setup 2

1.1.2. Taxonomy of Mixed Reality Systems 3

1.2. Prerequisites for Industrial Augmented Reality 3

1.2.1. Virtual Content . 4

1.2.2. Visualization Techniques . 6

1.2.3. Interaction . 8

1.2.4. Tracking Systems . 10

1.3. Importance of Augmented Reality in Industry 14

1.3.1. Basic Benefit of Augmented Reality Techniques 14

1.3.2. Applications . 15

1.3.3. Relations to Classical Mixed- and Augmented Reality 21

1.3.4. Relations to Virtual Reality . 22

1.3.5. Relations to Metrology . 22

1.4. The Tracking Challenge . 23

2. Tracking to Meet Industrial Criteria 25
2.1. Requirements in the Literature . 25

2.2. IAR Design Phases . 26

2.3. Requirements for Management of Tracking 27

2.3.1. Guaranteed Performance . 27

2.3.2. Sensor Fusion . 27

2.3.3. Modularization . 29

2.3.4. Maintainability . 29

v

3. Related Work 31

4. Approach 34
4.1. General Approach . 34

4.2. Focus . 35

4.2.1. Relations to other Aspects of IAR Applications 35

4.2.2. Sensor Fusion . 35

4.2.3. Dynamic Reconfiguration of Sensors 35

4.2.4. Dynamic State Changes . 36

4.2.5. Relations to Metrology . 37

4.3. Contribution . 38

II. Data Flow Management 39

5. The Ubitrack Tracking Middleware 41
5.1. Spatial Relationship Graphs . 42

5.1.1. Definition . 42

5.1.2. Edge Characteristics . 43

5.1.3. Related Concepts . 44

5.2. Data Flow Networks . 45

5.3. Spatial Relationship Patterns . 47

5.3.1. Definition . 47

5.3.2. A Catalogue of Spatial Relationship Patterns 50

5.3.3. Node/Edge/Pattern Attributes . 54

5.3.4. The Module Mechansim . 56

5.3.5. Time-/Space-Expansion . 56

5.4. Data Flow Synchronization . 58

5.4.1. Synchronization of Data Flow Components 58

5.4.2. Synchronization of the Data Flow Network 59

5.4.3. The Time-Synchronization Problem 62

5.5. SRG Design Activities . 64

6. Graphical Data Flow Modeling 66
6.1. Graphical Layout . 66

6.2. trackman Architecture . 66

6.3. Interactive SRG generation . 68

6.4. Interactive Deduction of Spatial Relationships 69

6.4.1. Edge Matching . 69

6.4.2. Ordering of Design Activities . 70

6.4.3. Round-Trip Engineering in SRG and DFG 70

6.4.4. Automatic Sync Propagation . 71

6.5. trackman Editor Functionality . 76

vi

7. Common Modeling Tasks 79
7.1. Application SRG . 79

7.1.1. Example: Indirect Tracking for the Intelligent Welding Gun 79

7.1.2. Example: Discrepancy Checks in the Airplane Cabin 81

7.2. Calibration and Registration . 82

7.2.1. Basic Solution Patterns . 82

7.2.2. Example: Hand-Eye Calibration for Indirect Tracking Setup 86

7.2.3. Example: Registration of the Reference Target in the Airplane
Cabin . 86

7.3. Application Interfaces . 86

8. Advanced Graphical Modeling Concepts 89
8.1. Semi-Automatic Modeling . 89

8.2. Meta-Patterns . 90

8.2.1. Definition . 91

8.2.2. Applications . 91

8.2.3. Integration in trackman . 92

9. Discussion 94
9.1. Summary . 94

9.2. Advantages and Limitations of Graphical SRG Modeling 94

9.3. Relationship between trackman and Dynamic SRG Modifications 95

9.4. Possible Improvements . 95

III. Error Management 97

10.Quantifying Measurement Uncertainties 99
10.1. Representation and Categorization of Uncertainties 99

10.1.1. Categorization(s) of Errors . 99

10.1.2. Basic Error Statistics . 103

10.1.3. Root-Mean-Square Error . 104

10.1.4. Expressing Orientation and Pose Error 106

10.2. Error Standards for Spatial Measurements 107

10.3. Propagation of Uncertainties . 109

10.3.1. Short Survey of Parameter Estimation 110

10.3.2. Propagation of Uncertainties in the Literature 111

10.3.3. Linear Propagation of Uncertainties 113

10.3.4. Monte Carlo Simulation . 117

10.3.5. Elementary Specification of Uncertainty 118

10.4. Conquering the Complexity of IAR Applications 119

10.4.1. Proposed Approach . 120

10.4.2. Focus . 122

10.4.3. Outline . 123

vii

11.Ubitrack Monte Carlo Simulation Framework 124
11.1. The Chain of Uncertainty . 124

11.2. Simulation Data Flow . 125

11.2.1. Ground Truth Data . 126

11.2.2. Synthetic Measurements . 127

11.2.3. Registration/Tracking Algorithm: 128

11.2.4. Covariance Estimation . 128

11.2.5. Data Flow Synchronization . 130

11.3. Computational Complexity . 132

11.4. Example: Comparison of Monte Carlo with Online Error Propagation . . 132

12.Sensor Errors 137
12.1. Assessment of Uncertainties in the Literature 137

12.2. Elementary Specifiation of Uncertainties for Sensors 138

12.3. Residual Error from Point-Based Registration 140

12.3.1. General Non-Linear Solution: Helmert Transformation 141

12.3.2. A Linear Approximation . 142

12.3.3. Practical Considerations . 149

12.4. Example: Specification of Elementary Uncertainty for the Airplane Cabin 152

12.4.1. Setup . 153

12.4.2. Noise . 154

12.4.3. Systematic Effects . 155

12.4.4. Indirect Tracking Experiment . 159

12.4.5. Summary . 161

13.Verification & Validation 162
13.1. Example: Indirect Tracking of the Intelligent Welding Gun 162

13.1.1. Correcting Rotational Errors . 162

13.1.2. In-vitro Validation of Indirect Tracking 168

13.1.3. In-situ Validation of Application 172

13.1.4. Verification of Mobile Tracking Setup 176

13.1.5. Verification of Application . 180

13.1.6. Discussion . 181

13.2. Example: Probe Tracking in the Airplane Cabin 183

13.2.1. Verification . 183

13.2.2. Validation . 187

13.2.3. Discussion . 187

14.Runtime Error Mitigation 189
14.1. Robustifying Calibration & Registration Procedures 189

14.2. Example: Loops in the Spatial Relationship Graph 190

14.3. Example: Error Mitigation in the Airplane Cabin 192

15.Discussion 194

viii

IV. Conclusion 196

16.Fulfillment of Tracking Tasks 198
16.1. Guaranteed Performance . 198
16.2. Sensor Fusion . 198
16.3. Modularization . 199
16.4. Maintainability . 199

17.Compliance with Industrial AR Design Guidelines 201

Appendix 203

A. SRGs and DFGs 204
A.1. Application . 204
A.2. Registration . 209
A.3. Simulation . 213

Glossary 239

Acronyms 249

ix

Overview

A basic prerequisite for augmented reality is tracking, i.e., the determination of the
position and orientation of physical objects in space. It is accomplished with the aid
of various sensors in a commonly heterogeneous sensor infrastructure. It is crucial to
provide means to setup and implement a robust and maintainable tracking infrastructure
to allow AR applications to spread in the industrial domain. This thesis is split into
four parts.

Part I approaches augmented reality from the point-of-view of industrial applications.
Promising scenarios are discussed first. From the discussed scenarios special require-
ments towards tracking setups in industrial augmented reality (IAR) are be derived.
The ultimate goal is a standardized method that allows for the efficient implementation
of robust and reliably accurate IAR solutions.

The next two parts represent the main contribution of this thesis. Part II elaborates
on a graphical method that eases the creation of tracking data flow networks that are
necessary to process the measurements of all involved sensors efficiently in real-time.
Typical tracking problems are analyzed and reusable best-practice solution patterns are
provided. In particular, common registration methods are analyzed that are needed to
align sensors and objects in the environment. The focus is on a generic approach that
is applicable in various different scenarios.

Part III tackles the problem of tracking accuracy. It is an elementary problem for
most IAR scenarios. The goal is to be able to guarantee a certain level of accuracy for
reliable operation. A generic concept is developed. It combines verification by simulation
with validation by empiric measurements in the target environment. By means of two
exemplary scenarios based on optical infrared tracking, the feasibility of the chosen
approach is demonstrated.

Finally, Part IV concludes the thesis. The chosen generic approach is reviewed ac-
cording to the initial problem statement given in Part I.

x

Part I.

Industrial Augmented Reality

1

1. Motivation

Generally, Industrial Augmented Reality (IAR) encompasses the integration of Aug-
mented Reality (AR) techniques into work processes with the goal of making the latter
more reliable, accurate, and efficient. This thesis deals with tracking, the real-time deter-
mination of position and orientation of objects in space. It is an important prerequisite
for AR and thus also for IAR applications.

In principle, tracking has to be distinguished from detection or localization. An object
can only be tracked continually after it has once been detected successfully. However,
this distinction is ignored in this context. Due to the common terminology in AR,
tracking includes detection and pose estimation.

Unfortunately, the proper setup of a realiable tracking system is a rather difficult
problem. To understand the tracking problem, the context of AR/IAR is clarified first.
Section 1.1 outlines the basic ideas behind Mixed-/Augmented Reality. Next, the differ-
ent subsystems necessary to build an IAR application are detailed in Chapter 1.2. The
potential of these ideas is then reflected and refined in the context of IAR applications
in Section 1.3. Based on this, Section 1.4 describes the various difficulties that arise
when trying to setup tracking for an IAR application. In this thesis, generic methods
are developed that simplify the implementation of robust and reliably accurate tracking
environments.

1.1. Mixed- and Augmented Reality

Augmented reality (AR) aims at augmenting the user’s perception of the real world by
integrating additional, virtual information.

1.1.1. Architecture of an Augmented Reality Setup

An AR application is generally composed of different subsystems[Azum 97]. A world
model represents the virtual content to be mixed with the real scene. A suitable vi-
sulization system is needed to mix both modalities by overlaying the virtual information
with the current perspective of the real world. A tracking system is needed to update
the rendering of the overlay with respect to movements of users or physical objects or
both, particularly the users head or the display he is using. Finally, an AR system also
has means for interaction with the virtual scene. These components are detailed in 1.2.

2

1.1.2. Taxonomy of Mixed Reality Systems

The often-cited definition of AR was given by Azuma in 1997. It lists three indispensable
requirements for an AR application [Azum 97].

• The AR system combines real and virtual information

• The AR system is interactive in real-time

• Virtual content is registered in 3D

Although there might be other means to augment the user’s reality, in the industrial
context, nowadays, mainly visual information is relevant. Milgram introduced another
definition in 1994, which has a different, more general viewpoint [Milg 94]. It defines a
“mixing ratio” between real and virtual information. Pure reality and pure virtuality
(also known as virtual reality, VR) represent two extreme values and span a continuum
also known as Milgram’s Reality-Virtuality Continuum. In between those two extremes,
mainly two intervals can be constituted: augmented reality (AR) and augmented vir-
tuality. Whereas in AR, some virtual information is incorporated into the otherwise
real world, in augmented virtuality, some real information is incorporated into the oth-
erwise virtual world. Both definitions form a general concept commonly called mixed
reality. Extensions to this taxonomy of mixed reality exist. The “degree of modifica-
tion of reality or virtuality”, also called mediality, forms another continuum which is
orthogonal to the reality-virtuality continuum [Mann 02]. Again, pure reality is one of
the extreme values. On the other extreme, there is a purely imaginary world, having
nothing to do with reality. In between, reality is changed to some degree. This also
incorporates the term diminished reality, where information existing in reality is absent
in the mixed perspective. A third, orthogonal continuum can be constructed by consid-
ering the “degree of ubiquity” of the application, ranging from monolithic mainframe
computing to distributed pervasive computing, with classic PC, or wearable systems in
between [Newm 07].

Milgram’s continuum is quite helpful to classify industrial MR applications. Both, AR
and VR play a major role, as shown next. The two continua orthogonal to Milgram’s
do not yet play a major role in the classification of industrial MR applications. There
currently is not much interest to change reality towards an imaginary world in industrial
applications. This might change in the future after IAR has become commonplace,
e.g., to increase the level of comfortness for workers in exposed situations [Tonn 09].
Currently the goals are more concrete. Concerning ubiquity, industrial applications are
still situated rather on the mainframe computing end of the continuum, but maybe this
will change in the future.

1.2. Prerequisites for Industrial Augmented Reality

In this section, an overview of the subsystems needed for an IAR system is given. This
resembles the outline of a general AR application shown in Chapter 1. Since in this

3

thesis, the focus is on tracking, the other components are treated only to the minimal
extent that is necessary to understand the implications on questions of tracking. This
overview also touches some important usability aspects that arise with the introduction
of an IAR system in an already existing work process. More information about the
individual subsystems necessary for IAR in general is given by Pentenrieder and by
Becker [Pent 07] [Pent 09] [Beck 11].

1.2.1. Virtual Content

As stated above, virtual content is needed for any AR application. There are different
ways to acquire such models.

In many industrial setups, a CAD model might already be available. This is particu-
larly true for the augmentation of assembly parts which are mostly designed in digital
design tools. A plethora of tools exists and is in productive use. They can be summarized
by the term digital factory and aim at the integration of various steps in the develop-
ment and production cycle, providing the necessary interfaces and data transformations
[Pent 07] [Pent 08] [Pent 09]. In case a certain product is only available physically, e.g.,
a clay model from product design or a competitive product, current work processes
mostly incorporate a (subsequent) digitalization step based on coordinate measurement
machines (CMM), laser scanning or the projection of stripe patterns. An overview of
such reverse engineering techniques is given for example in [Luhm 00a].

A more difficult question is how to obtain digital models of other objects such as build-
ings, machinery, installations, pillars, and so on. Even if CAD models for such objects
are available, their quality and actuality is highly questionable. Maintaining physically
applied changes in the underlying digital models is a difficult and time-consuming task.
In particular, to obtain a high-quality model, digital planning is not sufficient but the
implementation should be based on the digital model to reveal discrepancies. Metrology
provides means to verify existing models and to obtain new digital models [Luhm 00a].
Different tools are used for this purpose. One can distinguish devices with point-by-point
probing such as theodolites (see Figure 1.1(a)) and surface probing such as laserscanners
(see Figure 1.1(b)).

Regardless the type of object to be reconstructed in terms of a digital model which
can be rendered in an IAR application, the field of metrology provides suitable mea-
surement devices and algorithms. However, metrology does not only solve the problem
of reconstructing 3D models for rendering purposes. The classical field of application
for metrology rather is in the spatial reconstruction of geometric relationships. Such
information, though not suitable for visualization directly, also represents 3D content
that might be valuable for the IAR application.

Classically, a theodolite is used to measure azimuth and elevation angles for dedicated
points, from different viewing positions. To achieve good results, high-precision optics is
incorporated. The resulting geodetic network is then used to compute point positions via
trigonometric functions. Newer devices called total stations additionally include time-
of-flight laser measurements to recover the point distance. This stabilizes the geodetic
network and supersedes extra scale measurements to be taken. Recent devices automate

4

(a) Total station to measure 3D co-
ordinates

(b) Laser scanner that produces dense 3D point clouds

Figure 1.1.: Large-area metrologic measurement devices (Courtesy of FARO Europe
GmbH & Co. KG)

the adjustment of azimuth and elevation angles. A point probe with special optics is
being continually tracked by a laser beam which originates in the base station. The latter
is constantly adapting the angles automatically to follow the point probe. Of course, this
only works for smooth movements of the point probe. Such a device covers ranges up to
60 m and comes close to what a typical tracking system provides. Therefore, the system
could also be mentioned with good reason in subection 1.2.4 about tracking systems.

Metrology typically is a time-consuming offline process with two stages.

• In the first stage, measurements are collected using theodolites or total stations.
This involves repositioning the device several times and measuring plenty of points
from each position, probably requiring manual adjustments of the azimuth and
elevation angles.

• Based on the collected data, the geodetic network is established and evaluated
using methods of adjustment theory [Luhm 00a] [Niem 08] [Koch 97]. Degrees
of freedom not determined by the measurements have to be treated by adding
additional, functional constraints. Non-linear functional relationships are treated
by solving the linearized model iteratively, good initial values are needed in this
case in order not to converge to the wrong solution. The approach is statistically
correct in the least-squares sense and yields also information about the accuracy
of the incorporated measurements as well as the estimated parameters.

Metrologic systems with point-by-point probing play an important role in embedding
an IAR application in the existing environment by registering the involved coordinate
frames. This issue is tackled from different perspectives throughout this thesis.

5

1.2.2. Visualization Techniques

Virtual reality (VR) has been in productive use in industry for many years. A dedicated
environment such as a CAVE [Cruz 93] or a powerwall are used for an immersive user
experience. Typically, a stereo projector setup is needed for the powerwall or each of the
at most six sides of the CAVE. The user’s eyes (in terms of the glasses he is wearing)
is tracked in the environment to adapt the stereo rendering. The images for the left
and right eyes can be separated using shutter glasses that are synchronized with the
projector andalternately serve both eyes. The single projector (per side) alternately
provides images for the left and right eyes. Alternatvely, a dual-projector can be used,
with orthogonal polarization filters in front of the lenses. The user then wears glasses
having compatible polarization filters to admit only the corresponding image for each
eye. This is also one of the major disadvantages of this technology. Only one user can
perceive correct stereo visualizations while other persons can only observe a distorted
visualization that gets worse the farther their eyes are displaced from the eyes of the
primary user. Furthermore, CAVEs and powerwalls are suitable only to a limited number
of applications, due to the fact that a dedicated environment is needed.

To mitigate this problem, the concepts of MR and AR are becoming more and more
popular. These concepts promise to be useful in many situations since they are—at
least in theory—compatible with existing environments and working processes. Differnt
display technologies are available to overlay the user’s view with virtual information.
They are explained next, together with a discussion of the individual advantages and
drawbacks.

In classical AR setups, head-mounted displays (HMD) are used [Azum 97]. They are
worn by the user in front of the eyes, similar to normal glasses. Two types of HMDs can
be distinguished, video-see-trough and optical-see-through displays.

(a) HMD (b) View through HMD

Figure 1.2.: Monoscopic head-mounted display (HMD)

Video-see-through displays only work in combination with at least one camera, two
cameras are needed for stereo perception. A video stream of the pyhsical scene is cap-
tured and augmented with the virtual scene before it is presented to the user. In an
optical-see-through display, the physical scene is observed directly. Such a device is shown

6

in Figure 1.2. The virtual scene is rendered and integrated into the user’s field of vision
by use of a beam combiner such as e.g., a semi-transparent mirror. The advantage of
video-see-through displays is that the physical and virtual scenes are in sync since the
video stream is presented to the user with the corresponding overlay. Unfortunately,
this introduces a lag between the point in time when a physical activity takes place and
the point in time it is observed by the user. Furthermore, the video provides only an
indirect view of reality, disqualifying video-see-through for critical tasks. In case of a
system failure, the user’s visual perception is completely blocked. In optical-see-through
displays, the augmentation lags behind physical movements, which can be annoying for
the user and often leads to nausea. There are attempts to use HMDs even in underwater
environments [Mora 09][Blum 09].

Mobile displays such as a tablet PC are another alternative. They are less immersive
than HMDs. They are installed in the environment or mounted to the user’s arm or just
carried around. A mobile display can also be mounted to a tool, as shown in 1.3.

Figure 1.3.: Intelligent welding gun. The display shows guidance information indicating
the next stud-welding position. Some already welded studs can be seen in
the upper part of the image.

In this example of an intelligent, mobile stud-welding gun, the worker is guided to the
next welding position by a purely virtual guidance shown on the display [Echt 03]. This
is not a real AR application in the sense of Azuma’s specification (see 1.1.2) since physical
and virtual information is not combined [Azum 97]. Nevertheless, both modalities are
registered in 3D and the application is fully interactive. In other contexts, the mobile
display can also be combined with a camera to obtain again a video-see-through setup,
as shown in 1.4 which shows a mobile phone AR viewer [Keit 09].

Mobile displays can principally be perceived by various users. With upcoming devices,
even stereo-visualization is possible.

Spatial displays represent a third category of available visualization systems. A projec-

7

Figure 1.4.: Mobile AR viewer. A virtual object is integrated into the live video of the
real scene.

tor can be used to project virtual information onto physical scene objects. Methods are
available which yield correct visualizations even under the influence of complex object
geometry or textured surfaces or both [Bimb 05]. However, such techniques are quite
limited in the industrial context, due to complex calibration requirements and a rather
low contrast. To overcome this problem, spatial laser projectors can be used, as shown
in Figure 1.5 [Zaeh 06] [Schw 07].

Although it is quite limited with respect to the complexity of the projected graphcis,
the augmentation is clearly visible, even under disadvantageous lighting conditions.

Last but not least, there are many applications in industry that do not require at all
an explicit visualization that is registered in 3D, especially in the context of metrologic
applications. In 1.2.1, the complex offline process of metrologic measurements has been
explained. Possibly, one might rather want to have an online metrologic system, despite
the probably degraded accuracy. Although such applications can not be called AR
any longer from the visualization perspective, such applications still require interactive
registration of the virtual and real worlds, as the intelligent welding gun mentioned
above. Due to this fact, and since the focus in this thesis is laid on tracking, such
applications are explicitly included in all further considerations.

1.2.3. Interaction

In the previous sections, the discussion was about virtual information that is registered
in 3D with the physical scene and about how this information could be visualized to a
user of the IAR system.

As a third category, interaction devices have to be considered. Such devices might
occur in terms of physical tools that have been in use in the work process even before the
introduction of the IAR system, such as a simple screw driver or the already mentioned

8

(a) Stationary laser projector (b) Head-worn laser projector

(c) Laser projection in quality assurance ap-
plication

Figure 1.5.: Laser projector as a spatial display

stud welding gun. Interaction devices are maybe more important than display devices.
It has already been stated above (see 1.2.2) that IAR can do without any visualization
that is registered in 3D. However, interaction in 3D is often indispensable in a productive
application.

Using existing tools as interaction devices has the advantage of minimizing the changes
that have to be applied to the existing work process when introducing the IAR system.
In the stud-welding example depicted in Figure 1.3, the welding gun is not only used for
aligning the physical stud with the planned stud position as given in the virtual model.
Besides activating the welding process, pulling the trigger also changes the state of the
IAR application by switching to the next stud position. Altogether, a good symbiosis of
the existing task with the IAR improvements is obtained.

9

However, the tracking of such devices is offen difficult, as shown in the next subsection
(1.2.4).

Besides reusing existing tools as interaction devices, also dedicated tools can be intro-
duced, if needed. Special pointing devices or measurement tools can be used to directly
measure coordinates in 3D, a requirement that newly arises through the AR system.
Furthermore, they are suitable for selection of virtual objects or to “draw” virtual con-
tent in 3D. So-called data gloves are available for hand and maybe also finger tracking.
They are mainly used for gesture recognition.

A third group of interaction devices is given in terms of mobile tablet PCs or handheld
computers. They have already been described in the context of visualization techniques
(see 1.2.2). The fact that those devices also offer buttons or a touch screen, often makes
them a natural choice in applications where visualization and interaction is needed. A
major drawback is fact that interaction is not available in 3D which highly complicates
interaction with the 3D scene. Furthermore, frequently directing his attention at the
mobile device might distract the worker from his actual task. If interaction should
be performed with the IAR application rather than with the 3D scene, the 2D user
interface provided by mobile devices may be better suited than a 3D interaction device,
also because users are already accustomed to it.

1.2.4. Tracking Systems

The term tracking has already been used several times before in this thesis, without a
proper definition yet. It means to determine the pose (position and orientation) of an
object with respect to some coordinate system in real-time. A slightly different definition
from the computer vision community refers to tracking as following the movements of an
object once its initial position and or orientation has been determined. The process of
retrieving the initial pose/position/orientation is then called detection. This definition
is due to the fact that computer vision algorithms make heavy use of prior knowledge
about the object position/orientation/pose from already processed video frames when
processing the current frame. Due to this prior knowledge, tracking is a much easier
task than detection, which has to be accomplished without any prior knowledge. In
the context of this thesis, we stick to the more general definition of tracking given first,
which also fits non-vision sensing systems such as gyroscopes, that do not distinguish
between tracking and detection.

Tracking is needed to fulfill the following requirements:

1. Register the virtual 3D content that is supposed to be moved in space, with the
real world.

2. Register mobile displays such as HMDs or handheld devices (see 1.2.2) with the
virtual world.

3. Register mobile physical objects such as tools or pointing devices with the virtual
world.

10

Please note that this list resembles the three preceding sections. At least one of those
requirements is typically needed for typical IAR applications.

Tracking represents a major challenge for IAR applications. It can be provided by a
variety of sensors [Welc 02]. Classifications according to physical principles have been
suggested by Meyer et al. [Meye 92] and Rolland et al. [Roll 00]. Optical cameras are
often used to obtain high-quality data, not only in offline photogrammetry. Different
approaches can be distinguished. They all have in common that certain 2D points in
the image are used to recover 3D information by some geometric relationships [Hart 00]
[Luhm 00a] [Atki 96].

Optical marker-based approaches use objects with a distinctive structure, so-called
fiducials, that can be segmented easily from the rest of the scene. In industrial setups,
often markers built from retro-reflective fiducials (passive) or infrared (IR) LEDs (active)
are used. Such markers can be detected easily by an IR camera. This also holds for
square markers printed on paper that have a distinctive shape and contrast and can be
detected in a normal camera image. Such systems are available on a commercial basis.
Typical markers and pointing devices are depicted in Figure 1.6.

(a) Square marker (b) Pointing device with
passive retro-reflective fidu-
cials

(c) Pointing device
with active IR
LEDs

Figure 1.6.: Different types of markers and pointing devices

Pointing devices or probing devices often feature a spherical tip as depicted in Fig-
ure 1.6(c) instead of a pike such as shown in Figure 1.6(b), especially high-precision
devices coming from the metrologic domain. Often drillings and clearances have to be
measured. This can be achieved quite easily and with high accuracy by taking multiple
measurements with a spherical tip, touching directly the object to be measured. For ex-
ample, the center and diameter of a circular drilling can be inferred from at least three
measurements of its rim, lying in a plane orthogonal to the drilling direction, taking
the diameter of the spherical tip into account. A pike complicates touching the rim, in
particular for drillings in sheet. It might furthermore scratch the surface.

11

Marker-less approaches do not rely on fiducials. They have to extract distinctive point
(SIFT, SURF) or line features instead. The process of finding, recognizing and classifying
features can be supported by a prior learning phase, or by using digital information of
the scene, if available. Well-known examples of this category are [Klei 07] [Wagn 08]
[Wagn 10] [Bles 06] [Wust 07b] [Wust 07a].

Global tracking systems such as GPS or compasses yield low-precision measurements
that can, however, be valuable for the initialization of other trackers. See also the
discussion about tracking and detection in 1.2.1. The use of a compass, however, does
not make much sense in many industrial environments due to large deviations resulting
from metal objects. Acoustic or magnetic systems are also in use and yield good results
in certain environments.

Inertial sensors such as gyroscopes and accelerometers yield relative motion data. The
major disadvantage of inertial sensors is that they deliver the rate of change of position
or orientation speed, thus the acceleration. This is only the second derivative of the
desired position/orientation in space. Integration always requires a starting condition
and suffers from drift which accumulates over time. The amount of drift depends on the
dimensioning of the hardware. In AR, devices typically have the size of a match box
and drift invalidates the measurements after a few seconds, if no external reference is
given. Ships and airplanes are equipped with more reliable devices providing accurate
measurements for much longer periods of time.

Inertial sensors are often used in addition to other sensors which can provide the needed
starting condition. Since they have a high update rate, they can help to stabilize tracking
under fast movements and bridge the gap in case of a temporary blackout of the primary
tracking system, e.g., due to occlusion problems when using optical tracking. Typical
devices contain in one unit a gyroscope, accelerometers and a compass/inclinometer
which yields the starting condition at least with respect to orientation.

Metrologic systems have already been treated in 1.2.1, in the context of derivation
of digital 3D models and 3D reconstruction of objects. Those systems are typically
operated in a time-consuming offline mode. However, there are also metrologic devices
that provide pose data in real-time. Examples are mechanical measurement arms such
as shown in Figure 1.7 or coordinate measurement machines (CMMs).

The tip of the arm is guided manually to the point of interest. At any point in time, its
3D position is reconstructed, based on the known geometry of the individual segments
of the arm and the measured angles of its joints. This way, small volumes up to 4 m3

can be covered with a precision of approximately 0.1 mm or lower.

So-called laser trackers extend this principle to larger volumes of up to 110 m diameter.
A typical device1 is shown in Figure 1.8. There is no longer a rigid connection between
base system and probe. Instead, a laser beam emitted by the base station is used
to measure the position of the probe. The latter is equipped with special optics that
reflects the laser beam towards the base station which constantly updates the azimuth
and elevation angles automaticalls to follow the movements of the probe. The achievable
accuracy depends on the distance between the probe and the base station, in a distance

1FARO ION [Faro 11b]

12

Figure 1.7.: FARO mechanical measurement arm (Courtesy of FARO Europe GmbH &
Co. KG)

Figure 1.8.: FARO ION laser tracker (Courtesy of FARO Europe GmbH & Co. KG)

of 10 m, the error is only 0.049 mm. Obviously, for a continual tracking, a direct line
of sight is needed at all times. Furthermore, only careful movements are tolerated and
multiple targets are not supported.

In the photogrammetry domain, offline and online photogrammetric systems are dis-
tinguished [Luhm 00b] [Luhm 00a]. This definition is extended to measurement systems
in general in the context of this thesis. Online metrologic devices can be seen as normal
tracking devices.

In optical or acoustic tracking, one can typically distinguish between outside-in and
inside-out tracking [Roll 00]. The former refers to a setup where rigidly installed sensors

13

(e.g., cameras or microphones) observe objects with distinctive features (e.g., fiducials
or microphones) moving in the tracking volume. The latter refers to a setup where one
or several sensors moving around with the object to which they are attached, observe
stationary features in the scene. In some cases, both, sensors and objects might be mov-
able, this is sometimes referred to as inside-in tracking [Muld 94]. An example for this
approach is the NIKON iSpace metrology and tracking system [Niko 11]. Flexible com-
binations of rigidly installed and mobile laser transmitters and sensors are used to cover
large working volumes and to overcome line-of-sight problems. A tracked mechanical
measurement arm can be seamlessly hooked into the working volume without additional
referencing. A scenario based on IR tracking following a similar approach is discussed
in this thesis (see 1.3.2).

1.3. Importance of Augmented Reality in Industry

The general definition of mixed and augmented reality systems is now refined in the
context of industrial applications. Such applications are not limited to the production of
goods but comprise also related fields for example in logistics or service. The described
applications also show parallels to similar applications in other fields, such as medicine
or military. Several researchers have investigated the potential of AR in industry, e.g.,
[Pent 09] [Beck 11]. Navab describes potential “killer apps for industrial augmented
reality” in the fields of design, commissioning, manufacturing, quality control, training,
monitoring and control, and service and maintenance [Nava 04]. A review of this work is
presented in the remainder of this section, with special focus on the tracking requirements
of the proposed applications.

1.3.1. Basic Benefit of Augmented Reality Techniques

Having a virtual model that is registered with the physical scene, provides a potential
for industrial applications in two ways. An abstract overview of these two key concepts
is presented next. They have been described similarly in [Pent 09]. Several implemen-
tations of these concepts are presented in 1.3.2.

Augmented Scene

By presenting the virtual model from the view of the user, things can be displayed that
are not (yet) physically visible or existent. For example, the planned state of a facility
or the final assembly state of a product can be visualized right from the beginning of
the assembly process. This offers the opportunity to argue about arbitrary issues by a
visual inspection of the augmented scene as well as a comparison of both, the real and
virtual scene. Assembly instructions can be shown in the very location where they are
needed. The attention of the user can be easily attracted to certain locations.

14

Online Metrology

In an IAR setup, it also is possible to measure positions and orientations in 3D, e.g., us-
ing a pointing device as depicted in Figure 1.6. I.e. one can recover distances and angles
on a physical object almost in real-time, unlike with other offline metrologic systems that
often require dedicated environments (e.g., CMM) or additional complex setup proce-
dures (e.g., laser tracker). I.e., once an IAR tracking infrastructure is available, classical
metrologic applications can be better intertwined with the existing work processes, es-
pecially if their accuracy requirements are moderate. If a registered virtual model or
even some sort of visualization is available, the benefits of such a system are further
increased. The metrologic aspects can be directly integrated with the visual aspects of
the augmented scene. Luhmann distinguishes offline from online measurement systems
in the realm of photogrammetry [Luhm 00b] [Luhm 00a]. This can be extended to the
general context of online tracking systems.

1.3.2. Applications

An overview of typical fields of application is given in the following, describing both
the problem to be solved and the IAR system proposed for this purpose. This overview
is task-oriented. Some of the mentioned applications will be revisited several times
throughout this thesis. See also [Rege 07] [Pent 09] for overviews of IAR applications.
Furthermore, many IAR applications have been investigated in the context of the Ger-
man research projects ARVIKA [ARVI 11] [Frie 04] and AVILUS [AVIL 11].

In an industrial environment, AR applications have the highest potential when there
is a large amount of complex manual work to do. Nevertheless it is still not commonly
used due to high investment needed as well as insufficient maturity and robustness of
AR/MR technology.

Factory Planning and Change Management

Planning factories or facilities is a difficult task. A plant is only rarely constructed from
scratch. More likely, legacy installations are already available that have to be considered,
and different alternatives for modernization have to be pondered. A visual comparison
of existent physical objects with virtual objects potentially to be installed can reveal
answers to certain questions more easily than a comparison of old, maybe outdated
paper plans with the new plans. If a digital model of the existing facility is available, it
can be directly compared to the physical state of the facility. This can be useful to detect
changes implemented physically and to update the existing digital model accordingly.
Furthermore, deviations between both modalities can be detected qualitatively on a
visual basis and measured quantitatively using online metrologic techniques.

Georgel proposes a marker-less approach to automatically detect in the image the
anchor-plates that are available in many industrial environments [Geor 07]. These are
points that are typically known with high accuracy from offline metrologic measurements.
An example is depicted in Figure 1.9.

15

Figure 1.9.: Planning and change management. For referencing the indicated anchor
plates are used. Their position is known with high accuracy. (Courtesy of
Pierre Fite-Georgel [Geor 07])

Interfering edge analysis is an important topic in this area. Solutions are already
available on a commercial basis2. Though the system is rather an offline metrologic
application, it uses AR overlay techniques to detect interfering edges when putting a
new car model on an existing assembly line. The analysis is based on high quality
photographs containing optical square markers attached to various objects in the scene,
as depicted in Figure 1.10(a).

(a) Setup (b) Clipping plane representing the limit

Figure 1.10.: Offline visual overlay for interfering edge analysis (Courtesy of Adam Opel
GmbH [Pent 09])

After an offline processing step involving a bundle adjustment of all markers and

2e.g., metaio [meta 11]

16

all images from all positions, the virtual car model can be moved interactively on the
assembly line as shown on the images in order to detect problems. Virtual measurement
tools such as movable planes etc. are provided to support the interactive analysis, as
shown in Figure 1.10(b). The relationship between the virtual measurement tool and
the physical object in question is established via a marker that is attached to this object
before taking the images. This explains why many markers have to be attached to
the physical scene in advance. Their placement should be well-considered in order to
avoid time-consuming iterations of the whole process when objects later turn out to be a
potential collision candidate. More information on this application and tools for factory
planning in general can be found in [Pent 07] [Pent 09].

Discrepancy Checks

Especially in the naval and avionic industry, products are very complex and highly
customized. The high rate of manual work is an opportunity to create new tools using AR
technology that have the potential to decrease production time and cost. Discrepancy
checks aim at a direct comparison of the actual state of an object against its set state
given in terms of the digital model. In a qualitative discrepancy check the real object
is overlayed visually with the virtual model, or the virtual model is rendered from the
perspective of the display. Figure 1.11 shows a qualitative discrepancy check for an
airplane cabin [Keit 10b].

Figure 1.11.: Qualitative discrepancy check. The virtual model of an airplane cabin is
rendered from the perspective of the display to allow for a straightforward
review of the current state and correctness of the construction process.
(Courtesy of EADS Innovation Works [Keit 10b])

A similar example is the visualization of underground urban infrastructure such as
wires and pipes below the surface on a mobile tablet PC [Scha 09]. A sensor fusion ap-
proach is used to provide robust tracking. GPS and compass provide a rough estimate.

17

Based on this, optical markerless tracking and a gyroscope allow for good registration
accuracy. In this case, the comparison aspect is less important than the mere visualiza-
tion of the otherwise hidden information. Therefore, again a purely virtual visualization
is used.

Besides that, also quantitative discrepancy checks are of major interest. With a point-
ing device such as shown in Figure 1.6, points, clearances, or drillings in the real model
can be measured and immediately compared with the set values from the pre-registered
virtual data. Already experts use metrology systems to provide measurements within the
production environment. For these precise offline measurements within an environment
as large as an aircraft, photogrammetric or laser based metrology systems are used, such
as introduced in 1.2.1. Such systems are less easily integrated in the standard produc-
tion processes and often require a fixed registration sensitive to vibrations and therefore
interrupt the production process.

No AR visualization is actually needed for interactive quantitative discrepancy checks,
though the virtual model must still be accessible in real-time by the pointing device.
Nevertheless, an integration with qualitative discrepancy checks featuring also a VR/AR
based visualization is often desired, e.g., in [Noll 06] [Pent 09] [Keit 10b]. To cover the
large area of the aircraft where the current assembly procedures are performed, it is not
feasible to deploy countless tracking systems. Therefore, a mobile tracking system is used
that is able to reference itself within the aircraft and to perform the real-time tracking
of the visualization and probing devices. This is done by adding reference markers to
the aircraft whose static transform within the aircraft’s coordinate frame is determined
in a calibration routine using an offline metrological system. Such a setup is investigated
thoroughly in this thesis.

In mass production, it is often required to apply statistical tests in order to guarantee
a certain level of quality. Many factors still can only be checked by humans. To optimize
the performance of the statistical approach, it might be necessary to randomize the tests
to be performed such that no all tests have to be performed on all products. IAR can be
used to visualize the tests to be performed chosen that have been chosen by the system
according to some algorithm. The laser projectors depicted in Figures 1.5(a) and 1.5(b)
have been used to project the chosen test locations directly onto the physical object, as
shown in 1.5(c).

Typically, high-precision IR tracking is used for such purposes. Smaller objects can
be aligned and fixed with a dedicated plate that is equipped with markers [Noll 06]. For
larger objects, markers have to be deployed to the objects themselves [Pent 09][Keit 10b].

Assembly

IAR can help in the assembly of products by showing step-by-step instructions, high-
lighting objects of interest, or by supplying guidance in the usage of tools.

One of the first IAR applications was evaluated in the aviation industry [Caud 92].
It aimed at the assembly of cable harnesses and connectors in a dedicated AR setup
focusing on a huge board to lay out the cables. The board was covered by a pattern of
fiducial markers to allow for optical inside-out tracking. Step-by-step instructions were

18

shown to the workers in an HMD.

Another application, the intelligent stud-welding gun, has already been mentioned
above, see 1.2.2 [Echt 03]. In this IAR application, the worker is guided to the next
welding position by a purely virtual guidance shown on the display, as depicted in Fig-
ure 1.3. The virtual model is given in terms of a list of planned stud positions given in
the CAD model of the car. It is registered with the physical car body by some reference
points close to the axle mounting. Due to reasons related to the production process,
those points are known to be quite consistent with the CAD model. Furthermore, they
are distributed almost across the whole working volume which promises good registration
results. To ease the welding process, the car body is not installed rigidly in the scene but
tracked by infrared cameras mounted to the ceiling of the room. Retroreflective marker
balls are attached to the car body for this purpose. The welding gun is also tracked
by those cameras, using active LEDs installed on its surface. A natural problem of this
setup are occlussion that occurs at locations inside the car or under the hood where the
gun cannot be seen by the cameras as depicted in Figure 1.12.

Figure 1.12.: Occlusion problem

An indirect tracking setup could be used to mitigate this problem, with a static camera
setup mounted to the ceiling as above and a mobile camera setup mounted to a tripod.
The mobile setup is equipped with a target such that its pose can be tracked by the
static system. The mobile system in turn can “look into” the otherwise occluded areas.
This topic about the intelligent welding gun and indirect tracking in particular will be
revisited again throughout this thesis.

The relationship between the mobile setup and the tracked object could be described
as inside-in tracking [Noll 06] since both entities are moved more or less dynamically
in the scene. This term has been used first by Mulder [Muld 94], synonymously with
the term relative tracking. It is not clear, however, whether the relationship between
the mobile setup and common reference points as described above should be denoted
as inside-in or rather inside-out tracking. This certainly depends on how mobile the

19

reference target actually is, whether it is considered part of the scene or rather of the
background. We stick to the term inside-out tracking for this kind of relationship.

Several researchers have worked on the combination of optical inside-out and outside-
in tracking systems. Bichlmeier et al. [Bich 06] used a reference target to combine
outside-in instrument tracking with inside-out estimation of HMD pose. In this setup,
a monocular tracking system, rigidly mounted above the HMD, tracks the reference
target. The latter is simultaneously tracked by the outside-in tracking system, such that
the pose of the HMD can be calculated with respect to the outside-in system. Fischer et
al. [Fisc 04] presented a hand-eye calibration algorithm which utilizes the combination of
a monocular inside-out and an n-ocular outside-in optical tracking system. Both works,
however, did not address the error resulting from their combined setup.

Hoff et al. [Hoff 00] have also combined inside-out and outside-in optical tracking to
improve the accuracy of tracking an HMD. They used two rigidly combined reference
targets which are simultaneously tracked by an inside-out and outside-in optical tracking
system. Based on accuracy specifications delivered by the manufacturer, they estimated
the 6 DoF tracking accuracy for each involved target and for each tracking system. The
estimated error covariances are used for sensor fusion of the inside-out and outside-in
tracking system using Kalman filtering [Kalm 60]. This approach decreases the pose
uncertainty by using two independent tracking informations.

Maintenance

As in assembly, IAR can also help in maintenance by showing step-by-step instructions
for dismantling and reassembling a technical object, by highlighting objects of interest,
or by supplying guidance in usage of tools. For example, a mobile laser projector (see also
1.5(a)) can be used to visualize such information for on-sight maintenance of military
equipment [Schw 07] as shown in Figure 1.13.

Figure 1.13.: Maintenance instructions projected onto the missile launcher

20

In this example, the weapon is tracked by a markerless optical approach. Each main-
tenance step has to be trained in advance such that the object can be tracked throughout
its stages of disassembling. The laser projector is situated in the same housing as the
camera. This facilitates the calibration of the offset between those two devices that is
needed for a correct augmentation.

Picking

Picking is a logistics application where people have to collect items from a warehouse
according to a computer-generated list. This process is often not automatable, due to
the complexity and variety of the objects which requires both, human intelligence and
senses. HMDs or again a laser projector can be used as augmentation system to guide
the user to the next shelf and to show him the number of items to collect.

An HMD-based solution has been investigated by Schwerdtfeger [Schw 09] [Schw 10].
He analysed the human factors of utility and usability arising with such an application.
As an evaluation setup, a small warehouse was equipped with IR tracking cameras. A
monocular, monochrome HMD3 with a retinal laser projector was chosen for visualiza-
tion, due to its high contrast.

Tracking is a difficult issue in this application, due to the large distances that have to
be covered. IR tracking alone cannot be used for a full coverage of a typical warehouse
due to its rather high price.

Workflow Analysis

Workflow analysis is not an IAR application in its own right. This task aims at recording
and analyzing typical movements of users or tools in a certain work process. Using a
tracking system, motion data is recorded such that it can be further analyzed. The final
goal is an optimization of the work process. Typical movements of persons and objects
can be extracted. This can e.g., give hints to reduce walking distances or to optimize
the location of assembly parts. Furthermore, the data helps also in the installation of a
permanent tracking system in the course of the integration of an IAR application. To give
only one example, when installing cameras in the scene, the setup should be optimized
with respect to the occlusions that might disrupt the prospective work process. An
overview of workflow analysis in the medical domain is given in [Nava 07].

1.3.3. Relations to Classical Mixed- and Augmented Reality

Recapitulating the applications outlined in the previous subsection, IAR makes sense
only in those work processes that are dominated by manual work. A process that can be
completely automated by machines or robots does not benefit from IAR. Furthermore,
robots are typically more accurate than online tracking systems since they can rely on
mechanic tracking. IAR rather aims at a better integration of humans with the work

3Microvision Nomad [Micr 11]

21

process to make the most of their unrivaled capabilites in terms of senses and the ability
to make the right decisions.

In the reality-virtuality continuum (see 1.1.2), the described applications mostly tend
to the extreme left. Only selected virtual information is incorporated into the real world.
The augmented airplane cabin features the highest degree of virtuality. Still, it is an AR
application, not augmented virtuality. It can therefore be concluded that IAR rather
brings the virtual realm into reality than vice versa.

Furthermore, it is noticeable that HMDs do not play a major role yet in IAR. Spatial
displays and mobile displays are at least as important. If an HMD is used, it is probably
monochrome and monoscopic. More immersive stereo displays are still too heavy, have
a too low contrast. See [Schw 10] for a discussion of current HMDs.

Unlike in classical AR, an IAR application does not necessarily have a visualization
of virtual information in 3D, though it is still an interactive real-time application. Even
without the 3D visualization, virtual 3D content is still registered in 3D to make it
available to the user via mobile displays such as with the intelligent welding gun, the
visualization system for subsurface pipes [Keit 08] [Beck 11] [Keit 10b].

1.3.4. Relations to Virtual Reality

Unlike virtual reality (VR), that is traditionally being used in industry by engineers and
designers in dedicated VR environments such as powerwalls or CAVEs, IAR intends to
integrate well with some real work process to be performed on real objects, by the people
that typically operate this process.

By integrating tasks that are performed traditionally on purely virtual data, such
as industrial design, geometric layout or metrologic evaluations, with tasks carried out
in the realm of real objects such as prototypes, mockups, facilities, tools or repetition
parts, IAR enables a broad range of new, integrated applications that were not possible
with a VR system. Such IAR applications can help in productive tasks such as factory
planning, change management and discrepancy checks. They can provide support in
assembly, maintenance, quality control and picking. Furthermore, they enable innovative
solutions in desing and marketing, through the combination of a generic mockup with a
plethora of virtual themes and desings.

1.3.5. Relations to Metrology

Many of the applications presented in 1.3.2 feature at least partially a metrologic pur-
pose. Some of the mentioned tasks are traditionally solved by offline metrologic tech-
niques. This brings up the question how offline metrology, online metrology, and IAR fit
together. There is a tradeoff between the high accuracy of offline measurements made by
laser-trackers or photogrammetric systems, high-precison online measurement systems
such as mechanical measurement arms and CMMs, and online tracking systems suitable
for IAR. As a consequence, some of the traditionaloffline metrologic applications might
be migrated to IAR applications in the future. However, online IAR cannot fully replace
offline metrology because the latter still provides a much higher accuracy [Luhm 00a].

22

However, AR techniques have already entered the domain of offline metrology, e.g., in
terms of metaio’s Roivis factory planning toolchain (see 1.3.2). Classical AR techniques
such as optical square markers and video overlay AR are combined with high-precision
still images to result in an offline photogrammetric AR system. The decison for an offline
or online approach finally depends on the needed accuracy.

Online metrology can easily be integrated into IAR. From the AR perspective, such
devices can be considered as normal tracking systems, yet featuring a high accuracy. This
has the potential to extend the range of possible applications as well as the integration
level of existing work processes. For example, a stud-welding application similar to
that described in 1.3.2 has recently been realized at Volkswagen using a mechanical
measurement arm instead of optical IR tracking [Buck 10].

Besides directly using metrological equipment for tracking, there is also the possibility
to supplement the classical offline metrologic work process by online IAR-supported
steps. Thereby, steps that are critical for the overall accuracy can still be performed
offline. For example, establishing a high-precision wide-area reference geometry can
only be solved using thedolites or total stations and complex post processing of the
measured data. Having such a reference geometry, an online system can be hooked
up more easily and provide the needed accuracy at the same time. The discrepancy
check application in the airplane cabin described in 1.3.2 belongs to this category. It is
investigated in more detail throughout this thesis. Therby, productivity can be increased
by porting time-consuming, repetitive measurement jobs to an IAR system. For example,
measuring plenty of points on a complex physical geometry for variance analysis could be
supported by an AR visualization for guidance. To achieve this goal of flexible, hybrid
solutions, offline and online tasks have to be properly planned an integrated with each
other. Spatial Analyzer4 is an example of an offline metrologic framework and toolkit.
But it also supports real-time tracking, e.g., for observing the assembly process and
finally verifying the result of the assembly.

Generally, it can be expected that both fields can benefit from each other, which
implies that offline metrologic and online tracking systems have to be integrated with
one another.

1.4. The Tracking Challenge

Tracking is needed for VR, MR, and especially (I)AR. In VR environments, it is relatively
easy to implement, due to the well-defined environment of a powerwall or CAVE where
almost no constraints in terms of an already existing environment and work process have
to be considered and where accuracy requirements play a minor role. Therefore, despite
their limited use, such environments have been used for some while in industry.

IAR on the contrary promises a much broader range of applications, mainly due
to its natural integration into existing environments and the corresponding workflows.
However, exactly this fact highly complicates the tracking problem. Large areas have to
be covered in some applications, e.g., in the airplane cabin scenario described in 1.3.2.

4New River Kinematics [Kine 11]

23

Stationary facilites and tracking systems have to be combined with mobile objects, tools
and sensors. Disruptive conditions that are present in the environment have to be
compensated for. Dirt, dust, and bad illumination conditions complicates the use of
normal or IR cameras. Occlusion from physical objects constrains the usable tracking
volume by impeding a direct line of sight between cameras and markers or features.
Noise and vibrations have a negative influence on the proper calibration of all kinds
of tracking systems. Metal and electro-magnetic interference almost inhibits the use of
compasses.

Last but not least, changes to the existing environment caused by the installation
of a tracking system have to be in accordance with the existing work processes. This
constrains the modifications that can be applied to the environment and also the tools
in use. Their usability with respect to the work processes must not be hindered by the
introduction of IAR in every respect. This often requires the ability to quickly setup the
system when needed and dismantle it afterwards to avoid disturbances with other work
processes. This also brings up the need for robust methods to hook up tracking systems
quickly, when needed.

Despite all these facts, the tracking has to be robust and accurate. This require-
ment can often only be accommodated by multi-sensor setups and sensor fusion. A
tracking environment involving several sensors is also called a heterogeneous tracking
environment. This particularly includes also the integration of metrologic devices into
the process. Especially in wide-area IAR applications, offline metrologic devices can be
used to establish a basic setup by providing an accurate global coordinate frame. This
has to be properly interfaced with the real-time tracking systems (including the online
metrologig devices) in terms of dedicated “link” coordinate frames.

The goal of this thesis is to investigate these tracking issues with respect to principal
feasibility, robustness and accuracy.

24

2. Tracking to Meet Industrial Criteria

Several efforts exist in the literature that state requirements in general for IAR. A
summary is presented first in 2.1. The requirements are then refined with a special focus
on tracking and the phases to be passed through when making IAR productive 2.2. Then,
concrete requirements are formulated toward a common platform for the management
of IAR tracking systems in 2.3. Although we focus on industrial applications here,
these requirements mostly apply also for other domains, e.g., for medical or military
applications.

2.1. Requirements in the Literature

Navab lists three critical requirements in his general survey of IAR killer applications for
a solution to be successful: reliability, user-friendlyness, and scaleability beyond simple
prototypes [Nava 04]. Regenbrecht lists reasons for the failure of most IAR applications
that have been implemented so far: lack of robustness, reliability, quality, and practical
experience [Rege 07]. In both characterizations of the problem, tracking plays a major
role for the fulfilment of the stated requirements.

Pentenrieder reviewed these criteria to derive a catalogue of requirements in the con-
text of an offline IAR factory planning tool [Pent 09]. A special focus is thereby laid on
usability of the system and also on the accuracy of spatial measurements. In particu-
lar, besides the requirements specific for factory planning, she lists the following basic
requirements that are relevant for IAR applications in general:

• The tracking hardware must consist of simple standard components and provide a
high performance, especially in terms of accuracy. The software should run on a
standard PC. The tracking system should be usable by non-experts, easy to setup,
robust, and accurate.

• An intuitive graphical interface is needed for the following tasks:

– Scene management: Functionality is needed to handle all kinds of data that
occurs in the course of an IAR application. In particular, it should handle real
world image data, virtual 3D models, project configuration data, registration
information describing the relationship between the real and virtual worlds,
sensor calibration data and basic facilities for 3D object manipulation.

– Accuracy: The whole tracking system consisting of hardware and software
has to be precise enough to satisfy the application requirements. Errors
in all influencing systems must be reduced or prohibited. In this respect,

25

the registration of virtuality and reality is very important for overall system
performance. Furthermore, quality statements must be made available and
presented to the user in an intuitive and nonetheless correct way.

– Process support: Usability is important not only for planning but also for
the preparation and collection of configuration, calibration, registration, and
model data. A special focus is laid on the registration of real and virtual
world, since it has a considerable influence on the overall accuracy.

The cited requirements concern the most important aspects of IAR in general. It
becomes clear’that tracking plays a major role in the future success of IAR applications.

2.2. IAR Design Phases

It is crucial to provide means to setup and implement a robust and maintainable tracking
infrastructure to allow AR applications to spread in the industrial domain. Tools have
to be provided to support this process throughout all its phases. Particular demands of
these phases with respect to tracking have been elaborated in accordance with Becker
[Beck 11] in the context of the augmented airplane cabin scenario discussed in 1.3.2.
They are reviewed next:

• Definition: In the definiton phase of a proposed IAR application, facilities must
be provided to outline the involved spatial relationships between all involved co-
ordinate frames in a semantically correct way. In detail, this incorporates the
specification of relationships between virtual models, world and object coordinate
frames, tracking systems and offline metrologic equipment. In this phase, also the
accuracy requirements for the application are defined. In this phase, the principal
feasibility of the proposed system has to be verified. Regarding the tracking, it
has to be ckecked whether the coverage of the proposed sensors and the estimated
accuracy is in line with the requirements. This is mainly accomplished by simu-
lation techniques such that the principal feasibility of the proposed system can be
proven before expensive purchase decisions are made.

• Deployment: In this phase, the tracking system is deployed in the target environ-
ment. This involves initial registration of the rigidly installed sensors with the en-
vironement and also other static transformations. After that, the proposed system
is validated against the IAR application requirements stated during the definition
phase. A process is necessary to perform this validation, based on empirical mea-
surements taken by the real-time tracking systems and additional offline metrologic
equipment, if necessary. Ideally, these measurements confirm the proposed values
from the definition phase.

• Operation and Maintenance: After approval in the validation phase, the system
goes into productive use and is now operated by non-expert users. The process
has to be continually monitored to guarantee the validated system properties.

26

Setup and dismantling of the system must be possible by on-site personnel, taking
into account the assured properties of the system. This means in particular that
necessary calibration and registration procedures can be carried out in a robust
and intuitive way. The need for maintenance by experts has to be restricted to
rare occasions.

Means have to be provided for proper documentation throughout all these phases.

2.3. Requirements for Management of Tracking

Based on the experiences stated in 1.2.4 and some additional considerations, the require-
ments toward a platform for the management of tracking in IAR are now formulated.
The goal is to provide a generic software approach for tracking that is compliant with the
design phases of an industrial application, as explained in 2.2. This does not contradict a
later integration of the described concepts into integrated design tools that manage also
other aspects of an IAR application (content, visualization, interaction, and tracking)
as described in 1.2.

2.3.1. Guaranteed Performance

First of all, a software framework to solve the tracking problem must fulfil the require-
ments with respect to the quality of servcie as also stated in 1.2.4, namely reliability,
robustness and accuracy. For industrial purposes, it is not sufficient to be able to setup
such a system under idealized conditions. Rather, it should be possible to guarantee
these properties throughout real, daily operation.

It must be possible to quantify the overall performance of the system in terms of
accuracy. Depending on the intended application, this can be in terms of 2D overlay
error, 3D position error, or 6DoF pose error. End-to-end error propagation in real-
time is required to provide this information to the application for each measurement.
Violations of the guaranteed quality level must be reliably detected by the system such
that users can be informed immediately about potential error conditions. Furthermore,
simulation facilites are needed to estimate the accuracy of a proposed setup based on
simple assumptions, without relying on real measurement data.

To obtain useful results from error propagation, it is necessary to quantify the results
of all input data first. This comprises real-time measurements as well as static transfor-
mations that are estimated in advance. Tools have to be provided to assess the accuracy
of both kinds in the concrete IAR setup. Vendor specifications are not always available
and often cannot be given without knowing the concrete setup.

2.3.2. Sensor Fusion

For a robust system, facilities are needed to cope with a heterogeneous sensor infrastruc-
ture, as already stated in 1.4. Sensor fusion might help to mitigate sensor errors, provide
the necessary degrees of freedom (DoF) or expand the tracking area. Durrant-Whyte

27

tries to formally distinguish three types of fusion, according to the usage of available
information [Durr 88].

Competitive fusion The sensors provide information in the same location, having the
same degrees of freedom. Thus, there is redundant information which can be
used to improve the quality of the signal, e.g., by using a Kalman filter to fuse
two 6DoF poses [Kalm 60]. Alternatively, particle filters can be used. Unlike
the Kalman filter, they don’t rely on a linearized description of the problem us-
ing a Taylor expansion that is truncated after the linear part and may therefore
provide more accurate results. On the other hand, particle filters are more compu-
tationally expensive [Douc 01]. This type of fusion has also been called concurrent
fusion [Broo 97].

Complementary fusion Complementary sensors provide information in the same loca-
tion but for different degrees of freedom. A typical example is the combination of
3DoF translations from an accelerometer and 3DoF orientations from a gyroscope
to obain 6DoFposes1. This could also be called functionally complementary fusion.
Another variation is spatially or temporarily complementary fusion where different
sensors are used in different areas or at different points in time.

Cooperative fusion One sensor relies on the data of another sensor. Durrant-Whyte
gives as an example the “use of one sensor’s information to guide the search for
new observations”. Using a compass to provide global directions to an inertial
tracker would be another example. The use of offline metrologic equipment for
global registration of online tracking devices can also be considered a member of
this category. The indirect tracking setup introduced in 1.3.2 also belongs to this
category. The mobile tracking system can be used only if its pose in the global
reference frame is known. Another example is to use GPS to load the proper
feature map for markerless tracking on a mobile phone [Reit 07]. Effectively, in
many fusion schemes a measurement ”depends” on prior measurements, e.g., in
gating for acoustic signals or region based image processing.

Often, a mixture of these categories can be observed in typical scenarios. For example,
with SCAAT (single constraint at a time) [Welc 96] [Welc 97], Welch describes a generic
mathematical method based on a Kalman filter to determine the pose from various un-
synchronized measurements that each, considered by themselves, would under-constrain
the mathematical solution. This could be interpreted as complementary fusion. All
measurements considered as a whole, however, the solution is over-determined, an indi-
cation for competitive fusion. The approach increases the update rate by incrementally
computing a new estimate whenever a measurement becomes available, and it increases
the accuracy by immediately incorporating each new measurement through statistical
filtering. Furthermore, sensor devices are auto-calibrated on-the-fly, a characteristic of
cooperative fusion. From this point of view, where all measurements are integrated in a

1This is typically handled internally, e.g., by the XSens MTi-G [XSen 11]

28

single functional and statistical model, the three fusion types mentioned above cannot
be clearly distinguished. Rather, they can be considered ideal archetypes that are more
or less prevalent in a concrete fusion setup. It will be seen however (cf. 5.3.2), that from
the point of view of a tracking framework where reasoning is based on high-level mea-
surements such as positional and rotational information, the made distinction becomes
much clearer.

2.3.3. Modularization

The framework must provide a layer of abstraction for IAR applications to effectively
separate them from the tracking infrastructure. This includes a flexible and maybe also
parallel use of existing tracking facilities by different applications. A common standard
is needed for the specification of relationships between sensors and objects and the
exchange of tracking data associated with them. A similar approach is pursued for
example in the field of ubiquitous computing and location-based services by the context
toolkit [Dey 01] or the Nexus project [Hohl 99]. They integrate various sensors that
provide rough spatial or other contextual information, though not in a sense that would
allow for real-time augmentations.

The abstraction layer facilitates sharing and reuse of existing resources in terms of
hardware and software, by providing modularization concepts. This is necessary to
enable the development of best-practice solutions that can be easily adapted to new
IAR applications.

A further benefit of the modularization is an increased flexibility. Ad-hoc installation
and removal of hardware components, including the necessary calibration and registra-
tion procedures, is a key requirement, as already stated in 1.4.

The performane claims stated in 2.3.1 must not be compromised by the modularization
and abstraction. Ideally, the system shall be as reliable, robust, and accurate than a
hard-wired solution.

2.3.4. Maintainability

Maintainability is of course improved by the modularization claimed in 2.3.3. How-
ever, further aspects are relevant to accomodate all requirements arising throughout the
various development phases of an IAR application (see 2.2).

The definition and deployment stages can assumed to be taken care of by experts. An
“expert” in this context is supposed to be a person that has a general understanding of
IAR and especially also of sensor hardware, calibration and registration methods. Such a
person can be called an “IAR-engineer”. This person shall however not necessarily be a
good programmer. Expert tools must be provided for the specification of all spatial rela-
tionships, the calibration and registration of the sensors and static spatial relationships,
to verify the system based on simulation, to validate it based on real measurements, and
also to continually monitor it quickly and reliably. At any point in time, the IAR engi-
neer needs a clearly documented understanding of the current configuration. It shall be

29

impossible for IAR-engineers to mistakingly give specifications of physically impossible
tracking setups.

Once the system has been made ready for productive use, the responsibilites of the
IAR-engineer are restricted to maintenance, similar to a system administrator in the
IT department. Ideally, the system is then operated by the non-expert users of the
IAR application alone. Maintenance tasks shall be institutionalized in terms of regular
service intervals to allow for the schedulability of productive operation. The need for
unscheduled maintenance has to be reduced as much as possible. This comprises also
the regular setup and dismantling of mobile components, as well as their calibration
and registration, that has to be repeated during productive use time and again. For
this purpose, robust routines are needed, that are simple and intuitive enough to be
used by a normal user. Instead of the flexibility of the expert tools, the end-user tools
shall provide only the methods that have been selected for this purpose by the IAR-
engineer during system validation. It must be possible for the end-user to monitor
the system performance at all times, during calibration/registration as well as during
runtime. Simple figures shall give information about whether the system is still running
within the specifications made by the IAR-engineer.

30

3. Related Work

Many systems have been described which aim at the integration of multiple sensors and
also at providing a layer of abstraction for the applications relying on them. Examples are
the context toolkit [Dey 01] and the Nexus framework [Hohl 99] in the field of ubiquitous
computing, that have already been mentioned in 2.3.3. For real-time tracking, there are
several approaches, too. However, they are rather problem-specific and do not follow a
general purpose approach, such as, for example, the perception and control techniques
used in autonomous land vehicles [Dick 07] [Thru 05]. The architectures proposed for
this field of application heavily rely on computer vision and make strong assumptions
on the topology of the spatial relationships to be monitored [Darm 08] [Albu 02]. They
were not designed with flexibility and maintainability in mind.

More generic architectures are based on so-called data flow networks, directed graphs
whose nodes represent components for data acquisition from sensors or for data trans-
formation [Morr 94]. Components can be flexibly cross-linked, based on a small set of
data types allowed on component inputs and outputs, such as 3DoF position, 3DoF ori-
entation, or 6DoF pose, a combination of both. Such data flow networks constitute one
of the most important building blocks of ubiquitous tracking environments and provide
the necessary transformation, synchronization, and network transport of tracking data.

In the domain of multimodal user interfaces, several component-based frameworks
have been described that follow such a modular approach, though the processed data
types differ, of course. They also feature graphical rapid prototyping environments to
setup the data flow network [Serr 08] [Bouc 04] [Drag 01]. They allow for the integration
of different input devices and provide algorithms for the flexible preparation and fusion
of raw input events. A rapid prototyping environment allows the corresponding data
flow to be configured graphically, according to the application’s needs.

In rendering, scene graphs with the topology of a tree are in use for many years now as
an abstract description of the scene. [Wern 93]. The structure has obvious advantages for
understanding the topology of complex scenes in particular when spatial relationships
change over time (animation). It provides the basis for simple graphical modeling in
tools such as CATIA [CATI 11]. The spatial-relationship graph (SRG) concept to be
introduced in 5 features some parallels but also differences to the scene-graph concept
[Echt 08].

Matlab Simulink also follows an abstraction approach [Simu 11]. Basic bulding blocks
for time-varying systems are provided in the domains of communications, controls, signal
processing, video processing, and image processing. From these, arbitrary data flow
networks can be modeled, simulated, and debugged. Existing building blocks can be
combined recursively to form new building blocks. This eases reusability and results in
a hierarchical data flow layout that can be edited at the level of abstraction needed in

31

each case.
For tracking, the two most prominent examples in the literature are OpenTracker

[Reit 01] and VRPN [Tayl 01]. Whereas VRPN, coming from the VR domain, focuses
on how various sensors can be linked together and how tracking data can be synchronized
and transfered via network, OpenTracker originated in AR and also includes rudimentary
support for sensor fusion.

Also noteworthy is the OSGAR system [Coel 04]. It builds upon tracking data
amongst others given by VRPN and models tracked, statically registered, or deduced
spatial relationships in a scene graph [Stra 92]. Assumed tracking and registration er-
rors can be propagated along its branches in terms of covariances, thereby providing the
application with a measure of the expected tracking accuracy.

Noteworthy is also the DWARF system to build and deploy AR applications [Baue 01]
[Wagn 05]. In a peer-to-peer architecture, tracking sensors and AR applications are
dynamically connected at runtime, using a protocol based on the description of abilities
and needs for each participating peer. No predefined data flow specification is needed,
though a particular data flow can be enforced by the proper specification of the involved
abilities and needs.

Modeling data flow networks using those systems is a great relief, compared to coding
all drivers and algorithms from scratch. However, it is still a tedious task and the
maintainability requirements are rather delimited by the fact that invalid data flows are
not excluded conceptually. Furthermore, none of the described systems provides support
for registration of statically aligned entities, an obligation for modularization and real
separation of tracking from the applications.

The probably most comprehensive system in the context of IAR has been described by
Pentenrieder [Pent 09]. It follows an integrated approach comprising not only tracking
but also content, visualization and interaction (see also 1.2). Concerning the tracking
subsystem, it provides various means to register the real and virtual worlds with each
other. End-to-end error propagation is also included to state the 2D overlay error of the
augmentations. However, this system is rather an offline metrologic system. It supports
only still images from high-precision cameras. This is also reflected in the restricted
universality regarding the specification of spatial relationships. The system detects the
pose of markers in the real image and inserts the virtual model, based on a static offset
before projecting it onto the 2D image. Pentenrieder calls this a “flat SRG” concept,
because only those spatial relationships are mapped that are needed for the factory
planning scenario. Of course, this facilitates the creation of user-friendly wizards that
guide through the application. However, the concept scales badly to more general spatial
dependencies.

An interesting concept is used by Spatial Analyzer which comes from the offline metrol-
ogy domain [Kine 11]. It aims at the integration of the 3D inspection, assembly-build,
and reverse engineering tasks. It supports all kinds of metrologic measurement devices
(laser trackers, theodolite, total station, CMM, laser scanner, GPS, photogrammetric
products), it furthermore supports the Optotrak HD tracker [Opto 11]. A generic user
interface is provided to make hardware interchangeable and increases productivity for
the user. For example, various kinds of laser trackers from different vendors can be

32

controlled interchangeably in a single dialog. The full pipeline from importing CAD
data from various sources, registering it with the physical measurements, interaction,
and metrologic analysis and reporting is provided. Different algorithms for object regis-
tration are provided. However, Spatial Analyzer is not optimized for real-time tracking,
in particular not for sensor fusion. Furthermore, there is no support for the rigorous
handling of arbitrary SRGs.

33

4. Approach

At Fachgebiet Augmented Reality [FAR 11], we have been working across various pro-
jects (DySenNetz [DySe 11], trackframe [trac 11], PRESENCCIA [PRES 11], AVILUS
[AVIL 11]) in a team of researchers, partially in collaboration with colleagues from Tech-
nische Universität Graz—Institute for Computer Graphics and Vision [ICG 11] and Uni-
versity of Cambridge—Computer Laboratory [CL 11], on a general purpose ubiquitous
tracking framework called Ubitrack. In the following sections, the general approach,
focus, and contribution of this thesis as a part of this effort is pointed out.

4.1. General Approach

One of the core concepts of Ubitrack is the spatial relationship graph (SRG) [Newm 04].
It is a directed cyclic graph whose nodes represent coordinate frames and whose edges
represent spatial transformations between these coordinate frames. An SRG is com-
posed of subgraphs, so-called spatial relationship patterns, atomary and reusable build-
ing blocks describing the spatial context of sensors and objects as provided by tracking
systems and geometric algorithms [Pust 06b]. These patterns directly relate to the op-
erational units needed for the real-time tracking data flow [Pust 06a], opening up the
possibility for a semantic way of describing tracking infrastructures.

The requirements stated in 2.3 are tackled following a two-fold approach. First, the
SRG approach is transformed into an intuitive user interface for IAR-engineers. It
is realized in terms of a software suite that is integrated with the Ubitrack tracking
framework [Hube 07] [Pust 06a]. Most notably, a graphical spatial relationship graph
and data flow editor called trackman has been developed, combining the advantages of
both, the semantic SRG and the operational data flow perspecitve, in a unique, dual
approach. trackman is a generic tool and reflects the generic approach of Ubitrack. The
experience of multiple AR/IAR scenarios was used to define its functionality.

In addition to this generic foundation, selected solutions are provided, with a particular
focus on the investigated sample scenarios. The Ubitrack framework itself is extended
for this purpose, where necessary, to provide the functionality needed for a solution.
Other aspects that are not directly related to Ubitrack and real-time tracking, especially
certain error analysis features, are tackled in the “appropriate manner”. Partially, the
required concepts are implemented in terms of Ubitrack data flows, such as a Monte
Carlo simulation framework. In addition to that, external tools and scripts are also
used.

34

4.2. Focus

The main goal of this thesis is to help in solving complex tracking problems in het-
erogeneous, wide-area industrial environments with a focus on sensor fusion. However,
it follows a generic approach and is not targeted to specific application problems. All
applications that rely on real-time tracking—not only in the industrial domain—can
potentially benefit. In the following, the relations of this thesis to related questions in
the context of (I)AR is clarified.

4.2.1. Relations to other Aspects of IAR Applications

The proposed approach aims particularly at solving the tracking problem. Other issues
that arise in the context of IAR applications and have been mentioned in 1.2, such as
virtual content acquisition and handling, visualization and display devices, are generally
out of scope of this thesis. This is reasonable since from a software architecture point of
view, tracking shall be completely separated from these issues (see 2.3). Nevertheless,
there are some relationships to tracking that expand into this thesis. Displays have to
be registered with the scene or tracked in real-time. Furthermore, content acquisition
might also be related, as far as offline metrologic devices or real-time tracking systems
are incorporated into this process.

4.2.2. Sensor Fusion

In 2.3.2, a taxonomy of different sensor fusion approaches has been given. In particular,
techniques based on the Kalman filter [Kalm 60] have been subject to thorough investi-
gations in the last years. A good introduction to Kalman filtering in general has been
provided by Welch [Welc 01]. Based on this technique, he also developed the general
SCAAT pose tracking fusion framework already mentioned in 2.3.2 [Welc 96] [Welc 97].
Hoff fused an outside-in IR tracker with an inside-out optical tracker to increase the head
pose accuracy [Hoff 00]. Pustka fused 6DoF poses from an outside-in IR tracking system
with orientation measurements of a gyroscope, to make HMD visualizations more stable
under fast movements of the head [Pust 08].

The Ubitrack framework implements a variety of fusion facilities. Our reference sce-
narios, the intelligent welding gun and the augmented airplane cabin, both make use
of cooperative fusion approaches. In both scenarios, independent measurement modal-
ities including offline metrologic equipment are concatenated to transform the pose of
the tracked object to world coordinates. In addition to that, a tailor-made competitive
fusion approach is described to reduce rotation errors in the intelligent welding gun sce-
nario. A more general treatment of sensor fusion is out of scope of this thesis, please
refer to [Pust 06b] [Pust 08].

4.2.3. Dynamic Reconfiguration of Sensors

There are attempts to reconfigure automatically the constellation of sensors which con-
tribute to tracking at runtime, in a way that is transparent for the application relying

35

on this tracking [Hube 07] [Pust 11]. Automatic reconfiguration of the sensors might be
desirable in environments where the type or number of sensors changes dynamically at
runtime.

In industrial setups, however, validated accuracy and robustness are required, which
can only be achieved on the basis of a static and deterministic sensor infrastructure.
Furthermore, the transparent introduction of a new sensor at runtime often requires the
registration of either the sensor (outside-in) or markers (inside-out) with the scene to
be known in advance. Otherwise, a dedicated calibration or registration routine would
have to be executed. Such a routine, however, necessitates user interaction, rendering
the automatic integration more or less useless.

Therefore, dynamic reconfiguration could make only sense when markers are assumed
to be installed in the environment and an a priori unknown number of precalibrated
inside-out trackers1 were to be integrated on-the-fly. However, the verification and val-
idation of industrial processes is difficult enough. To maintain the desired quality-of-
service, concrete specifications are needed.

Dynamic reconfiguration could also play a role in very large-scale environments that
contain too many sensors to be incorporated in one constellation without degrading over-
all system performance. This case, however, is far beyond the scope of the investigated
scenarios. This, however, is not of interest for IAR.

Therefore, a strictly static sensor constellation is pursued in the context of this the-
sis. Some dynamics can still be achieved by a hard-wired sensor setup by following a
complementary or competitive fusion approach (see also 2.3.1). This way, a dynamic
reconfiguration can be circumvented by explicitly specifying all potential sensor configu-
rations in advance, which means that the latter have to be known a priori. Furthermore,
the approach does not scale very well to scenarios with large numbers of sensors or ob-
jects. Both problems are typically not present in the targeted IAR applications (see also
1.3.2).

4.2.4. Dynamic State Changes

Similar to the reconfiguration of sensors at runtime, one might also ask for an automatic
adoption of the tracking to application state changes. Such state changes might be
necessary due to a change of the involved sensors, virtual or physical objects, users,
or interaction devices. The difference to dynamic reconfiguration of sensors above (see
4.2.3) is that this can and must not be handled transparently any more, rather the
application initiates those state changes or has to react to them.

An application state change might require to change the constellation not only of
involved sensors, but also other physical or virtual objects in the scene, e.g., a marker
or the world coordinate frame. The SRG, and the data low description derived from
it, are stateless, though. Each state change requires a change in the SRG. The IAR
applications listed in 1.3 do not have a complex state logic, at least not concerning the
tracking. Typically, only one or two items are to be tracked continually.

1For example the NDI Optotrak would fulfill this requirement

36

Generally, state changes are in the responsibility of the application. This responsi-
bility can however be delegated to a workflow engine, an additional abstraction layer
between the tracking and the application. Ambitions in this direction have been de-
scribed by Misslinger in the context of the commercial Unifeye [meta 11] tracking suite
[Miss 08]. It is based on a finite state machine. In a graphical editor, worksteps, so-
called actions can be defined and arranged in the desired sequence. For each workstep,
tracking, displays, virtual content, and interaction devices are parameterized accord-
ingly. Transitions between worksteps can be triggered manually (for development) or
by the occurence of standard or customized events defined by logical functions of user
input, spatial relationships such as “adjacency”, and automatic timers. Misslinger also
gives a good review of previous work in this field. Another approach based on Petri
nets to represent application states has been presented by Sandor in the context of the
DWARF tracking framework [MacW 03] [Sand 05]. Noteworthy is also [Coqu 04] and
DART, an AR add-on for Macromedia Director [Adob 11] [MacI 04].

Often, such state changes require the instantiation of a new data flow. These states
are either known in advance and a set of manually pre-modeled SRGs can be provided
to the application for these states. More difficult to handle are state changes that are
unknown a priori. The AR workflow engine or application can then rely only on solution
fragments. This issue is picked up again in 8.2.

An alternative to this deterministic way of data flow generation is the incorporation
of a Ubitrack server [Hube 07]. As already stated above, this is mainly suited for large-
scale distributed and dynamic environments. The server maintains a world-SRG based
on the descriptions of basic spatial relationships provided by all registered clients. Based
on this, it is able to serve client queries for derived spatial relationships, based on an
automatic pattern-matching approach.

Workflow engines as well as the Ubitrack server are beyond the scope of this thesis, due
to their limit relevance for IAR. The topic of integrating manually modeled static SRGs
with these concepts are touched upon again in 5 and 8. It is shown that throughout all
phases mentioned above, the SRG concept provides invaluable support.

4.2.5. Relations to Metrology

Metrology plays an important role for industrial applications. MR/AR interactive ap-
plications have to be integrated into this context. The SRG is in many respects similar
to a geodetic network. There is a huge potential to integrate the presented concepts
with design resources used in metrology [Niem 08].

This might apply for a tool like Spatial Analyzer [Kine 11] (see also Chapter 3). It
comes from the offline metrology domain, supports all kinds of devices such as theodo-
lites, total stations, laser scanners and photogrammetric devices. It follows an integrated
approach considering 3D data acquisition, registration, visualization, real-time and of-
fline measurements, data analysis, and reporting. The SRG concepts could well be
adapted to such a tool, in order to improve its usability and reduce potential sources of
error.

37

4.3. Contribution

In this thesis, generic planning and analysis tools are presented which support the IAR
engineer throughout the various phases of two typical, industrial scenarios ranging from
definition over deployment to operation and maintenance. Those tools are based on the
semantic modeling concept called spatial relationship graph (SRG) which provides an
abstraction layer on top of the algorithmic data flow layer. This concept eases the speci-
cation of known as well as the deduction of new spatial relationships between entities
in the scene. A graphical SRG editor is presented for this purpose. Modeling is based
on reusable patterns representing the underlying sensor drivers or algorithms. Recur-
ring constellations in the scene can be condensed into easily reusable meta-patterns that
lend themselves to the evolvement of best-practice solutions. Several exemplary meta-
patterns are discussed in this context to emphasize their usefulness, a catalogue is likely
to evolve in the future. The process is further simplified by semi-automatic modeling
techniques which automize trivial steps. Dataow networks can be generated automat-
ically from the SRG and are guaranteed to be semantically correct. Still, the data
flow layer remains directly accessible through a unique round-trip engineering approach.
Part II deals with these aspects of data flow management.

Uncertainty management is an important issue and has to be considered throughout
all phases of application development. Critical steps are identified and generic tools
and techniques are presented to solve these tasks. Simulation covers the definition stage
where empirical measurements are not yet available. It is also useful during deployment
since it makes empirical measurements more understandable. The assessment of accuracy
of a concrete setup, based on real measurement data is indispensible to provide accuracy
guarantees in the deployment phase. Many industrial procedures require quick setup
and dismantling of the tracking system resulting in the need for simple recalibration
procedures and maintenance effort. Ideally, such procedures can be performed through
on site personnel without requirering detailed technological insight. Nevertheless, the
accuracy of such an installation has to comply with production tolerances at all times.
Methods are described to continually assert tracking accuracy during the operation and
maintenance phase. Part III deals with these aspects of uncertainty management.

In summary, the proposed approach reduces the amount of expert knowledge that
is needed for the administration of tracking setups. At the same time, sophisticated
setups become manageable. Part IV reviews the approaches described in Parts II and
III, according to the requirements specified in 2.3.

38

Part II.

Data Flow Management

39

Part II deals with the manual specification of efficient Ubitrack tracking data flows,
based on the concepts of SRGs and spatial relationship patterns [Newm 04] [Pust 06b].

Despite the automatic data flow generation facilities referred to in 4.2, manual model-
ing facilities are indispensable. Even if a Ubitrack server for automatic pattern matching
is available, domain-specific specifications still need to be done manually such that the
server can compute useful results. This incorporates the specification of sensors, markers,
and objects as well as the determination of static and tracked transformations. Further-
more, static transformations have to be estimated in advance, a task that is quite difficult
to be automated, as will be seen. Concepts to reach that goal have been described in
an accompanying thesis [Pust 11]. Last but not least, IAR environments need proven
reliability instead of unreliable automatisms.

This part starts with a general review of the Ubitrack framework and the SRG concept
in Chapter 5. This is followed by a description of the graphical modeling concepts in
Chapter 6. Based on this, some common practical modeling tasks are presented in
Chapter 7. This includes also the two sample scenarios described in 1.3 as well as best-
practice solutions to common registration problems. These practical examples show
that modeling on primitive Ubitrack data flow components can become quite complex.
Therefore, advanced modeling concepts are described in Chapter 8. They aim at dealing
with the complexity of complex scenarios by introducing a higher level of abstraction as
well as enabling reusability of existing building blocks. This is followed by a review of
the presented modeling concepts in Chapter 9.

40

5. The Ubitrack Tracking Middleware

The Ubitrack [Ubi 11] tracking middleware provides a higher level of abstraction, as
compared to the data flow concepts of other tracking libraries referred to in Chap-
ter 3 [Newm 04]. It features a layered architecture as depicted in Figure 5.1.

AR Application

Workflow
Engine

Ubitrack
Server

Data Flow
Engine

Data Flow
Components

trackman

API / UTQL

Data
Structures

Tracking
Algorithms

SRG
Algorithms

Platform Abstraction LayerBOOST LAPACK OpenCV ...

Algorithmic Layer

Data Flow Layer

Middleware Layer

Application Layer

Ubitrack
Library

Ubitrack
Middleware

...

Figure 5.1.: Ubitrack layered architecture

The algorithmic layer provides elementary data structures for the representation of
spatial measurements including timestamps, handling of spatial relationship graphs and
data flow networks, numerical algorithms, as well as elementary registration and fusion
algorithms.

The data flow layer provides a lightweight and dynamically reconfigurable framework
for the instantiation of data flows having the topology of a directed graph. The data
flow is energised by sensor measurements which are then processed by various data flow
components and the results are passed on the sinks of the data flow [Pust 06a].

The algorithmic and data flow layers together represent the Ubitrack library, which
can be used directly by third-party applications, via its API. Based on the common no-
tion of spatial measurements and the lightweight implementation of a runtime engine for
data flow components, the Ubitrack library eases the integration of additional function-
ality and allows for a generalized processing of spatial measurements. In his theoretic
description of a fusion framework referred to in 2.3.2, Durrant-Whyte also mentions the
necessity of a canocial description format for the representation of measurements from
the involved sensors. He explicitly mentions geometric primitives such as line segments
or planes as canonical formats, such as needed in computer vision algorithms. In the
context of Ubitrack, the major canonical descriptions, in particular 3D positional and
orientational transformations, are given in terms of the data structures provided by the

41

algorithmic layer.

On top is the middleware layer. It provides additional services which can be retained
by IAR engineers and applications on an optional basis. The graphical tool trackman
supports the process of interactively describing the physical sensor and marker arrange-
ments. It is described in detail in Chapter 6. The resulting spatial relationship graphs
(SRG) not only lend themselves to long-term documentation (and visualization) of the
modeled sensor arrangement, as shown below. They also serve as a basis for the spec-
ification of data flow graphs (DFG) that can be directly instantiated by the Ubitrack
library. These DFGs can either be created manually or semi-automatically in trackman,
fully integrated with the already existing SRG, or generated fully automatically by a
Ubitrack server [Hube 07]. Architecturally, the yet non-existing workflow engine would
also reside on the middleware layer. The middleware layer thus provides a more intu-
itive way of describing data flows. Thereby, the risk of accidentally specifying physically
impossible data flows is excluded conceptually. As already stated in 4.2, we focus on
static tracking setups, i.e. on trackman.

The Ubitrack library provides a rather simplistic API for instantiating, starting, and
stopping a data flow network. The complex specification of data flows for tracking setups
is covered by UTQL, an XML-based description format that is used to parametrize the
library [Pust 07]. This allows for more flexible ways of configuration on the middleware
layer, instead of a mere programmatic setup by the AR application. This chapter con-
centrates on the Ubitrack library, reviewing the basic concepts of spatial relationship
graphs, data flow networks and spatial relationship patterns, as far as graphical modeling
is concerned. For more details, see [Hube 07] [Newm 04] [Pust 06a] [Pust 06b] [Pust 07]
[Pust 08]. In the simplest case, the XML description needed to parametrize the library,
can be edited manually by the IAR-engineer, though this is a tedious task. The fol-
lowing chapters present more advanced concepts based on manual and semi-automatic
modeling.

5.1. Spatial Relationship Graphs

The concept of spatial relationship graphs (SRGs) was proposed in [Newm 04]. It opens
up the possibility for a semantic, high-level specification of tracking infrastructures.

5.1.1. Definition

A simple example is shown in Figure 5.2(a). SRGs are directed cyclic graphs which
capture the structure of a tracking environment by describing the static and dynamic
spatial properties of objects in the environment. The nodes of SRGs represent the local
coordinate frames of real or virtual objects and sensors. A directed edge from A to
B represents the spatial transformation HB

A between coordinate frames A and B, i.e.,
the pose (position and orientation, 6DoF) of coordinate frame B relative to frame A.
Analogously, the transformation pAi = HB

ApBi transforms points pBi in frame B to pAi
in frame A.

42

In Figure 5.2(a), the top node refers to a tracker that tracks the poses of two objects,
represented by the bottom two nodes. The right one represents a head-mounted display,
the left one refers to a generic target. For instance, the applications might want to render
some virtual object on top of it. The directed solid edges represent the (dynamically
changing) spatial relationships between the tracker and the two objects.

Target

Target Pose [Pose]

Tracker

HMD Pose [Pose]

Query [Pose]

HMD

(a) Base SRG

Target

Target Pose [Pose]

Tracker

HMD Pose [Pose]

Product [Pose]

Inverted Pose [Pose]

HMD

(b) Full SRG

Figure 5.2.: (a) Exemplary SRG with a sensor tracking two targets. The solid lines depict
tracking information that is continually measured and updated. The dashed
line depicts spatial information that can be derived from the tracking data.
(b) Additional solid lines indicate the respective mathematical operations
(inversion, concatenation) on the tracking data.

The dashed edge in the base SRG shown in Figure 5.2(a) describes a request to deter-
mine the spatial relationship between the tracked HMD and the tracked generic target.
This relationship is not measured directly but can be derived by considering the known
spatial relationships of both objects to the tracker. Figure 5.2(b) shows the resulting
full SRG that does not contain any more dashed edges. Two new edges have been added
to the SRG: one reversing the spatial relationship between the tracker and the HMD,
and the other one replacing the dashed edge by concatenating the inverted edge from
the HMD to the tracker with the edge from the tracker to the generic target.

5.1.2. Edge Characteristics

SRG edges represent a number of sensing characteristics that have to be considered in
the manual or automated data flow construction process [Pust 06a]. The following two
properties are immanent to the pattern and may only be changed at construction time.

Data type Most importantly, a spatial transformation can have varying degrees of free-
dom (DoF), ranging from 2 or 3 translational DoF for wide-area sensors such as
GPS or WiFi based trackers, over 3 rotational DoF for sensors such as gyroscopes
and compasses to full 6DoF poses of optical feature-based or marker-based track-
ers for small-area VR or AR setups [Pust 08]. Accordingly, the most important

43

data types are 2D Position, 3D Position, 3D Rotation, and Pose (6DoF position and
orientation). They also exist in an extended version including uncertainty infor-
mation, e.g., 3D Error Position and Error Pose. Instead of a single measurement,
an edge can also represent a bunch of measurements. This is particularly useful to
describe large or a priori unknown numbers of measurements, such as a cloud of
feature points in 2D or 3D. For this, the data types 2D Position List, 3D Position
List, 3D Rotation List, and Pose List are used. More complex aggregates are not al-
lowed. Pose is the most used data type throughout this thesis; unlike in Figure 5.2
it is often not explicitly stated in the remaining SRG diagrams to compactify the
representation.

Synchronization type Another important property of an edge describes synchronization
issues. If the spatial transformation associated with the edge can be updated at
discrete points in time only, e.g., by a sensor providing updates at a constant
framerate, the synchronization type is PUSH. If the spatial transformation can be
updated at any point in time, the synchronization type is PULL. The complexities
arising from this distinction are discussed in 5.4. In SRG diagrams throughout
this thesis, edges of type PUSH are depicted in a reddish color (as in Figure 5.2)
whereas edges of type PULL are depicted in green.

At runtime, an SRG edge represents the measurements of a certain spatial transfor-
mation between two coordinate systems (nodes) over time. In general, new estimates
for the spatial transformation may arrive in real-time. A measurement consists of a
timestamp and the actual payload according to the chosen data type. The timestamp is
relevant for data flow synchronization purposes, especially if several sensors are used.

5.1.3. Related Concepts

SRGs are similar to scene graphs in computer graphics [Stra 92]. Yet, in contrast to scene
graphs, SRGs do not imply a pre-defined hierarchical ordering of the nodes. Rather,
SRGs are cyclic directed graphs, unlike scene graphs that have a tree-like topology.
Applications can request any node in an SRG to assume the role of a root node, requiring
the traversal through parts of the SRG from this node to a specified leave node. For a
detailed comparison of scene graphs and SRGs, see [Echt 08].

SRGs also resemble geodetic networks in metrology where 2D or 3D points are esti-
mated with a theodolite [Niem 08]. Figure 5.3 depicts a simple geodetic network.

Usually, the theodolite is placed at different locations and the distances and angles
towards other points are measured from there. In 3D, the coordinates of a new point
can be determined from the azimuth and elevation angles as well as the distance mea-
sured from a single known point. Such measurements are provided by a total station,
for example. Measuring the same point from different known locations results in an
overdetermined estimation problem. In the example, there are no known points, rather
all unknown points are estimated based on measurements from several other unknown
points. Since no absolute coordinates are given, only the inner geometry of the net-
work can be estimated. Note that the geodetic network contains cycles if and only if

44

5

4

1
2 3

7

6

8

Figure 5.3.: Simple planar geodetic network. The points represent coordinates, measured
distances are represented by edges, measured azimuth angles are indicated
by small slashes orthogonal to the edges. The ellipses represent the covari-
ances of the estimated points. (Example according to [Niem 08])

the estimation problem is overdetermined. By removing some of the edges of the net-
work one would ultimately obtain a minimum spanning tree resembling a scene graph
again. Therefore, a major difference between an SRG and a scene graph is the potential
overdetermination of spatial measurements.

An SRG may also contain cycles in the non-overdetermined case, merely by making
implicit information explicit, such as the SRG depicted in Figure 5.2(b). The edge
between HMD and target does not represent new information, it is inferred from the
other two edges.

If multiple independent trackers are tracking the same objects, however, and the
transformations between those trackers are known, the SRG might contain multiple
paths to determine the spatial relationship in question. Such cycles are essential for
exploiting redundancy in tracking setups. They provide a means to register sensors
or objects by using complementary tracking information (i.e., an alternate path in the
graph). They also allow system monitoring and the detection of faulty (miscalibrated)
sensors. This is picked up again in 14.2.

5.2. Data Flow Networks

The SRG provides an abstraction of the data flow layer. It is descriptive rather than an
operational specification of a certain setup and is not directly usable by an application.
Rather, for efficient use by the Ubitrack runtime system that is included into the appli-

45

cations, the SRG has to be converted into a data flow network (DFN). DFNs consist of
computational units that operate on tracking data.

A DFN is an instance of a data flow graph (DFG). DFGs are directed graphs and
their nodes specify the data flow components to be instantiated in the DFN. In general,
a data flow component has input ports and output ports. An input port consumes data
needed by the component; it is represented by a dashed edge in the SRG unless a
provider of the data is specified (cf. Figures 5.2(a) and 5.2(b)). An output port provides
the computation result; it corresponds to a solid edge in the SRG. In the DFG, edges
represent the flow of tracking data between data flow components; they always connect
an output port with an input port. An input port is connected to exactly one output
port, whereas an output port can be connected to several input ports. Sources in a DFG
generally represent sources of tracking data (i.e. tracking devices). Sinks correspond to
interfaces to applications or to other data flow graphs.

A.R.T. Tracker
[Pose]

Pose

Application Push Sink
[Pose]

Multiplication
[Pose]

AB
[Pose]

AC
[Pose]

Inversion
[Pose]

Inverted
Measurement

A.R.T. Tracker
[Pose]

Pose

Figure 5.4.: DFG corresponding to the SRG shown in Figure 5.2(b). An inversion, fol-
lowed by a multiplication is needed to compute the dashed edge of Fig-
ure 5.2(a) from the two solid edges. Connections between ports have been
omitted where possible to compactify the representation.

Figure 5.4 shows the DFG that computes the spatial relationship between the HMD
and the target in the SRG of Figure 5.2. The tracking data of the HMD is inverted and
then concatenated with the tracking data of the target. The red color indicates that
measurement updates are driven by the sensors, which are completely colored red. The
short term SRG is sometimes used to denote a full SRG including all the derived spatial
relationships and its corresponding DFG if it is clear from the context that the DFG is
meant.

In general, cycles in the DFG are allowd, resulting in a directed cyclic graph structure.
Often, however, the DFG adopts the topology of a tree with a single sink component
(the transformation needed by the application) as its root, as in the example depicted
in Figure 5.4.

The Ubitrack runtime environment executes such data flow networks. At this level,

46

Ubitrack is comparable to the approaches taken in other systems described in 3 such
as OpenTracker [Reit 01]. In fact, we are able to export data flow networks that have
been generated from SRGs into applications that use OpenTracker, using the Ubiquitous
Tracking Query Language (UTQL) XML data exchange format [Pust 07][Newm 07]. As
will be seen, the DFG is sometimes needed in addition to the SRG for expert modeling,
especially when synchronization issues have to be solved.

5.3. Spatial Relationship Patterns

The previous section have introduced the basic concepts of working with SRGs and
patterns, using a rather simplistic example. This section describes formally, how SRGs
can be transformed into DFGs. To this end, Pustka introduced the concept of spatial
relationship patterns [Pust 06b]. They are the elementary building blocks that allow the
user to make use of the diversity of sensor drivers, algorithms, and application interfaces
provided by the Ubitrack framework.

5.3.1. Definition

A pattern is a template SRG that corresponds to a computational unit called a data flow
component, i.e. a node, in a DFG. Each pattern / data flow component is associated
with a pattern ID that is unique throughout the whole DFG. It is needed to interface
particular data flow components from the outside. For this purpose, the pattern ID has
to be chosen deliberately by the AR engineer for some components.

Tracking data is provided to the data flow component via its input ports. The data
is used for the computation of some result which is then sent out via its output. Good
examples are the Inversion and Multiplication components in the DFG shown in Figure 5.4.

B

Measurement [Pose]

A Inverted Measurement [Pose]

(a) Full pattern

Inversion
[Pose]

Measurement
[Pose]

Inverted
Measurement

(b) Data flow compo-
nent

Figure 5.5.: Inversion basic spatial relationship pattern and corresponding data flow com-
ponent for the inversion of spatial relationships or edges in the SRG

Spatial relationship patterns describe the effect of a computational unit on an SRG.
For example, the Inversion pattern/component in Figure 5.5 states that, for a given
SRG edge from node A to B, a new edge is added to the SRG going in the reverse
direction. Similarly, the Multiplication pattern/component in Figure 5.6 states that an

47

C

BC [Pose]

B

AB [Pose]

A

AC [Pose]

(a) Full pattern

Multiplication
[Pose]

AB
[Pose]

BC
[Pose]

AC
[Pose]

(b) Data flow component

Figure 5.6.: Multiplication basic spatial relationship pattern and corresponding data flow
component for the concatenation of spatial relationships or edges in the SRG

SRG edge from A to B, and an edge from B to C can be concatenated by multiplying
the transformations. As a result, a new edge from A to C can be added to the SRG.

Component inputs in the DFG correspond to input edges of the pattern. They are
shown as dashed lines, and the associated input nodes as dashed circles. The resulting
component output in the DFG corresponds to an output edge of the pattern. It is shown
by a solid line, and the additionally added output nodes (if any) by a solid circle. In
other words, the dashed part, the input section of the pattern has to be already available
in the SRG such that the pattern can be applied and the solid part, the output section,
can be added to the SRG.

A.R.T.
Tracker

Measurement [Pose]

A.R.T.
Marker

(a) Base pattern

A.R.T. Tracker
[Pose]

Measurement
[Pose]

(b) Data flow source
component

Figure 5.7.: Spatial relationship base pattern and corresponding data flow source com-
ponent representing a typical tracking device

Syntactical compliance of the input section of an additional pattern with the existing
SRG is the basic requirement for embedding this pattern. As an additional constraint,
the data types and synchronization types (see 5.1.2) of the involved input and output
edges have to comply or embeddeding is not allowed.

Some patterns/components, however, such as those depicted in Figures 5.5 and 5.6
above, have edges/ports whose synchronization type is initially undetermined. Unless

48

A

Measurement [Pose]

B

(a) Query pattern

Application Push Sink
[Pose]

Measurement
[Pose]

(b) Data flow sink com-
ponent

Figure 5.8.: Application Push Sink spatial relationship query pattern and corresponding
data flow sink component representing a typical application interface to the
Ubitrack data flow.

the synchronization type of such an edge/port becomes determined by embedding the
pattern in the SRG, the edge is depicted in black and the data flow port in gray. The
concrete mechanisms for this are detailed below in 5.4.1.

Either the input or output section of a pattern may be empty. According to this
pattern signature, three different types can be distinguished:

Base patterns have an empty input section. The Tracker pattern depicted in Fig-
ure 5.7(a) is an example of that category. The corresponding component is de-
picted in Figure 5.7(b). Since it has an empty input section, no requirements with
respect to the current SRG have to be fulfilled and it can always be added to the
SRG. It is used to add tracking devices as source computational units to the DFG.
One might think of an axiom in formal logic. From the data flow point-of-view,
base patterns represent data sources injecting tracking data into the data flow
network.

Full patterns such as shown in Figures 5.5 and 5.6 have both, a non-empty input and a
non-empty output section. They may be applied if the graph structure described
in the input section can be matched to the current SRG. The graph structure
described by the output section is then added, resulting in an enriched SRG. This
corresponds to a rule of inference in formal logic, having a set of premises as
well as a conclusion. From the data flow point-of-view, full patterns deduce new
information from existing information.

Query patterns have an empty output section. They connect the tracking setup to an
application, in form of a query for information about a specific spatial relation-
ship in a scene. An example is the pose of the target relative to the HMD in
Figure 5.2(a). This is shown in Figure 5.8 on the example of the Application Push
Sink pattern. Query patterns can be applied if the input section matches (like
full patterns), however, no new information is added to the SRG. From the data
flow point-of-view, query patterns represent data sinks transferring tracking data

49

to applications, storing it in a file or sending it to a corresponding data source in
another data flow network.

Due to the correspondence of spatial relationhip pattern and computational unit,
base/full/query patterns are atomic and cannot be dissected. They represent the ele-
mentary building blocks from which more complex SRG structures can be built.

5.3.2. A Catalogue of Spatial Relationship Patterns

A large number of patterns and associated computational units have already been in-
tegrated into Ubitrack [Pust 06b]1 On the one hand, this results from a great variety
of sensor drivers and algorithms provided by the Ubitrack library. On the other hand,
many patterns exist in multiple versions, differing only in the transformation type of
their input and output edges. For example, among others, there are Inversion patterns
for edges of type Pose, 3D Position and 3D Rotation. To support the user in dealing with
this pattern diversity, a schema is needed for their categorization.

The most important aspect of a pattern is its structure, which allows for a categoriza-
tion of patterns in base, full, and query patterns, as already stated in 5.3.1. From the
data flow point-of-view, base patterns represent data sources that inject tracking data
into the network, full patterns transform it until it finally reaches sinks in terms of query
patterns.

This point of view only considers the structural aspects of pattern, in other words their
syntax. Alternatively, one might examine patterns according to their intended purpose,
or their semantics. The following major categories can be distinguished:

Sensor-/tracker patterns describe how tracking data is provided to the data flow net-
work. This mainly comprises driver components retrieving data from hardware,
such as shown in Figure 5.7. Sensor patterns typically have synchronization type
PUSH; they deliver updated measurements at the framerate of the sensor, e.g., 50
fps for a camera.
Other tracker patterns represent tracking algorithms that require input data
from another sensor pattern, such as the PTAM (Parallel Tracking and Mapping)
[Klei 07] natural feature tracking pattern depicted in Figure 5.11(a) which needs
a camera image provided by some Framegrabber pattern in order to compute the
pose of the Camera with respect to a pre-trained Feature Map.

Basic patterns describe trivial transformation steps such as inversion or interpolation of
a transformation or concatenation of two transformations. The patterns depicted
in Figures 5.5 and 5.6 belong to this category.

Calibration/registration patterns represent algorithms for the estimation of static spa-
tial transformations under certain boundary conditions.
The Absolute Orientation pattern (see Figure 5.9(a)) estimates the Pose transforma-
tion between two coordinate frames using at least three corresponding 3D Position

1Currently, there are already more than 200 patterns, and this number will probably further increase.

50

A

Feature

B

Input A [3D Position]

B2A [Pose]

Input B [3D Position]

(a) Absolute Orientation

Eye

Robot

World

Eye-World [Pose]

Hand-Eye [Pose]

Robot-Hand [Pose]

Hand

(b) Hand-Eye Calibration

Tip

Tip Position [3D Position]

Marker

Tracker Input [Pose]

Tracker

(c) Tip Calibration

Image
Plane

Feature

Camera

2D Points [2D Position]

Result [3x4 Matrix]

3D Points [3D Position]

(d) SPAAM Calibration

Figure 5.9.: Selection of calibration and registration patterns

Measurement [3D Position]

A

Combined Measurement [Pose]

B

Measurement [3D Rotation]

(a) Functional Fusion

Input B [Pose]

A

Fused Measurement [Pose]

B

Input A [Pose]

(b) Pose Complementary Fusion / Pose
Kalman Filter

Figure 5.10.: Selection of fusion patterns

51

Tracked Output [Pose]

Proj. Matrix [3x3 Matrix]

Image [Image]

(a) standalone variant

Input B [Pose]

Input A [Pose]

Tracked Output [Pose]

Reference Input [Pose]

Proj. Matrix [3x3 Matrix]

Image [Image]

(b) cooperative fusion variant

Figure 5.11.: Two variants of the PTAM (Parallel Tracking and Mapping) pattern
[Klei 07]

measurements of a common Feature [Horn 87] [Egge 97]. The point features must
be in a general constellation, i.e. they must not be collinear.
The Hand-Eye Calibration pattern (see Figure 5.9(b)) estimates the Hand-Eye Pose
transformation using at least two corresponding Pose measurements for Robot-
Hand and Eye-World [Tsai 88]. The underlying algorithm was first used in the
robotics domain to estimate the offset of a camera mounted to the arm of a robot.
Thereby, the pose of the arm is known from the robot kinematics, as well as the
pose of a static reference target seen by the camera.
The Tip Calibration pattern estimates the 3D Position offset of a tip such as in
Figure 1.6(b) and 1.6(c) with respect to the marker attached to the end of the
device. Different Pose measurements have to be collected for the marker while the
tip is kept in a constant position. For this, the tip is put on a surface or a special
calibration adapter while the marker descripes a spherical movement. The SPAAM
Calibration pattern (see Figure 5.9(d)) estimates a projection matrix with 11DoF
(extrinsic and intrinsic camera parameters) from 2D Position and 3D Position mea-
surements [Tsai 87][Tuce 02][Hart 00]. The registration is based on the manual
alignment of displayed 2D points with a single 3D point given in world coordinates
from various viewpoints. The SPAAM method assumes a marker to be attached
rigidly to the display. Knowing the pose of this marker in world coordinates from
the tracking system, the single 3D point can always be transferred to the marker
coordinate system which allows the display (or head in case of an HMD) to be
moved freely during the calibration procedure. At least six corresponding mea-
surements in 2D and 3D are needed to solve for the 11DoF.
Many alternative algorithms exist for the solution of the mentioned registration
problems. The referenced solution corresponds to the Ubitrack implementation.
Bauer provides a much broader review [Baue 07]. Pentenrieder investigates differ-
ent methods in the context of IAR [Pent 09]. The application of the patterns in
realistic registration procedures for IAR are described in 7.2.

52

Fusion patterns represent algorithms for competitive fusion or complementary fusion
(according to 2.3.2) which can be used to somehow fuse tracking data to obtain
a better, more accurate or a more general result. The Functional Fusion pattern
depicted in Figure 5.10(a) combines 3D Position and 3D Rotation measurements in
a single Pose measurement (complementary fusion). Time-complementary fusion
can be achieved easily, e.g., using the Pose Complementary Fusion pattern depicted
in Figure 5.10(b). It conducts Input A if available, otherwise Input B. The signa-
ture of this pattern also describes a Pose Kalman Filter which combines two Pose
measurements from independent sources to obtain a single Pose measurement with
higher accuracy (competitive fusion). Other variants of the Kalman Filter pattern,
differing in the types and numbers of input measurements, are conceivable or al-
ready exist in Ubitrack.
Simple forms of cooperative fusion can be accomplished by a suitable combination
of general-purpose patterns in the SRG, rather than by a dedicated “competitive
fusion pattern”. To realize this, consider the indirect tracking setup introduced in
1.3.2. The mobile tracking system (dependent tracker) can be used only if its pose
in the global reference frame is known (independent tracker). Basically, this is
the concatentation of two sensor patterns (cf. Figure 5.7), using the Multiplication
pattern (cf. Figure 5.6). In this simple example, the dependent tracker does not
even know about the independent tracker. In the general cooperative fusion case,
however, the dependent tracker obtains initialization data (e.g., for region based
image processing) via a dedicated input edge in its pattern. The result is a hybrid
tracker- and fusion pattern, such as the variant of the PTAM pattern depicted in
Figure 5.11(b) [Klei 07]. In this variant, two pre-trained Feature Maps are available
for tracking; their poses with respect to World need to be given. Depending on the
Reference Input pose of the Camera with respect to the World, the implementation
decides about which Feature Map to use for tracking. Initially, the Reference Pose
has to be given by another tracker, in a cooperative fusion setup. Variants with
more Feature Maps are available. See also 2.3.2 for a discussion.

Persistence patterns represent components that write tracking or calibration data to
a file or read it from there. For persistence patterns, there exist pairs of cor-
responding base and query patterns, such as Player and Recorder for logging and
replaying tracking data or Calibration Reader and Calibration Writer for maintaining
the calibration or registration data of a static transformation in files.

Network patterns represent components that send/receive tracking data to/from the
network. They are needed to link independent DFNs running on independent
Ubitrack peers. Such as persistence patterns, network patterns also feature cor-
responding base and query patterns. Corresponding pairs of Network Sink and
Network Source patterns are identified according to their identical pattern IDs.

Application patterns represent components that transfer or receive tracking data to /
from an application. This principally enables applications not only to consume
tracking data but also to transform it somehow and reinject it into the data flow

53

network. Such as persistence and network patterns, application patterns also fea-
ture corresponding base and query patterns.
The Application Push Source, Application Pull Source, Application Push Sink and
Application Pull Sink patterns represent endpoints in the DFN which interface it to
the application. The Application Pull Source is one of few data flow sources having
type PULL. It retrieves current tracking data at any time via a callback interface
from the application. Similarly, the Application Push Sink pushes data from the
data flow into the application via a callback interface. In both cases, the DFN ini-
tiates the flow of tracking data. Application Push Source and Application Pull Sink,
on the contrary, work without a callback mechanism and the application initiates
the flow of tracking data by pushing updated measurements into the data flow or
by requesting updated measurements, e.g., at the framerate of the renderer. The
concept of PUSH and PULL is further detailed in 5.4. Regardless which interface
is being used, the application identifies the corresponding data flow components
by means of their pattern IDs.
Other patterns in this category include render components for development and
debug purposes, which allow for simple OpenGL-based 3D graphics output based
on tracking data.

Table 5.1 presents a representative subset of patterns, classified according to their
structure and semantics. A comprehensive reference is provided at [Ubi 11].

Examples for base and query patterns are shown in Figures 5.7 and 5.8. Most base
and query patterns feature the same layout of two nodes connected by a single edge, solid
for base patterns and dashed for query patterns. Full patterns such as the Multiplication
are more interesting to investigate since they exhibit a broader range of different forms.
Most patterns have just been mentioned above, without giving a description of their
semantics. More patterns are explained throughout the remainder of this thesis, in the
context they are needed.

5.3.3. Node/Edge/Pattern Attributes

The essential characteristics of an edge, data type and synchronization type have already
been introduced in 5.1.2. Furthermore, each node and each pattern is attributed with a
node ID and a pattern ID, respectively. Both IDs have to be unique throughout the whole
DFG. The pattern ID is needed to interface the data flow network from the outside, as
described in 5.3.2. The node ID is needed only in special cases, see 5.3.4.

Some data flow components need additional information to provide the desired result.
This information is provided to the Ubitrack runtime in terms of properties attributed
to the output nodes, output edges, and patterns in the DFG. The location thereby
depends on the type of information. A concrete pose value is attributed to the edge of
e.g., the Static Transformation pattern. A marker ID may be attributed to either the
node representing that marker or to the edge pointing towards the marker node. The
choice depends on the concrete system. An optical square marker such as depicted in
Figure 1.6(a) has a unique ID and can be attributed to the Marker node of the Optical

54

Table 5.1.: Pattern categorization matrix showing a representative subset of the existing
Ubitrack patterns. The transformation types are neglected for the sake of
readability.

Syntax
Base pattern Full pattern Query pattern

Sensor-/ A.R.T. Tracker
tracker Static Transformation

Highgui Framegrabber
Optical Square-Marker-

Tracker
PTAM Tracker

Basic Multiplication
Inversion

Buffer
Interpolation

Gate
Time-To-Space-Expansion

Converter
Aggregator

Signal Generator
Trigger

Trigger Loop
Sampler

Semantics Calibration Hand-Eye Calibration
Absolute Orientation

Tip Calibration
SPAAM Calibration

Tip Calibration
Fusion Kalman Filter

Complementary Fusion
Functional Fusion

Persistence Player Recorder
Calibration Reader Calibration Writer

Network Network Source Network Sink
Application Application Push Source Application Push Sink

Application Pull Source Application Pull Sink
X3D Object

Background Image

Square-Marker Pattern. The ID of a tree target such as depicted in Figure 1.6(b) is
determined in the proprietary administration software of the vendor. For the unlikely
case of two independent tracking systems tracking the same marker, the ID has to
be specified twice on the edges since the node then exists only once in the SRG. More
general parameters that cannot be associated with a particular node or edge are typically
attributed to the whole pattern. For more details about node/edge/pattern attributes,

55

refer to the UTQL specification [Pust 07].

5.3.4. The Module Mechansim

Logically, each pattern represents an independent data flow component. Adding the
tracker pattern shown in Figure 5.7 twice would therefore mean to run two independent
tracking systems, using two independent driver instances. While this behavior is also
possible, the desired behavior probably is to use the same tracking system to track two
different markers. However, this also means that both data flow components shall share
a common driver instance.

For this, Ubitrack provides the module concept. It allows data flow components to
share common resources. Modules are typically used for sensors drivers (e.g., A.R.T.
Tracker) to share hardware devices or bus/network interfaces and also computer vision
algorithms (e.g., Optical Square-Marker Tracker) to avoid the redundant execution of
algorithms, such as in the example shown in Figure 5.2. A module encapsulates the usage
of the resource and performs all necessary computations. Furthermore, it administrates
a variable number of thin data flow components to interface with the data flow network.

To establish the 1 : n relationhip between various data flow components and their
common module, component keys and a module key are used. The module key is typically
specified in terms of a common node ID. In the example mentioned above, the two A.R.T.
Tracker nodes could be parametrized with an identical ID. Note that this is identical to
the unification of both nodes since the node ID has to be unique throughout the DFG.
To obtain a component key, any attribute according to 5.3.3 can be used; its choice
depends on the Ubitrack implementation of the module. In the mentioned example, the
A.R.T. Body ID edge attribute of the Tracked Transformation edge is used. It determines
the ID of the marker in the proprietary A.R.T. administration software. In the example
of the Optical Square-Marker Tracker component, the module key is given in terms of the
ID of the Camera node and the component key is given in terms of the Marker node.
The component key has to be unique throughout all components managed by the same
module. An important property of the module mechanism is that its complete spatial
relationship pattern is replicated an arbitrary number of times.

5.3.5. Time-/Space-Expansion

In contrast to the module concept where the complete pattern is replicated an arbitrary
number of times, sometimes only those parts of the pattern have to be replicated that
describe the input data. Some patterns require several (maybe corresponding pairs of)
measurements to be able to compute a result. This applies in particular to the registra-
tion patterns introduced in 5.3.2. The Absolute Orientation pattern (see Figure 5.9(a))
for example requires at least 3 corresponding pairs of 3D position measurements. These
measurements can either be collected at once or sequentially. Pustka introduced the con-
current concepts of time-expansion where the measurements are collected sequentially
and space-expansion where the measurements are collected in one step, all measurements
having the same timestamp [Pust 06b]. The two variants are depicted in Figure 5.12.

56

A

Feature

B

Input A [3D Position]

B2A [Pose]

Input B [3D Position]

3..*

(a) Time-expansion

A

Feature
1

BB2A [Pose]

Feature
2

Feature
3

Input A1 A2 A3
[3D Position]

Input B1 B2 B3
[3D Position]

(b) Explicit space-expansion (three correspon-
dences)

A

Feature

B

Input A
[3D Position List]

B2A [Pose]

Input B
[3D Position List]

(c) Simplified space-expansion

Figure 5.12.: Time- and space-expansion variants of the Absolute Orientation pattern. At
least three corresponding point measurements have to be given such that
the pose from B to A can be computed.

With time-expansion, the Feature is supposed to be moved around and captured several
times, as indicated by the “3..*” in Figure 5.12(a). With space-expansion on the contrary
(see Figure 5.12(b)), the Feature node is replicated a fix number of times to make the
spatial relationships and the concurrent measurement acquisition explicit. Note that the
registration patterns depicted in Figure 5.9 are all represented in their time-expanded
form.

Although space-expansion is intuitive for a few Features, it becomes quite confusing
when plenty of Features are used. Furthermore, the number of Features to be used has to
be known at configuration time, which is not always the case. Therefore, space-expansion
can also be represented in the form depicted in Figure 5.12(c). The Feature node made
way for a Feature Cloud node representing the concurrent measurements and the Input A
and Input B edges convey corresponding lists of 3D position measurements the lengths
of which are determined not until runtime. The topic of time-/space-expansion is picked
up again in 7.2, where practical solutions for various registration problems are described.

57

The Ubitrack framework eases the implementation of data flow components support-
ing both time- and space-expansion. For this, the concept of expansion input ports is
provided which encapsulate this behavior such that no additional effort is needed during
implementation. The desired method can be configured by setting the corresponding
attribute in the UTQL description [Pust 07]. In case of time-expansion and explicit
space-expansion, the expansion input port takes care of aggegrating a list of measure-
ments automatically. In case of simplified space-expansion, the list of measurements is
directly provided to the component.

Examples for DFGs based on time-expansion and implicit space-expansion can be
found e.g., in 7.2. An example using explicit space-expansion is discussed in 11.4.

5.4. Data Flow Synchronization

Before the synchronization of a DFN can be understood, the synchronization properties
of individual data flow components needs to be investigated.

5.4.1. Synchronization of Data Flow Components

To properly handle measurements that are generated asynchronously by independent
sensors, each edge in the SRG and thus each port in the DFG is attributed with its
synchronization mode, either PUSH or PULL. For many of the patterns/components
mentioned above in 5.3.2, the synchronization type has been fixed during implementation
of the data flow component. The single output edge of a typical sensor pattern as well
as the Player pattern in the SRG, which corresponds to a single output port in the
DFG, has synchronization type PUSH. The StaticTransformation, CalibrationReader on
the contrary have type PULL. Likewise, there are application patterns providing either
a PUSH or PULL input. The IAR-engineer can choose the desired application interface.
For these and some other patterns, the synchronization types are fixed. The situation
is depicted in Figure 5.13. Also some full patterns use a fixed synchronization scheme,
as depicted in Figure 5.14. The color of the ports indicates the synchronizatinon mode,
red for PUSH and green for PULL.

A.R.T. Tracker
[Pose]

Measurement
[Pose]

(a) Source (PUSH)

Calibration File Reader
[Pose]

Measurement
[Pose]

(b) Source (PULL)

Application Push Sink
[Pose]

Measurement
[Pose]

(c) Sink (PUSH)

Application Pull Sink
[Pose]

Measurement
[Pose]

(d) Sink (PULL)

Figure 5.13.: Synchronization variants of data flow components for selected base and
query patterns. Components driving a PUSH (in particular sensor drivers)
or PULL action, are fully colored in red or green, respectively, otherwise
only the respective data flow ports are colored.

58

PoseSplit
[Pose]

Position
[Position]

Rotation
[Rotation]

Pose
[Pose]

Rotation
[Rotation]

Translation
[Translation]

(a) Pose Split

Linear Interpolation
[Pose]

Measurement
[Pose]

Measurement
[Pose]

(b) Interpolation

Sampler
[Pose]

Measurement
[Pose]

Measurement
[Pose]

(c) Sampler

Figure 5.14.: Data flow components for selected full patterns having a fixed synchro-
nization mode. The Sampler component is fully colored in red because it
represents a source of PUSH events.

For other patterns/components, mainly full patterns that compute some kind of result,
the synchronization can be handled more flexibly at configuration time. For this, the
Ubitrack framework provides the concept of trigger components. A subset of the input
ports and at most one output port of the data flow component can be arranged in a
trigger group. Unless the synchronization flag of an edge/port belonging to the trigger
group has been fixed, it is set to AUTO. The edge in the pattern is depicted in black,
the corresponding port is depicted in gray.

The synchronization flags on the inputs are thereby inherited from the outputs they
are connected to. The constellation of synchronization flags on the inputs of the trigger
group implies the synchronization flag for the single output, according to the following
logic:

1. If all input ports of in the trigger group have type PULL then the output port also
has type PULL.

2. If one or more input ports have type PUSH, then the output port also has type
PUSH.

3. Several input ports having type PUSH makes sense if and only if these ports are
synchronized in terms of being fed with corresponding measurements having the
same timestamp (Synchronized-PUSH). Otherwise, the component does not evalu-
ate and no results will be pushed onwards on the output port.

Note that the Pose Split component depicted in Figure 5.14(a) cannot be implemented
as a trigger component, since it has two output ports and only one output is allowd in
the trigger group. The behavior of the Translation output when pulling on the Rotation
output would be undefined and vice versa. The situation for trigger components is
depicted in Figure 5.15 for the special but rather common case of two inputs.

5.4.2. Synchronization of the Data Flow Network

Pushed measurements travel downward from source toward sink through a DFN, e.g.,
when a tracker such as a camera sends new data into the network at its own speed.
Pulled measurements are pulled upward in a DFN. A pull operation may be initiated for

59

Multiplication
[Pose]

AB
[Pose]

BC
[Pose]

AC
[Pose]

(a) PULL-PULL

Multiplication
[Pose]

AB
[Pose]

BC
[Pose]

AC
[Pose]

(b) PUSH-PULL

Multiplication
[Pose]

AB
[Pose]

BC
[Pose]

AC
[Pose]

(c) PULL-PUSH

Multiplication
[Pose]

AB
[Pose]

BC
[Pose]

AC
[Pose]

(d) Synchronized-PUSH

Figure 5.15.: Possible synchronization modes of the Multiplication component to demon-
strate different combinations of synchronization modes for a trigger com-
ponent with two inputs

example by an application requesting measurements with a specific timestamp (see 5.1.2)
via the ApplicationPullSink component. PUSH as well as PULL events are propagated
recursively through the data flow network. Figure 5.16 presents both mechanisms and
their implementation in Ubitrack.

In addition to the coloring of the ports, data flow components that drive the data flow
by actively initiating downward push or upward pull operations are also colored, others
are gray, see also Figures 5.4, 5.13, and 5.14.

Pulling measurements upwards in the DFN is implemented internally by recursive
function calls. For propagating pushed measurement downwards in the DFN, the Ubi-
track runtime environment operates an event queue to handle the pushed measurements
in the proper sequence. The data flow components are thereby triggered in the direction
from sources to sinks. To avoid race conditions, a strict execution sequence is estab-
lished during instantiation of the DFG. Sinks obtain the lowest priority. In a depth-first
graph search starting at the sink(s), the priorities are increased with the distance of the
component to the respective sink. These priorities are used to sort events with equal
timestamps in the event queue. As depicted in Figure 5.17, this ensures that intermedi-
ate results are evaluated in the correct sequence such that no result is reevaluated based
on outdated measurements.

Problems arise when two or more unsynchronized inputs have to be combined by
a computational unit, such as the Multiplication component, regardless of whether the
component is a trigger component or not.2 The measurements on all inputs need to be
valid for the same point in time. When a PULL request occurs on the output, measure-
ments have to be pulled for this timestamp on all inputs. When a push event occurs for

2The only difference betwenn a trigger component and a normal component is the point in time of the
determination of the synchronization flags.

60

Component n

Measurement
[Pose]

Measurement
[Pose]

Component n+1

Measurement
[Pose]

Measurement
[Pose]

PUSH

PUSH

PUSH

Event i

Ubitrack
Event
Queue

Event j

Event k

(a) PUSH

Component n

Measurement
[Pose]

Measurement
[Pose]

Component n+1

Measurement
[Pose]

Measurement
[Pose] Recursive

Call i

Recursive
Call j

Recursive
Call k

PULL

PULL

PULL

(b) PULL

Figure 5.16.: Propagation of measurements in the data flow. The wide arrows represent
the handover of measurements, dashed wide arrows represent handovers
laying in the future of the depicted situation. (a) Association of handovers
with entries in the event queue. The colored part represents yet unpro-
cessed events. Event i has been processed already. It resulted in event j
which is currently being processed. Event j will result in event k to be
enqueued in the end of the queue for this timestamp. The orange part
represents more recent events having a newer timestamp that might have
been pushed into the data flow already. They will be processed after the
red part either has been fully processed or dropped in case of heavy system
load. (b) Requests for measurements are conveyed by recursive function
calls. Handover of measurements is accomplished with their return. In the
depicted situation, call j is about to execute.

one input edge, measurements for the same timestamp have to be pulled on the other
inputs. The result can then be computed and pushed onwards on the output. Generally,
it is not possible to have more than one input in PUSH mode. Therefore, all except
one of them should be in PULL mode. To this end, suitable conversion facilities must
be included, as shown exemplarily in Figure 5.18. The Buffer (constant interpolation),
Linear Interpolation and Kalman Filter components convert measurements from PUSH to
PULL (push-pull conversion) whereas the Sampler component converts from PULL to
PUSH (pull-push conversion). Refer to [Pust 06a] for more details.

If several data flow sources belong to the same physical sensor (as e.g., for several
A.R.T. Tracker components), these source components belong to a common driver module

61

1.

2. 3.

Priority p

Priority p+1

Priority p+2

Figure 5.17.: Prioritization of PUSH operations in the data flow. Data flow components
are sorted according to their “distance” to the sinks. The component pri-
ority is used to sort events with equal timestamps in the event queue.

and are thus in the same trigger group. This means that all PUSH events originating at
these components obtain indentical timestamps. Therefore, no interpolation is necessary
in the example DFG depicted in Figure 5.4. Unfortunately, there is currently no means
to detect on the middleware layer whether two push sources belong to the same trigger
group or not.

5.4.3. The Time-Synchronization Problem

The timestamps (see 5.1.2) associated with the individual measurements must represent
the moment of the true measurement, otherwise the measurements cannot be associated
properly. In general, this affects all kinds of fusion types. In complementary fusion,
the joined degrees of freedom simply do not correspond. In competitive fusion, e.g., the
motion model of a Kalman filter gives wrong predictions due to wrong computation of
the time elapsed since the last measurement. In cooperative fusion, the needed inter-
polation (see 5.3.2) is also subject to the wrong computation of the weight between the
involved supporting points. This simultaneity assumption has been discussed before by
Welch [Welc 96], Welch and Bishop [Welc 97], and Pustka [Pust 11].

Synchronization can be accomplished in hardware, by using a common sync signal

62

A.R.T. Tracker
[Pose]

Pose

Inverted
Measurement

Inversion
[Pose]

Other Tracker
[Pose]

Pose

Figure 5.18.: A slightly modified version of the example DFG (cf. Figure 5.4). Two
different trackers are used instead of just one tracker for two markers. A
push-pull conversion is necessary to synchronize measurements from these
two unsynchronized push sources. In a realistic scenario, the two track-
ers would probably also have to be registered to each other, which is not
considered in the depicted data flow.

between the involved sensors3. Note that this is the case in the intelligent welding gun
scenario where both, the static and the mobile tracking system, use the same sync signal.

If synchronization is not implemented in hardware, an inferior software solution has
to be used. Latency in the communication between the involved devices makes an exact
synchronization difficult. The most prominent reasons for latency are delay between
the physical measurement and its digitization, overhead in network/bus communication,
overhead in the implementation of the sensor drivers as well as the operating system.
In addition to that, many platforms lack real-time capabilites such that an additional
amount of time may be lost in process scheduling. These factors result in a typical delay
for each sensor and for each platform. Therefore, timestamps which are generated in
software, are not highly precise. Thereby, it does not matter whether the timestamps are
generated upon arrival of the measurement or by prior soft-synchronization of the hard-
ware clocks. Even if two measurements obtain the same timestamp, the corresponding
physical measurements probably are not in sync.

A method for the relative temporal alignment of independent sensors has been devel-
oped by Huber et al. [Hube 09] and Schlegel [Schl 11]. The idea is to add a relative
temporal offset to the initial timestamps of one sensor. For this, a temporal registration
has to be performed before the spatial registration (according to 7.2), trying to maxi-

3Among others, commercial multi-camera IR tracking setups follow this approach, e.g., those from
A.R.T. [ART 11].

63

mize the correlation of both signals by tuning the relative temporal offset. The approach
principally works under the assumption of an only slowly changing relative time-delay.
The authors also show that it is sometimes necessary to interleave the temporal and
spatial registrations in an iterative manner to obtain optimal results.

In some special cases, however, synchronization is not necessary although sensor fusion
is performed:

1. A single sensor can provide data to different tracking algorithms. From the Ubi-
track point of view, the results of these algorithms can be treated using one of
the fusion techniques described in 4.2.2. This leads to a locally synchronized sub-
graph of the DFG. For example, a USB webcam might be used for marker- and
feature-based tracking. Although the true timestamp is unknown, both results still
correspond to each other. Cf. the discussion about synchronized PUSH sources in
5.4.1.

2. The synchronization can be assured physically. This happens e.g., when a set
of common reference points are measured twice by probing them one after an-
other with two different measurement devices. Note that this is the standard
case when using offline metrologic equipment.The method is often used to col-
lect corresponding data for registration purposes and therefore also applies for our
augmented airplane cabin scenario (see 1.3.2). It is however not very viable for
real-timetracking.

To conclude, for the scenarios discussed in this thesis, time synchronization is not an
issue.

5.5. SRG Design Activities

The construction of an SRG based on the available spatial relationship patterns (see 5.3)
is an iterative process which consists of the following steps:

Description of the tracking environment All mobile and stationary sensors and all real
and virtual objects are identified. Their known or tracked spatial relationships to
one another are described. This activity mainly uses base patterns. It has to be
executed manually to provide the domain knowledge to the Ubitrack system.

Deduction of indirect spatial relationships Full patterns are applied to suitable parts
of an SRG to infer additional spatial relationships. This can be achieved either by
an automatic pattern matching process or interactively by the IAR-engineer.

Definition of the runtime interface to the application On the basis of query patterns,
application interface(s) are inserted into the SRG. This step has to be performed
manually such that a defined API can be established. In particular, the application
needs to know the IDs associated with the application patterns, as described in
5.3.2.

64

The definition of the tracking environment and of the runtime interface to the appli-
cation require manual interaction. These steps result in the base SRG depicted in Fig-
ure 5.2(a). It still contains unresolved queries in terms of dashed edges. The deduction
of indirect spatial relationships to resolve all unresolved input edges (cf. Figure 5.2(b))
can theoretically be automated, at least partially. In the following, the manual and
semi-automatic techniques provided by the graphcial tool trackman for this purpose, are
described.

65

6. Graphical Data Flow Modeling

The trackman graphical modeling tool for spatial relationship graphs provides a user
interface to directly access both, the SRG and the DFG, in a round-trip engineering
approach. It also provides interactive means to access all patterns that are known to
the Ubitrack runtime system and to integrate them into the current configuration.

6.1. Graphical Layout

Figure 6.1 presents a screen dump of trackman showing the interactive construction
of the SRG and DFG of Figures 5.2 and 5.4. The tree on the left shows excerpts of
the list of all patterns, accessible both with respect to semantic and structural (layout)
categories. Below, the property editor allows one to inspect and edit settings associated
with the selected node, edge, or pattern. On the top left, a search facility allows the
IAR-engineer to restrict the displayed elements in the tree to only those patterns that
contain all specified strings.

The central area is tiled, showing the current SRG (top) and DFG (bottom). In the
DFG pane on the right, data sources (corresponding to base patterns, green) are the
uppermost components, followed by intermediate computational units (full patterns,
cyan), and finally the lowermost data sinks (query patterns, yellow). The latter ones
represent interfaces to applications. IAR-engineers can alter the tracking setup in the
SRG window. Resulting updates are automatically brought to the DFG window. At
intermediate stages of the configuration process, not all nodes in the DFG window need
to be integrated into the data flow network. For example, the right green node in
Figure 6.1 has not yet been connected to other modules. According to this, a part of
the input section of the Multiplication pattern is not embedded in the SRG.

6.2. trackman Architecture

In order to keep trackman independent from Ubitrack development, and to ensure its
compatibility with new spatial relationship patterns, it was designed as a lightweight and
generic tool. Architecturally, it resides on the middleare layer, as depicted in Figure 5.1.

In general, trackman does not have special knowledge about the semantics of the pat-
terns but rather imports the current set of available patterns from external description
files that come with the Ubitrack runtime library1. They provide information about the
signature or syntax of the patterns needed to enable the graphical modeling process. The

1Some minor exceptions arise in the context of registration and data flow surveillance tools as described
in 7.2 and Chapter 14.

66

Figure 6.1.: The trackman graphical modeling tool for spatial relationship graphs. The
example SRG from Figure 5.2 is shown on the editor pane. The result-
ing data flow is updated on-the-fly and is displayed on the right. Pattern
templates are provided in the tree on the left, they can be dragged to the
editor pane for modeling. The property editor on the bottom left is used to
configure attributes provided by nodes, edges and patterns.

description language is based on the UTQL [UTQL 11] data exchange format [Pust 07].
In addition to the mere graph structure of the patterns, it also allows one to specify
important meta information. Type information for node/edge/pattern attributes (see
5.3.3) as well as pattern documentation have to be provided. The resulting pattern tem-
plate specification language XML schema [UTPa 11b] [UTPa 11a] allows for the formal
description of available patterns. trackman uses the meta information to allow for con-
venient configuration of node, edge, and pattern attributes in its property editor and to
display documentation to the user, as can be seen in Figure 6.1.

67

It shall be noted that in the current implementation of trackman, explicit space-
expansion (cf. 5.3.5) is not directly supported. Rather, an extra hardcoded pattern
template in XML has to be provided for each number of correspondences. Usually,
however, the number of correspondences in explicit space-expansion is small, such that
the resulting bloat of pattern templates is manageable. An example is given in 11.4.

6.3. Interactive SRG generation

Starting with an empty work area in trackman, we use base and query patterns similar
to those shown in Figures 5.7(a) and 5.8(a) to describe the directly existing spatial
relationships in the tracking environment and the application requests. To this end,
they are dragged from the tree view on the left to the SRG editing workspace.

A.R.T.
Tracker

A.R.T.
Marker

A.R.T.
Marker

A.R.T.
Tracker

Measurement [Pose]

Measurement [Pose]

Measurement [Pose]

B

A

Figure 6.2.: Identification of coordinate systems via node unification. The indicated
unification steps can be conducted in arbitrary order and result in the SRG
shown in Figure 5.2(a).

For the SRG in Figure 5.2(a), the A.R.T. Tracker pattern is dragged twice into the
work area, once for each of the two targets. Names, IDs, and other attributes are
modified by selecting the respective node, edge, or pattern and applying the settings
in the property editor. The query pattern Application Push Sink is dragged into the
work space to describe the request that an edge be provided which describes the spatial
relationship between the HMD and the target (see Figure 6.2).

Using the node unification interaction scheme, all three patterns can be merged to form
a single graph. To express that two nodes belonging to different patterns are identical
in the SRG, IAR-engineers can drag one node on top of the other one or select both
before choosing the “unify nodes” operation from the context menu. As a result of this
operation, the subgraphs are merged at this node. Node unification can be applied to
all combinations of input and output nodes. Nodes belonging to a single pattern cannot
be unified (principle of pattern atomicity). Figure 6.2 shows the node unification steps
which lead to the SRG shown in Figure 5.2(a). See also 5.3.3 and 5.3.4 for the effects of
node unification.

68

6.4. Interactive Deduction of Spatial Relationships

Another interaction scheme is needed to let IAR-engineers specify which operations shall
be applied to the tracking data such that additional spatial relationships can be derived.
To this end, full patterns have to be integrated into the SRG, thereby adding further
(deduced) edges in terms of their output edges.

6.4.1. Edge Matching

By edge matching, an edge from the input section (dashed edge) of a new pattern is
identified with an edge that already exists in the SRG and that is part of the output
section of another pattern (solid edge). The operation also immediately updates the
corresponding DFG, linking the input of the computational unit with the output of
another component.

The edge matching operation is performed again either by dragging one of the edges
on top of the other one or by selecting the two edges and then invoking the “match edge”
operation from the context menu. Both edges must have the same edge characteristics
in terms of data type and synchronization type (according to 5.1.2). Illegal matches are
automatically inhibited.

Target

Target Pose [Pose]

Tracker

Query [Pose] HMD

C

BC [Pose]

B

AB [Pose]

AAC [Pose] B

Measurement [Pose]

A

Inverted Measurement [Pose]

HMD Pose [Pose]

Figure 6.3.: Identification of data input and output of patterns via edge matching. The
matching steps indicated by the blue arrows can be conducted in arbitrary
order and result in the SRG shown in Figure 5.2(b).

Edge matching implies node unification according to 6.3 on the source and sink nodes,
respectively, if necessary. Edges belonging to the same pattern cannot be matched (again
due to pattern atomicity). The edge matching steps which lead to the SRG shown in
Figure 5.2(b) are depicted in Figure 6.3.

69

6.4.2. Ordering of Design Activities

In 5.5, three elementary modeling tasks have been specified, the description of the track-
ing environment, the deduction of indirect spatial relationships, and the definition of the
runtime interface to the application. It is up to the IAR-engineer to decide about a suit-
able design approach. Patterns may be added to the SRG in any sequence. Furthermore,
patterns may be combined using the node unification and edge matching metaphors in
any sequence. The output edge of a selected pattern may therefore be associated with a
subsequent input edge, even though it is currently unclear how the output edge can be
deduced since the input edges of that pattern haven’t been matched yet. A valid DFG,
of course, requires all input edges to have been matched properly.

The design process may therefore be started either with the environment or also the
application interface. In general, two modeling directions can be distinguished.

Bottom-up approach The IAR-engineer starts with physical entities and refines infor-
mation step-by-step, resulting in an application-level piece of information. This
might also be denoted induction.

Top-down approach The IAR-engineer starts with the application interface and drills
down through various algorithms to finally reach real-world sensors and objects.
This might also be denoted deduction.

For clarification, going up according to the degree of abstraction from raw sensor
measurements towards application-level data comes along with going down in the data
flow from data sources to data sinks. In some cases, also come central full pattern
serves as a seed for the modeling process and the corresponding real-world entities and
the application interface is added to it in a mixed bottom-up / top-down approach.
In general, trackman supports an arbitrary mixture of the bottom-up and top-down
approach.

6.4.3. Round-Trip Engineering in SRG and DFG

The SRG editor on the top-right of Figure 6.1 is beneficial in the first place to argue
about spatial relationships. The integration of spatial-relationship patterns in the SRG
editor is intuitive and inhibits semantically wrong combination of patterns. Other issues
such as the sequence of operations in the resulting data flow network (see 5.2) or the
synchronization of the latter (see 5.4.2 are better observed in the DFG editor on the
bottom-right.

Both visualizations represent the same internal model and are directly related. As
explained in 5.2, an edge in the SRG relates to a port in the DFG, and edge-matching in
the SRG relates to connecting ports in the DFG. Connecting two ports in the DFG can be
accomplished by a click-and-drag operation from one port to the other. In a round-trip
engineering approach, both views can be equally used to establish connections between
patterns / data flow components. Changes effected in one of the views are always
reflected directly in the other, and vice versa. Round-trip engineering is a common
concept in software engineering. It keeps the consistency of the underlying model among

70

different representations. A typical example is the consistency of source code and the
corresponding UML model in modern IDEs2.

In case of modeling in the DFG, the semantic correctness of the corresponding SRG
is always ensured and invalid operations result in an error message.

6.4.4. Automatic Sync Propagation

While the data type of an edge is determined in the pattern template and is immutable,
the synchronization type of an edge belonging to the trigger group of a trigger compo-
nent (see 5.4.1) is determined not until configuration time of the data flow. Directly
after the pattern has been dragged to the SRG editor pane, the corresponding edge(s)
of such patterns still have an undetermined synchronization type, as indicated by their
black color during the construction of our example SRG in Figure 6.3. Note also the
depictions of the Multiplication and Inversion spatial relationship patterns and data flow
components in Figures 5.6 and 5.5. Finally, each edge must be associated with a distinct
synchronization type, either PUSH or PULL. In our example, all SRG edges and their
corresponding data flow ports obtain type PUSH, as indicated by the red color in Fig-
ures 5.2(b) and 5.4. Thereby, the rules for the synchronization of trigger groups stated
in 5.4.1 must be obeyed. By repeated edge-matching operations, the yet undetermined
synchronization flags are being constrained step by step.

trackman supports the analysis of synchronization issues and ensures the consistency
of the data flow synchronization at all times. During each edge-matching step, and in
accordance with the modeling directions defined in 6.4.2, already fixed synchronization
flags are propagated downwards (bottom-up modeling approach) or upwards (top-down
modeling approach) in the DFG, according to the rules described in 5.4.2. Propagation
thereby means to either imply an additional constraint to a formerly unconstrained
port in the DFG, or to reject the matching operation because of an already existing
contradiction. The propagation is trivial for components with single inputs and outputs,
or if no constraint is set for propagation. These trivial cases are depicted in Figure 6.4.
Upward-/downward propagation of PULL in the trivial cases 6.4(a) and 6.4(b) works
analogously. For trigger patterns with multiple inputs3, the situation is a bit more
complex.

As Figure 6.5 shows, a PUSH has to be propagated downwards on the output as soon
as at least one input is constrained to have type PUSH. In contrast, a PULL has to be
propagated on the output only if all inputs are already constrained to have type PULL.
In the upward direction, the situation is mirrored. Constraining the output to type
PULL immediately implies that all inputs must also have type PULL. Constraining the
output to type PUSH implies a constraint for an input only if it is the last unconstrained
input and no other input already has type PUSH.

Input and output edges (data flow ports) with contradicting synchronization modes
PUSH and PULL (or vice versa) may not be connected. Such a conflict has to be resolved
manually, as in Figure 5.18. The Buffer (constant interpolation), Linear Interpolation, or

2Integrated Development Environment
3Note that trigger patterns were defined to have at most one output.

71

(a) Downward propagation (b) Upward propagation

(c) No propagation

Figure 6.4.: Propagation of synchronization modes in trivial cases. (a,b) For trigger com-
ponents having only one input, the mode is immediately propagated in both
directions. (c) Nothing happens when connecting two yet unconstrained
ports.

Kalman Filter components convert an edge with mode PUSH to an edge conveying the
same quantity4 but having type PULL. The opposite effect can be achieved using the
Sampler component.

If multiple trigger components are combined according to Figure 6.4(c), initially
without any constraints, the propagation of synchronization flags subsequently has to
be performed recursively in the DFG, once constraints apply. Thereby, a downward-
propagation may result in recursive upward-propagations and vice-versa. Figure 6.6
shows an example.

Ports can not only be connected, but also disconnected. As a consequence, the syn-
chronization modes in the neighborhood of the released ports have to be updated, ac-
cording to the removed constraint(s). For this, it is important to keep track for each port
from which direction (upwards/downwards) potential constraints have been propagated

4though with other time and accuracy properties

72

(a) Downward propagation

(b) Upward propagation

(c) No propagation

Figure 6.5.: Propagation of synchronization modes in complex cases. Ports colored
lightly indicate the initial condition before the additional constraint be-
comes effective. The port imposing the additional constraint is depicted
with a thick, solid border. Ports that are affected by the additional con-
traint (and therefore change its synchronization type from AUTO to either
PUSH or PULL, are depicted by a thick, dashed border, the potential recur-
sive implication on other ports by an arrow.

to this port before. Internally, two synchronization flags are maintained for each edge/-
port, one for upward and one for downward propagation. Both can either be undefined
(AUTO) or have one of the values PUSH or PULL. However, they may never contradict
each other; operations that would lead to a contradiction are not allowed (see above).
The effective synchronization mode of the port is determined by the more distinctive
one of the two flags. When a constraint from downward (upward) propagation ceases to
exist, the flag for downward (upward) propagation is reset to AUTO; the new effective
synchronization mode then depends on the value of the flag for upward (downward) prop-
agation. If the latter is also undefined, the effective synchronization mode is also reset.
Note that the effective synchronization mode is irrelevant for upwards and downwards
sync propagation, only the other two flags are important. The effective mode is just used

73

Figure 6.6.: Example for recursive upwards/downwards sync propagation. The synchro-
nization of the pale ports is assumed to be already determined. An ad-
ditional constraint (bold, solid border) leads to recursive implications for
other ports (bold, dashed border). The recursion propagates upwards and
downwards in the DFG, as indicated by the thin arrows.

to update the GUI. The downward (upward) recursion terminates whenever a trigger
component is visited where the propagation does not result in further implications (cf.
Figure 6.4(c)) or when a non-trigger component is visited.

Let us consider the directed graph Gp of synchronization dependencies with the in-
dividual data flow ports as its nodes, and edges between those ports that might affect
each other’s synchronization mode. Gp includes dependencies between input ports and
their matching output ports in the DFG (inter-component port dependencies), though
maybe in opposite direction, depending on the propagation direction. Furthermore,
Gp includes dependencies between ports inside individual data flow components (intra-
component port dependencies) according to Figures 6.4 and 6.5. A partial exemplary
Gp is depicted in Figure 6.6 in terms of the data flow ports and the thin arrows between
them.

Gp contains dependencies only between two auto-triggered ports. By assumption, as
soon as at least one port with a fixed synchronization mode is involved, the match can be
directly validated or rejected without prior recursion. However, the subsequently carried
out recursive propagation may still reveal conflicts in other parts of Gp in case it is not
a tree, as shown in Figure 6.7.

74

Figure 6.7.: Conflict during recursive sync propagation arising from a loop in the DFG.
The Output of Component C is assumed to be already determined. The
additional constraint implied on Component A reveals a contradiction on
its Output port. The conflict is resolved automatically by releasing the
connection between Component A and Component B.

In most practical cases, however, Gp is a tree. In general, loops in the data flow are
allowed by UTQL. In practice, they occur mostly in the context of data flow steering
mechanisms as discussed in 11.2, though with fixed synchronization flags only. For an
example, refer to Figure 11.3. None of the DFGs discussed in this document results
in a cyclic Gp. In the rare case of a cylic Gp, special considerations are needed. The
loop has to be detected during recursion and terminated, such that Gp can again be
considered a tree. The problem is to justify the termination of recursion in such a loop.
Two possible cases exist when a loop leads to a sync flag to be visited a second time:
either the propagated sync flag is consistent with the set sync flag or not. In the former
case, the recursion can trivially terminate here without further actions. The latter
case is more problematic. The only way to terminate the recursion here is to release
the contradictory match and to inform the user about this operation. She may then
decide about measures to mitigate the contradiction, e.g., by manual insertion of a Linear
Interpolation component and establishing the matching again afterwards. Of course,
releasing the contradictory matching results in two additional recursive propagations of
AUTO, one going upwards, starting at the released output port and one going downwards,
starting at the released input port. This relaxation of the constraints, however, may not

75

lead to any additional contradictions.
Consequently, Gp can always be considered to have a tree-like structure. This allows

for efficient reevaluation, following the partial order imposed by Gp and thus supports
interactive editing even for large DFGs.

6.5. trackman Editor Functionality

With node unification and edge matching, SRGs can be constructed from scratch. Addi-
tional functionality is needed when dealing with existing SRGs. This is important for the
maintenance of existing setups and also to recover from modeling mistakes. Therefore,
trackman also provides the following interaction schemes.

Target

Target Pose [Pose]

Tracker

HMD Pose [Pose]

HMD

Inverted Pose [Pose]

Query [Pose]

Product [Pose]

(a) Isolate pattern outputs

Target

Tracker

BC [Pose]

B

AB [Pose]
HMD Pose [Pose]

HMD

Product [Pose]

Inverted Pose [Pose]
Target Pose [Pose]

(b) Isolate pattern inputs

Figure 6.8.: Result of the isolate pattern outputs and inputs operations, invoked on the
Multiplication pattern contained in Figure 5.2(b).

• Isolate Pattern Outputs: It is possible to separate the output edges of the pattern

76

Target

Target Pose [Pose]

Tracker

HMD

HMD Pose [Pose]

Query [Pose]

Tracker

Figure 6.9.: Result of the split node operation on the A.R.T. Tracker node in the exem-
plary base SRG (cf. Figure 5.2(a))

from connected nodes/edges in the input section of other patterns. The effect of
this operation is shown exemplarily for our example SRG (cf. Figure 5.2(b)). In
Figure 6.8(a), the operation has been invoked on the Multiplication pattern; its
single output edge has been isolated from all matched input edges, in this case
only the edge named Query.

• Isolate Pattern Inputs: To complement the previous scheme, one can also separate
the input edges of a pattern from its context, effectively annulling all dependencies
between these input edges and corresponding output nodes/edges of other patterns.
Invoking this operation on the same Multiplication pattern results in Figure 6.8(b).
This implies also the separation of those input nodes that are neither source nor
sink of an output edge of the pattern, such as node B of the Multiplication pattern.

• Isolate Pattern: This operation combines the two operations above and brings the
pattern back to its atomic form.

• Delete Pattern: The pattern is removed from the current SRG. It does not matter
whether the pattern was integrated in some larger SRG structure or existed in its
atomic form. In the former case, an isolate pattern step is implicitly performed
first.

• Hide Pattern: Parts of the SRG are hidden to provide an abstracted, clearer view
of the SRG in the editor window. trackman provides this functionality on a per-
pattern basis.

• Hide Edge: Individual edges of the SRG can be hidden by double-clicking them,
to provide a clearer view on the SRG. Hidden edges are revealed temporarily by
selecting either its source or sink node. Subsequently, they can be made visible
permanently again by another double-click on the edge.

77

• Split node: This operation revokes the unification of nodes, though without break-
ing the graph structure and without undoing any edge-matchings. Applying this
feature to the A.R.T. Tracker node in Figure 5.2(a) would result in two indepen-
dent A.R.T. Tracker nodes, as depicted in Figure 6.9. However, it would have no
effect on the same node in Figure 5.2(b), due to the constraints implied by the
Multiplication pattern which cannot be reduced beyond its atomic form.

The Hide Pattern and Hide Edge features are crucial to maintain clarity in large SRGs
such as the one shown in Figure 13.11 which consists of more than 70 patterns. Indeed
most of the SRGs discussed in the remainder of this document show only the relevant
information.

78

7. Common Modeling Tasks

Based on the concepts described so far, more complex solutions for realistic scenarios are
now provided in terms of SRGs and the corrsponding DFGs. This comprises exemplary
application data flows and also several common registration problems in IAR, where
static spatial transformations between rigidly installed sensors, markers, and other ob-
jects are determined. Though registration problems actually have to be solved before
the application data flow can be used, the sequence of their treatment is interchanged
because the application data flows are easier to understand.

7.1. Application SRG

In the following, application data flow descriptions are derived for the two exemplary
scenarios introduced in 1.3.2, the intelligent welding gun and the augmented airplane
cabin. This also incorporates data flows that could not be modeled based on the “flat
SRG” concept described by Pentenrieder [Pent 09].

7.1.1. Example: Indirect Tracking for the Intelligent Welding Gun

One of the currently most common tracking setups for AR and VR applications consists
of an outside-in configuration with a number of infrared cameras mounted rigidly to the
environment, observing a fixed volume within their midst. The camera arrangement im-
poses restrictions on the tracking of moveable objects inside/below/behind other opaque
objects in the scene. This occlusion problem is not generally solvable by adding addi-
tional cameras to the classical outside-in setup since, first, occlusions generated by scene
objects cannot always be known in advance, and second, the scene may offer only small
and varying viewing angles to the outside, which cannot simply be covered by adding
some more cameras. This is especially true for trackable objects surrounded by other
objects, e.g., a tool inside a car body.

The indirect tracking approach already introduced in 1.3.2 adds an additional, mobile
IR tracking system which can be placed in the scene on-the-fly such that it can see
trackable objects that are hidden to the stationary cameras. The mobile setup itself is
equipped with a marker such that its pose can be tracked by the stationary setup (see
Figure 7.1).

The spatial relationships of the proposed tracking approach are depicted in Figure 7.2.
The car body is mobile; it is tracked with respect to the Stationary Cameras (world
coordinate system) using the A.R.T. Tracker pattern. The Welding Gun is tracked in the
same way (direct tracking).

79

Figure 7.1.: Mobile tracking system with an attached marker consisting of six retrore-
flective fiducials

Stationary
Cameras

Car
Body

Result

Combined Measurement

Direct Tracking

Indirect TrackingTracked

Tracked

Welding
Gun

Mobile
Target

Offset [Static]

Tracked

Mobile
Cameras

Figure 7.2.: SRG for indirect tracking of the intelligent welding gun. All edges represent
pose transformations. Only the important spatial relationships are shown,
most intermediary results are hidden for the sake of clarity.

The same transformation can also be estimated via indirect tracking. It is then then
given by a concatenation of several transformations via the Mobile Target and the Mo-
bile Cameras. The mobile target is again tracked by the A.R.T. Tracker pattern. The
transformation between the Mobile Target the Mobile Cameras is static and it has to be
registered before, e.g., using the method described in 7.2.2; it is incorporated via the
Calibration Reader component. The quality of this registration is crucial, it is therefore
further investiaged in 13.1.2. The last step in indirect tracking is the transformation of
the Welding Gun with respect to the Mobile Cameras; it is again provided by the A.R.T.
Tracker pattern. Of course, the direct transformation between the Stationary Cameras
and the Welding Gun can still be used, when available. A Time Complementary Fusion
component prioritizes the latter over the indirectly tracked transformation (Combined
Measurement). It also provides a useful reference value for evaluating the quality of
indirect tracking 14.2. The complete SRG and DFG can be found in Appendix A.1.

80

7.1.2. Example: Discrepancy Checks in the Airplane Cabin

The scenario of discrepancy checks in an airplane cabin has been introduced in 1.3.2. Due
to the large volume to be covered, and the requirement for quick setup and dismantling
procedures for the tracking system, a mobile IR tracking system mounted on a tripod is
used that references itself using various reference markers mounted in the cabin. This is
another variant of indirect tracking (see also 7.1.1).

Tracked

Probe
Marker

Tip Offset
[3D Position]

[Static]

Realtime
Tracker

Tracked

Ref.
Target
(LED)

Tablet
PC

Tracked

Probe
Tip

Result

Result

Offset [Static]

Offset [Static]

Ref.
Target
(CAD)

World

Figure 7.3.: SRG for discrepancy checks in an airplane cabin. Edges represent pose trans-
formations unless otherwise noted. Only the important spatial relationships
are shown, all intermediary results are hidden for the sake of clarity.

Figure 7.3 shows the spatial relationships between the involved entities. The world
coordinate system is defined by the CAD model of the airplane cabin. The goal is to
track in this coordinate system the position of the tip of a probe such as depicted in
Figure 1.6(c) for quantitative discrepancy checks, as well as the pose of a Tablet PC
depicted in Figure 1.11 for qualitative comparison. A mobile IR tracker1 is used for
real-time tracking.

The IR tracker references itself via reference markers that are installed in the scene.
Only one such reference target is represented in the SRG. The Reference Target (CAD)
node represents the coordinate system of the CAD model of the precisely manufactured
target. Another node represents the distinct coordinate system spanned by the six IR
LEDs mounted to the reference target, as it is used by the real-time tracking system. The
transformations between World and Reference Target (CAD) as well as between Reference
Target (CAD) and Reference Target (LED) are static. Their estimation is described below
in 7.2. For now, it is assumed that they are already known such that they can be inserted
into the SRG in terms of two Calibration Reader patterns. The other two solid edges are
given in terms of NDI Optotrak patterns, one to track the Reference Target (LED) and
another to track the Tablet.

1NDI Optotrak Certus HD [NDI 11]

81

The edges can be concatenated using the Inversion and Multiplication patterns to com-
pute the desired transformations. Since all NDI Optotrak patterns belong to the same
trigger group, no push-pull conversion is needed. The complete SRG and DFG can be
found in Appendix A.1.

7.2. Calibration and Registration

Calibration typically denotes the estimation of parameters which describe the exact
behavior of an individual physical device or object. From the Ubitrack point of view, the
calibration of individual sensors or trackers is typically accomplished by the proprietary
methods of the system vendors, which are beyond the scope of this thesis.

In 5.3.2, common registration patterns were introduced to determine static offsets be-
tween the coordinate systems represented by sensors, markers, or other objects. Confus-
ingly, some of them carry the word “calibration” in their names instead of “registration”,
such as the Tip Calibration, Hand-Eye Calibration, and SPAAM Calibration, due to histori-
cal reasons. Others are called 2D-3D Pose Estimation or Absolute Orientation (also known
as 3D-3D pose estimation). These terms are maintainted when referring to the concrete
algorithm. However, the term registration is used when referring to the estimation of
static spatial relationships in the SRG in general, regardless the algorithm(s) that could
be used to obtain a solution. Abstractly speaking, a node B is registered relative to
another node A when the static edge from A to B is known.

7.2.1. Basic Solution Patterns

As a matter of principle, a registration data flow is constructed in the same way as
any other tracking application data flow; it can be described fully by SRGs and DFGs.
Generally speaking, in a typical registration process, the IAR-engineer has to move
object(s) according to some rules depending on the chosen registration method while
the object(s) is (are) tracked by sensor(s) in the environment. The tracking data of each
sensor(s) is stored, and the desired static transformation can be determined from this
data.

Some processes require IAR-engineers to align several objects, e.g., the 2D image
displayed by the HMD with a given 3D coordinate for SPAAM Calibration or the tip of
a probing device with drillings known in world coordinates. In such cases, the engineer
has to signal when he is ready to take a measurement. When enough measurements
have been collected, the desired registration can be computed. The minimum number
of measurements depends on the chosen method, e.g., at least 3 corresponding 3D point
measurements are needed in two coordinate systems to use the Absolute Orientation
pattern. Normally, much more than the minimum number of measurements should be
collected to reduce errors by a least-squares optimization process.

During the registration process tracking measurements are streamed (pushed) from
one or more trackers into the DFN. They can be conditioned in three different ways
before being passed to the actual registration algorithm:

82

Probe
Tip

Realtime
Tracker

Sampled Measurement

Buffered Measurement

Probe
Marker

Tip Offset
[3D Position]

Tracked Measurement

(a) SRG (b) DFG

Figure 7.4.: SRG and DFG for tip calibration based on discrete measurements. The
SRG shows all intermediary results.

Discrete measurements In the simplest case, all measurements provided by the tracker
are being continually collected, at the discrete update rate of the tracker. They can
either be directly fed into the time-expanded registration algorithm or stored using
the Recorder pattern. If the update rate is too high, it can be sub-sampled. For this
purpose, the collection mechanism is extended by adding the Buffer component2

and Sampler components upstream in the data flow, as depicted in Figure 7.4(b).
The desired frequency can be specified as an attribute of the Sampler component.
The SRG and DFG are depicted in Figure 7.4. The SRG is just a bloated version
of the Tip Calibration pattern, it does not reveal much more information. The DFG
however presents the necessary sequence of operations quite intuitively.

User-triggered measurements Instead of sampling automatically at regular time in-
tervals, measurements are taken upon user interaction. An asynchronous event
injected into the data flow via the Application Push Source Button component trig-
gers the Gate component to let pass a single measurement. This method fits well
with registration methods that require the manual alignment of objects. Figure 7.5
demonstrates this concept by means of the absolute orientation problem. The SRG
is omitted this time, it corresponds to the Absolute Orientation pattern depicted
in Figure 5.9(a). A generalized approach for tracker/display calibration by user-
triggered measurements has been presented by [Bail 03].

Some calibrations just need measurements from one tracking modality as input. The

2Using Linear Interpolation would degrade the quality of the data

83

Figure 7.5.: DFG to solve the absolute orientation problem based on user-triggered
measurements

tip calibration depicted in Figure 7.4 is one example. Registering a tracker coordinate
frame with the world by probing a list of 3D coordinates on the object whose counterparts
in world coordinates are already known (e.g., from the CAD model), is similar. Data can
then flow directly in the DFN from the data collection components to the registration
components. This allows for online incremental parameter estimation as soon as the
minimal number of measurements are provided. If desired, more measurements can
be taken in order to incrementally improve the registration until the residual error is
considered to have converged against a reasonable value3. This is picked up again in 14.1.

In many calibration and registration processes, however, data streams of different
trackers need to be associated with one another to obtain pairs of corresponding mea-
surements. There are mainly two interaction methods for IAR-engineers to establish
such correspondences between measurements from several trackers:

Simultaneous measurements Both measurements can then be fed directly into the
time-expanded registration component in the DFG and one SRG is still sufficient
to describe the entire procedure. An example is shown in Figure 7.6. The asyn-
chronous timestamps of the two trackers have to be balanced, e.g., using the Linear
Interpolation component, if the two trackers do not correspond to the same trigger

3under the ideal assumption of no outliers

84

group; otherwise, the DFG simplifies a bit. The negative effects of this interpola-
tion, as well as means to mitigate them, are described in detail in [Pust 11]. Most
importantly, the measurements with the higher update rate should be interpolated
to minimize interpolation errors. Using this solution, we can still benefit from
on-line incremental parameter estimation. It can be used with discrete measure-
ments as well as with glspluser-triggered measurement. The DFG in Figure 7.6
uses user-triggered measurements. For discrete measurements, the combination of
Buffer and Sampler shown in Figure 7.4(b) would have to be replicated for both
inputs of the Hand-Eye Calibration component. This method is well-suited for the
Hand-Eye Calibration pattern since the poses of two distinct entities Hand and Cal-
ibration Object can easily be tracked simultaneously, as depicted in Figure 5.9(b).
Similarly, the measurements for SPAAM calibration (cf. Figure 5.9(d)) should also
be collected simultaneously. On the contrary, to register two trackers with each
other via Absolute Orientation, a single pointing device that can be tracked by both
trackers, such as shown in Figure 1.6(b) or 1.6(c), would have to be moved around
to generate 3D point correspondences; this works only if two compatible trackers
are used.

Reproduction of measurements The idea is to conduct corresponding measurements
(e.g., a set of 3D points in space) sequentially, using one tracking system then the
other. Thus, a two-step approach for data-acquisition is needed, resulting in two
data flow descriptions.
First, a list of user-triggered measurements using tracking modality A is aggre-
gated via the Time-To-Space-Expansion Converter component and stored in a file
via the Calibration Writer component. This represents a form of implicit space-
expansion. Analogously to Figure 7.5 above, an Application Push Source Button
and a Gate component are used for the acquisition of user-triggered measurements
from modality A.
In the second data flow, the actual registration can take place, using both, mea-
surements from the stored file via the Calibration Reader pattern and user-triggered
measurements from tracking modality B, again analogously to Figure 7.5). The
implicit space-expansion of measurements from modality A is revoked by the List
Extractor component to obtain single time-expanded measurements again; they
can be processed, together with time-expanded measurements from modality B,
by the time-expanded version of the registration component. This method does
not work well with the discrete measurements method described above since it is
rather difficult to exactly reproduce the complete trajectory of an object, except
if you have a robot at your disposal. Often, aids are installed in the environment
to ease the reproduction of 3D point measurements. In metrology, adapters with
standardized drillings are used for this purpose which allow for repeated probing
using devices from different vendors having spherical tips with a common diameter
(see for example Figure 1.6(c)).

85

7.2.2. Example: Hand-Eye Calibration for Indirect Tracking Setup

Two alternative methods can be used to estimate the static offset (green edge in Fig-
ure 7.2) between the Mobile Target and the Mobile Cameras. One solution to this problem
is to use the Hand-Eye Calibration pattern (cf. Figure 5.9(b)), with the Stationary Cam-
eras being the Robot, the Mobile Target being the Hand, and the Mobile Cameras being
the Eye. A marker visible to the Mobile Cameras can be placed rigidly in the scene as
the Calibration Object. The problem can hence be solved using the data flow description
depited in Figure 7.6. However, moving around the mobile setup and rotating about
various axes as needed by the algorithm, turned out to be difficult in practice, due to
the weight of the marker board and the deflections of the rigid connection resulting from
it.

The second alternative is a bit more elaborate. The Stationary Cameras and Mobile
Cameras are placed rigidly in the scene. Then, the Absolute Orientation scheme with
simultaneous measurements (see 7.2.1) is used to register both trackers with each other
based on the measurement of corresponding 3D point features. Concatenating the re-
sulting static transformation with the tracked transformation of the Mobile Target with
respect to the Stationary Cameras yields the desired result.

7.2.3. Example: Registration of the Reference Target in the Airplane Cabin

Each reference target is a plate precisely manufactured from a CAD model, with drillings
that can be probed using a laser tracker metrologic measurement device as depicted in
Figure 1.8 and 25 other drillings that can be probed with the IR tracker and a suited
probing device such as shown in Figure 1.6(c). For, this, the 3D coordinates of all
drillings that are known with high precision from the CAD model of the reference target
are provided in two text files suitable for the Calibration Reader component. Measuring
at least three drillings on the reference marker with the laser tracker allows computing
its rigid transformation in the World (aircraft) according to Figure 7.5.

When looking at the SRG in Figure 7.3, the only missing registration is between the
CAD model and the LED marker of the reference target. The LEDs have been attached
manually to the plate and are therefore not known with high precision. A registration can
be obtained by probing the 25 drillings known in the CAD model with the probe, again
according to Figure 7.5. The rather large number of 25 points shall reduce registration
errors from the rather inaccurate real-time tracking.

7.3. Application Interfaces

Typically, the data flow is driven by trackers that push their measurements into the data
flow network. Therefore, the sink(s) of the data flow (resulting transformation) also have
type PUSH if not explicitly changed by insertion of a push-pull conversion component.
The default thus is to use the Application Push Sink Pose pattern to convey the infor-
mation to the application. This and other patterns to model application interfaces hav
already been listed in 5.3.2.

86

In some situations, it makes sense to use other means. In the intelligent welding gun
scenario (see 7.1.1), a legacy application without indirect tracking was already available.
It did not depend on Ubitrack but rather used the tracking data from the IR tracking
system directly which are transmitted via UDP packets over the network. Therefore, a
component called A.R.T. Sender was implemented which emulates the tracking system
by sending UDP packets with the same format. The component serves as a drop-in
replacement for the Application Push Sink Pose component. Therefore, no changes in the
actual IAR application were needed for the migration of the tracking system to Ubitrack
and indirect tracking.

87

Calib.
Object

Eye

Interpolated
Marker Pose

Robot

Hand--Eye

Hand

Tracked Measurement

Gated Pose

Marker Pose

Proj. Matrix
[3x3 Matrix]

[Static]

Image
Plane

Image [Image]

Undist. Image
[Image]

Dist. Coeffs
[4 Vector]

[Static]

(a) SRG

(b) DFG

Figure 7.6.: SRG and DFG to solve the hand-eye calibration problem using simultaneous
user-triggered measurements. The SRG shows all intermediary results. Note
that the event generated by the Application Push Source Button component
does not have a representation in the SRG since it does not have a spatial
interpretation.

88

8. Advanced Graphical Modeling Concepts

The implementation of the sample scenarios above reveals major potential for improve-
ments in the graphical modeling process. This section describes two techniques that
can further ease the SRG modeling process. Semi-automatic modeling automates sim-
ple operations and lets the user focus on the essential deduction steps. Meta-patterns
provide best-practice solutions to well known problems, reducing the modeling problem
to the addition of a few patterns only. Both techniques significantly reduce the number
of modeling operations that have to be performed manually.

8.1. Semi-Automatic Modeling

Manual pattern matching can become a very tedious procedure. In more complex setups,
the number of patterns to be integrated in the SRG increases quickly. A concatenation
of n edges requires n− 1 applications of the Multiplication pattern. In addition to that,
some edges have to be inverted. In practice, approximately half of all matchings of full
patterns fall upon the Inversion and Multiplication patterns (e.g., 5 out of 12 in Figure 7.2
and 6 out of 13 in Figure 7.3).

Automatic pattern matching can relieve the user from the trivial aspects of these
and other modeling operations. Figure 8.1 depicts a typical modeling situation. The
transitive transformation from A to D shall be deduced using known transformations
from A to B, B to C, and C to D, respectively. Three full patterns are necessary to solve
this simple problem and overall six solutions exist, one of them is shown in Figure 8.1(b).
It first deduces a transitive transformation from B to D (Multiplication), then converts the
synchronization mode of transformation A to B from push to pull (Linear Interpolation)
and finally concatenates both to the desired result (Multiplication).

Fully automatic pattern matching is offered by the Ubitrack server. [Hube 07]
[Pust 11]. In principle, any edge in the SRG can be deduced automatically, if there is a
solution at all, by iteratively applying full patterns in a brute-force approach. Though the
SRG concepts guarantee that the automatic pattern matcher only inducts semantically
meaningful SRG edges, the approach has its limitations in selecting optimal patterns for
every purpose. It is not easy to ensure that the chosen deduction steps meet the AR
engineer’s notion of the solution. The distributed DWARF tracking framework uses a
path search strategy ondirected graph model to insert trivial operations such as inversion
and multiplication automatically [Wagn 05]. This algorithm performes much faster than
brute-force pattern matching. However, it works only for trivial operations.

In particular, the many push/pull variations may require fine-tuning by the engineer,
once the overall setup has been configured. Assuming that the two tracked edges in
Figure 8.1 offer comparable tracking quality at different frequencies, the location of the

89

A

D
Query

B

Tracked Measurement

Offset [Static]
C

Tracked Measurement

(a) Deduction problem

Result

B
Offset [Static]

C

Interpolated Measurement
Tracked Measurement

A

D

Tracked Measurement
Product

(b) One possible solution

Figure 8.1.: Typical modeling situation which requires many applications of full patterns.

Interpolation component in the DFG influences the resulting quality and one would want
to interpolate between measurements of the faster tracker. Differing tracking qualities
between both trackers further complicates the consideration.

To exploit the best of both options, trackman provides semi-automatic modeling fa-
cilities. It uses the same pattern-matching algorithm as the Ubitrack server. During
manual operations, IAR-engineers can enable automatic pattern matching for individual
groups of patterns (e.g., for all variations of the Multiplication pattern or the Inversion
pattern) while keeping other, more critical patterns such as the LinearInterpolation under
strict manual control.

The automatic pattern matcher can be invoked in two ways. The first is to select the
source and then the sink node of the transformation to be deduced and then to activate
the matcher in the menu. The second method is to first integrate a query pattern into
the SRG by unifying its source and sink nodes and then invoke the matcher on the
corresponding dashed input edge.

Both, manual and automatic pattern matching have their advantages and drawbacks.
This is reflected in the semi-automatic modeling approach, and also in the fact that
trackman and the Ubitrack server use the same SRG and data flow description formats
such that both concepts can be further interlocked on the middleware layer in the future.

8.2. Meta-Patterns

Another approach to simplify the modeling task is to provide reusable template solutions
for common, recurring problems in terms of meta-patterns.

90

8.2.1. Definition

Basically, a meta pattern is an SRG consisting of more than one pattern that can be
embedded in other SRGs for reuse. It contains only those patterns that belong to the
reusable core of the solution. Interchangeable aspects can be left open. In particular,
the meta-pattern may contain unmatched input edges (dashed). A meta-pattern can be
embedded in an SRG like any other pattern. It differs from a normal pattern (cf. 5.3)
in that it is non-atomtic and can always be dissected in its building blocks.

Object

Tracked Measurement

Tracker

Result

Inverted Measurement

Tracked Measurement

HMD

Figure 8.2.: Meta pattern describing the principal layout and application interface of the
sample SRG in Figure 5.2(b).

To illustrate the idea behind meta patterns, Figure 8.2 shows the sample SRG from
Figure 5.2(b) with all base patterns removed, i.e. nodes have a dashed rather than a
solid line (see also Figure 6.8). This meta pattern still conveys the basic structure of the
sample application, with HMD and target being tracked by a single tracking system, as
well as the application interface. It can be completed by simply matching an arbitrary
tracker pattern (providing a push measurement of type Pose) twice with the input edges
of the meta pattern in order to obtain a valid data flow description again.

8.2.2. Applications

Registration problems are especially suitable for a description in terms of meta patterns.
The estimation of a static transformation is generally constructed around a fundamental
registration algorithm. Furthermore, a more or less constant set of additional patterns is
needed which are responsible for steering the process of measurement acquisition. Fig-
ure 8.3 shows an exemplary meta pattern built around the Hand-Eye Calibration pattern
according to the user-triggered simultaneous measurement acquisition scheme described
in 7.2.1 (cf. Figure 7.6).

Only the Pose measurements of two trackers have to be added to complete the meta
pattern to a full SRG (dashed edges). In this example, the measurements are collected
simultaneously, manually upon user interaction (cf. 7.2.1). Furthermore, the Calibration
Writer component has to be parameterized with a suitable path. The other solution
patterns for registration problems provided in 7.2.1 can be packaged in meta-patterns
in the same way.

91

Calib.
Object

Interpolated Pose

Gated Pose

Hand--Eye

Hand Pose

Calib. Object Pose

(a) Fully visible

Hand Pose

Calib. Object Pose

Hand--Eye

(b) Interface only

Figure 8.3.: Meta pattern for hand-eye calibration based on user-triggered simultaneous
measurements. (a) With all patterns and edges visible. (b) With all except
the interface hidden (cf. 6.5)

Meta patterns provide a quick solution for algorithm-centric problems such as registra-
tion procedures where complex data flow operations such as synchronization, aggregation
and user interaction are integrated around a central algorithmic pattern. Particularly
these complex data flow operations highly increased the complexity of modeling the
data flow. They cannot be treated intuitively in the SRG (cf. 6.4.3), requiring the IAR-
engineer to switch to the low-level DFG editor. Meta-patterns thus help to reduce the
amount of expert knowledge needed to solve particular problems.

8.2.3. Integration in trackman

The current implementation of trackman does not yet handle meta patterns conceptually,
i.e. there is no explicit category or treatment for them. Rather, meta patterns can be
stored to or loaded from a UTQL file, like any other SRG. Also, they can be imported
into existing SRGs. trackman does not have a notion of a meta pattern as a single entity;
rather, the set of atomic patterns it consists of are handled individually. This also means
that meta patterns are not supported in automatic pattern matching. At least, the edge
and pattern hiding mechanisms (cf. 6.5) can be used to mask internal functionality of
the meta pattern in the SRG editor and present to the user only its interface in terms
of those input and output edges that are relevant for embedding the meta pattern, as
demonstrated in Figures 8.3(a) and 8.3(b).

However, these internals cannot be hidden in the DFG view. Instead, it should be
possible to treat the meta pattern as a single pattern in the GUI and to construct
meta patterns containing other meta patterns, recursively. In the DFG view, the meta
pattern could then be compacted to its interface, too, as depicted in Figures 8.4(a) and
8.4. This could simplify the DFG to a great extent. A group feature would be necessary
to create ad-hoc meta patterns. An ungroup feature would allow one to “enter” the
meta pattern again for later changes. Such a functionality is known from graphics and
presentation software suites such as Powerpoint, to group primitive geometric shapes.

92

(a) DFG (b) Compacted component

Figure 8.4.: DFG of meta pattern for hand-eye calibration based on user-triggered si-
multaneous measurements. (a) With all data flow components visible. (b)
Desired representation as a compacted data flow component revealing the
interface of the meta pattern only.

It is also available in Matlab Simulink [Simu 11] where data flow components can be
nested recursively (cf. 3).

This would allow for a consistent assembly/disassembly of the meta pattern; removing
it from the SRG again would be a single operation only. The performance in trackman
would increase, in particular the performance of automatic sync propagation (cf. 6.4.4).
Last but not least, meta patterns could also be used in automatic pattern matching.

Remark: In case of doubt, new Ubitrack data flow components shall be designed
as fine-grained as possible to allow for maximum flexibility. If functionality can be dis-
tributed to several components, this is the way to go. A bad example is the DirectShow
Framegrabber component. Unlike the other framegrabbers in Ubitrack (see 5.3.2, it al-
ready contains the radial undistortion, although this functionality also exists as dedicated
Radial Undistortion component. Although this results in DFGs containing more atomic
data flow components, the complexity, and also the number of matching operations in
trackman can be kept low using meta-patterns; the DFG also remains maintainable.

93

9. Discussion

9.1. Summary

Unlike other graphical data flow editors such as [Serr 08], Matlab Simulink [Simu 11],
and Spatial Analyzer [Kine 11], trackman provides a two-layered graphical modeling ap-
proach. The SRG allows for an intuitive understanding of the spatial relationships and
guarantees the semantic correctness of the resulting DFG. In a round-trip engineering
approach, data flow oriented operations can be directly performed on the DFG, with-
out loosing the semantic correctness property. IAR tracking scenarios with unforseen
complexity could be realized using this tool. Pattern templates can be imported for
modeling from their XML specifications, keeping trackman compatible with upcoming
Ubitrack versions.

During an offline planning phase, the tracking problem at hand is described by itera-
tively inserting spatial relationship patterns (components) into an initially empty SRG
(DFG) and combining them by node unification and edge matching (port connection)
operations. The sequence of modeling steps is almost arbitrary, bottom-up and top-down
modeling being the two border cases. Many pattern application steps can be automized
which simplifies the design process a lot. In this semi-automatic modeling process, the
IAR-engineer always keeps control of granularity and scope of automatically-made de-
cisions. Furthermore, meta patterns provide default solutions to common problems,
reducing especially calibration problems to a few mouse clicks. The result of the model-
ing process is a data flow description that can be used by an application, together with
the Ubitrack library, to instantiate a tracking data flow. This enables us to change or
modify an existing tracking environment very quickly, without the need to alter the AR
application at all.

9.2. Advantages and Limitations of Graphical SRG Modeling

The SRG provides an intuitive representation of spatial relationships between different
coordinate frames of trackers, markers as well as real and virtual objects. It lends itself
to a documentation of the implemented concepts.

However, some non-spatial operations such as user-triggered events (cf. Figure 8.3(a))
or image undistortion (cf. Figure 7.6(a)) are not manageable intuitively in the SRG.
It should rather be restricted to spatial transformations. Non-spatial operations also
represent a big challenge in implementing the system. However, due to round-trip engi-
neering, the SRG integrates well with the fully featured DFG and the SRG helps a lot
to understand the otherwise unintuitive DFG. One could think about restricting such

94

steps to the DFG only to avoid having many barely distinguishable edges in the SRG.
Alternatively, a hiding mechansim could be provided on an optional basis. Already,
the problem can be mitigated to some degree using meta patterns and the edge hiding
feature.

Even though many operations are better performed in the DFG than in the SRG, the
latter still allows for consistency checks regarding the spatial correctness of each modeling
step. However, procedural correctness is still difficult to ensure. For example, the
synchronicity of two PUSH inputs served by two Ubitrack tracker components belonging
to the same Ubitrack module cannot be verified, since the module concept is encapsulated
inside the Ubitrack library. It should be made explicit in the pattern templates used by
trackman.

9.3. Relationship between trackman and Dynamic SRG
Modifications

In the context of IAR, the need for dynamic SRG modifications has been received low
priority in 4.2.3 and 4.2.4. Nevertheless, trackman was designed as a generic tool. There-
fore, the interoperability of trackman and the Ubitrack server has been kept in mind,
even though it has not been pursued with a high priority. Both use the UTQL XML
dialect to convey SRGs and DFGs.

Base SRGs created in trackman can already be sent to the Ubitrack server for inte-
gration into the world SRG. In the other direction, trackman can open the returned full
SRGs, with some deductions in the graphical layout of the SRG and DFG. A continual
surveillance of the world SRG incorporating dynamic changes on-the-fly could easily be
implemented, if necessary. Furthermore, the pattern matching algorithm used to imple-
ment the semi-automatic modeling techniques described in 8.1 is identical to that the
Ubitrack server is using.

9.4. Possible Improvements

trackman could be enhanced in many ways. Currently, each SRG is treated individually.
As shown in Chapter 7, typically several SRGs are needed for a certain scenario, at
least one describing the application itself, and various more for prior registration tasks.
A project management facility would simplify the managemant of SRGs belonging to-
gether. In particular, paths to calibration files used by Calibration Writer and Calibration
Reader components could be handled consistently. Furthermore, wizards could easily be
provided to guide through the various registration steps in the correct order.

Wizards could also be provided for the solution of typical tracking scenarios, based on
the already available meta patterns. They should furthermore point out to missing SRG
edges to be provided as well as to mandatory or optional node/edge/pattern attributes
to be specified.

Especially during development and testing of an SRG, it should be possible to deacti-
vate individual patterns or meta patterns such that different variants of the data flow can

95

be tested without changing the SRG. This would especially help in cross-platform devel-
opment where patterns representing sensor drivers, such as for example framegrabbers,
sometimes have to be switched.

Patterns could be handled in an elaborate way. The pattern catalogue 5.3.2 lists more
than 200 patterns. The existing categorization in terms of pattern syntax and semantics
is quite helpful and the concept of trigger components (cf. 5.4.1) already constrains
the length of the catalogue by providing a single component only for n2 different sync
configurations, n being the number of inputs in the trigger group. An intelligent handling
of not only the synchronization type but also the data type would further constrain
the combinatorial explosion. Currently, there exist for example eleven versions of the
Multiplication component.

Regarding the GUI itself, several improvements lend itself to be implemented. Differ-
ent colors should be used for SRG output edges, depending on whether they are static
(base pattern), tracked (base pattern), or derived (full pattern). Additionally, output
edges directly connected to a query pattern (data flow sink) should be highlighted. An
example is shown in Figure 13.11.

Furthermore, an automatic hiding mechanism for edges and patterns would be helpful
to ease clarity. Edges could be shown/hidden according to the above-mentioned char-
acteristics also used for coloring. In addition to that, it would make sense to show/hide
output edges according to whether any input edges match against them or not. By
this, “used” edges could be hidden, accomodating the fact that many edges are needed
exactly once and afterwards only clutter the representation . This happens whenever
chains of data flow components occur in the DFG, as depicted in Figure 7.6(b).

In the DFG, a coloring scheme would be helpful to visualize data flow synchronization.
Showing pushed edges in red and pulled edges in green1 would make the DFG more
intuitive than in the screenshot of trackman (cf. Figure 6.1). Consider Figure 11.3 as
an example. It even distinguishes different sources of PUSH events.

An undo functionality would complement the existing set of operations. In fact, all
matching operations in the SRG/DFG can already be undone by selecting the proper
operation but a primitive undo is easier to use.

1As for most of the DFG graphics in this chapter

96

Part III.

Error Management

97

Tracking accuracy plays an important role in many AR applications, not only in the
IAR scenarios described in 1.3.2. In this part, a generic approach for the management of
tracking errors is formulated that is embedded in the methodology described in the pre-
vious part. It is based on verification by simulation paired with validation by empirical
measurements.

The chosen approach is evaluated, mainly based on our two exemplary scenarios, the
intelligent welding gun and the airplane cabin, as well as some additional preexami-
nations. Related concepts that are not directly applicable to our scenarios, are also
integrated into the context. All relevant steps for error management are considered,
ranging from the elementary specification of sensor uncertaintys via the tracking of in-
dividual markers and the registration of objects in the scene with respect to each other,
to the overall IAR application.

The subsequent chapters describe integral components of this general approach. Chap-
ter 10 starts with a review of statistical methods for the description and propagation
of uncertainties. This covers also existing standards in the field of industrial metrology.
Chapter 11 treats the integration of a Monte Carlo simulation framework into Ubitrack,
as a generic means for the propagation of uncertainties through the data flow towards the
spatial relationship that is relevant for the IAR application. This is based on an elemen-
tary specification of uncertainties that is assumed to be known for the involved sensors.
Chapter 12 elaborates on how to provide this elementary specification of uncertainty. It
shows how to determine a suitable degree of granularity to specify the basic sensor noise
for a given system and how to assign a realistic quantity with it. In Chapter 13, the
generic approach of verification and validation is finally applied to the main scenarios,
the intelligent welding gun and the augmented airplane cabin application. Based on this,
Chapter 14 demonstrates concepts for error mitigation during runtime. A wrap-up of
concepts to deal with measurement uncertainties is presented in Chapter 15.

98

10. Quantifying Measurement Uncertainties

This chaper reviews state-of-the-art methodolgies that exist in the field of AR for the
treatment of uncertainties. It starts with the statistical foundations for expressing un-
certainties. Common standards in the field of accuracy assessment for spatial sensing
devices are then presented. This is followed by a review of error propagation techniques
which also incorporates its relations to the field of metrology and nonlinear least-squares
parameter estimation. Finally, a generic verification and validation approach is for-
mulated, based on extensive simulation paired with a restricted number of empirical
measurements.

10.1. Representation and Categorization of Uncertainties

In this section, common error classification schemes are presented. Furthermore, basic
error statistics are introduced that are used throughout the remainder of this part.

10.1.1. Categorization(s) of Errors

Azuma distinguishes between static error and dynamic error [Azum 97]. The latter is
caused by various kinds of system delays and lags that are introduced during sensing,
data procssing, and communication between subsystems. See [Pust 11] for the impact
of dynamic errors that originate from within the tracking infrastructure. They impact
the overlay accuracy (e.g., in the HMD) during movement of the viewpoint or tracked
objects. Dynamic errors are not an issue as long as all objects remain still. For industrial
IAR applications that provide quantitative measurements to the user, static errors are
relatively more important and thus are investigated more thoroughly here.

Static errors are introduced mainly in the tracking subsystem, as well as in display
calibration. For the quantitative measurements needed in our scenarios, the latter can
be negelected since no AR overlays are diplayed. However, having an accurate real-time
tracking system is not sufficient to eliminate static errors. The overall static error that
is relevant for the application, is composed of various potentially independent sources:
sensor calibration, offline metrologic measurements, registration of coordinate frames,
and real-time tracking [Holl 95] [Holl 97].

Another often-cited classification distinguishes between precision and accuracy
[Baue 06] [Baue 07] [Pent 09]. The term precision denotes the characteristics of the
random distribution of samples around the sample mean whereas the term accuracy de-
notes a systematic deviation of the sample mean from the true value. In this model, it
is assumed that the random error in a certain measurement results from many different
influences which therefore can be modeled by a Gaussian distribution, according to the

99

central limit theorem. The systematic error, however, is caused by a few unknown and
uncontrolled effects.

Azuma used the term non-systematic to characterize random effects [Azum 97]. Pen-
tenrieder also makes this distinction in her work about AR based factory planning
[Pent 09]. Ideally, systematic errors can be fully removed by appropriate calibration
and registration procedures. An example is the undistortion of the magnetic field which
is warped under the presence of metal objects [Zach 97]. In effect, due to dynamic scene
changes (vibrations, dilatation due to temperature changes) and simplified physical mod-
els, systematic errors can never be fully eliminated.

Real-time tracking devices may provide many measurements at almost no cost, e.g.,
50 poses of a marker when the camera pose is kept constant for one second and the
camera provides 50 frames per second. It is questionable, however, whether such a sim-
ple repetition of the measurement under repeatability conditions yields much additional
information in terms of a realistic sample distribution. Rather, the observed sample
distribution is often rather small. To get better results, Niemeier and Luhmann suggest
to repeat the experiment under reproducibility conditions [Niem 08] [Luhm 00a]. In the
marker tracking example, this could mean to measure the poses of two markers instead
of just one, and to observe the relative pose offset between the two markers instead. If
the (unknown) true pose of two markers remains constant while the camera is moving to
capture the scene from different perspectives, the relative pose varies. The experiment
reveals an additional influence of error which depends systematically on the pose of the
camera with respect to the rigid arrangement of markers. But does this experiment
already reveal the full extent of systematic error that is present in the setup? Further
influences might be investigated that were kept constant so far, such as the distance or
the relative orientation between the two markers.

To demonstrate the importance of such systematic effects, we conducted a similar
experiment. Two independent IR tracking setups observe the pose of the same marker
which is lying on a table in the center of both tracking volumes. As Figure 10.1(a)
shows, the relative offset between the two trackers can be deduced from these two pose
measurements. Since the trackers are not moved during the experiment, the offset is
supposed to remain constant as the target is being rotated thrice about an axis orthog-
onal to the table. Using Equation 10.21, the rotational part of the relative offset can be
expressed in terms of a rotation axis and a single angle describing the rotation about this
axis. Figure 10.1(b) depicts this angle, relative to its mean value. Instead of a constant
value, a sinusoidal behavior is observed. This simple experiment already reveals a large
amount of systematic error.

The question remains whether all systematic influences have already been revealed,
or whether maybe more measurements under yet unexplorerd conditions (e.g., rotating
the marker about another axis than orthogonal to the table), would maybe reveal even
larger effects. To conclude, the assessment of all kinds of potential systematic influences
quickly becomes expensive or even infeasible.

This simple example poses several important questions. How can we obtain compara-
ble values from different kinds of measurements? Which canonical representation format
shall be used to represent all the errors? Is there a simpler experiment which yields the

100

A.R.T
Tracker

A

Measurement BMeasurement A

Inverted Measurement A

A.R.T.
Marker

A.R.T.
Tracker

B
Delta

(a) SRG

10 20 30 40 50
time @sD

-0.2

-0.1

0.1

0.2

DΦ @degD

(b) Deviation of ∆φ from its mean

Figure 10.1.: Simple demonstration of systematic error. A 6DoF pose offset ∆6DoF re-
lates both tracking systems. A single, relative orientation angle ∆φ is
derived by converting the quaternion to the axis-angle represenation us-
ing Equation 10.21 and subtracting its mean value. One would expect ∆φ

to be independent of the pose of the marker. However, it shows a large
sinusoidal oscillation, as the marker is rotated thrice on the table.

same results?

The ISO “Guide to the Expression of Uncertainty in Measurement” (GUM) [ISO 08]
suggests a pragmatic approach for the treatment of errors. It introduces the broader,
“operational” term uncertainty. It subsumes both, precision and accuracy and deliber-
ately makes a distinction to the classical, “ideal” term error. The latter, by definition,
can only be stated if the true value of the measurand is known, a requirement that can
hardly be met. The following elementary terms and definitions are directly quoted from
the GUM:

• Accuracy is the “closeness of the agreement between the result of a measurement
and a true value of the measurand. [...] The term precision should not be used for

101

accuracy.”

• Repeatability is the “closeness of the agreement between the results of successive
measurements of the same measurand carried out under the same conditions of
measurement”

• Reproducibility is the “closeness of the agreement between the results of measure-
ments of the same measurand carried out under changed conditions of measure-
ment”

• Uncertainty is a “parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to
the measurand”

• Error is the “result of a measurement minus a true value of the measurand”.

• Random error is the “result of a measurement minus the mean that would result
from an infinite number of measurements of the same measurand carried out under
repeatability conditions”. [...] “Random error is equal to error minus systematic
error.”

• Systematic error is the “mean that would result from an infinite number of mea-
surements of the same measurand carried out under repeatability conditions minus
a true value of the measurand”. It is “equal to error minus random error”. Fur-
thermore, “like the true value, systematic error and its causes cannot be completely
known”.

The GUM distinguishes two methods for the evaluation of uncertainties. Type A is
the “evaluation of uncertainty by the statistical analysis of series of observations”. This
comprises e.g., the a posteriori variances and covariances resulting from adjustment com-
putation which is often performed in conjunction with non-linear optimization [Niem 08].
Type B is the “evaluation of uncertainty by means other than the statistical analysis of
series of observations”. This incorporates among others the usage of uncertainties speci-
fied by the vendor or computed from previous measurement data. Type B uncertainties
can even be guessed, based on experience and general knowledge. This is reflected in
the following quotation: “The proper use of the pool of available information for a Type
B evaluation of standard uncertainty calls for insight based on experience and general
knowledge, and is a skill that can be learned with practice. It should be recognized
that a Type B evaluation of standard uncertainty can be as reliable as a Type A eval-
uation, especially in a measurement situation where a Type A evaluation is based on a
comparatively small number of statistically independent observations.” [ISO 08].

According to the GUM, an uncertainty value, be it expressed as a Type A or B value,
shall incorporate not only random effects (precision) but also all those systematic effects
(accuracy) that can be somehow assessed. This specification of one uncertainty value
that comprises both effects has several advantages. Forward and backward error propa-
gation techniques can be applied directly to derive the combined uncertainty of another

102

result in which the initial result is used. Confidence intervals can be directly computed.
Last but not least, no explicit distinction is needed. This is of great importance, since the
true value is normally unknown, so it is difficult to state systematic effects explicitly. For
this pragmatic approach, particularly the Type B specification of uncertainties, the GUM
has also been critized; nevertheless, it remains the state-of-the-art approach [Niem 08].

10.1.2. Basic Error Statistics

The derivation of the underlying error statistics would go beyond the scope of this
thesis. Therefore, just the notations are introduced, and the reader is referred to the
literature [Koch 97] [Niem 08] [Hart 00] [Baue 07] [Pent 09] [Pust 11].

Traditionally, error is specified as the deviation of a single sample xi of a measurand X
from the expected (true) value µ. The true value can be approximated by the arithmetic
mean (average) computed over the n sample values xi.

E[X] = µ ≈ X̄ =

∑n
i=1 xi
n

(10.1)

Deviations from this mean are typically characterized by the standard deviation σ, which
is approximated by the empirical standard deviation s.

VAR[X] = σ2 ≈ s2 =

∑n
i=1(xi − µ)2

n− 1
(10.2)

It represents the expected deviation of the sample from µ. For larger n, the empirical s
approaches the unknown true standard deviation σ and the −1 can be omitted. Often,
its squared value, the variance σ2 is specified. For multi-dimensional measurements
such as 3D position measurements, or 6DoF poses, the covariance matrix Σ replaces the
variance σ. Σ is a positive semi-definite matrix in general. Its computation is described
below in 11.

The distribution of the empirical sample mean X̄ is again a random variable. If it is
computed from uncorrelated Xi, it has the variance

VAR[X̄] = VAR[

∑n
i=1Xi

n
] =

∑n
i=1 VAR[Xi]

n2
=
σ2

n
. (10.3)

An important property of the variance is used here which states that the sum (or the
difference) of uncorrelated random variables is the sum of their variances. As a con-
sequence, the estimate of a quantity, e.g., an uncertainty, becomes better (decreasing
variance), the more (uncorrelated) samples are incorporated and converges to 0.

Often, for random variables, a Gaussian distribution function can be as-
sumed [Koch 97] [Niem 08] [Gelb 74]. In the general, multidimensional case, it is defined
by

f(x) =
1

(2π)
n
2 (detΣ)

1
2

e−
1
2

(x−µ)TΣ−1(x−µ). (10.4)

103

In some cases, uncertainties might be better represented by a uniform distribution than
by a Gaussian distribution [ISO 08]. For this case, a conversion is necessary between
the sample variance and the minimum and maximum devations that characterize the
uniform distribution. The variance of a uniform distribution is given by

σ2 =
1

12
(max−min)2. (10.5)

Assuming that |min| = |max| and solving for |max|, we obtain

|max| =
√

3σ. (10.6)

This allows one to represent the empirical standard deviation s to be used with a one-
dimensional uniform distribution and is needed below to generate artificial measurement
data for simulation purposes. The generation of general uniform distributions from
a given covariance matrix Σ is non-trivial, since uniformity, unlike normality, is not
preserved by linear transformations. A method for the generation of multi-dimensional
correlated random variables according to a general covariance matrix has been described
by Fackler [Fack 91].

10.1.3. Root-Mean-Square Error

The root-mean-square (RMS) error εRMS is a scalar, absolute error measure and rep-
resents the root of the mean of the squared errors. It is defined as follows [Baue 07]
[Wile 05]:

εRMS =

√∑n
i=1 ε

2
i

n
=

√∑n
i=1(xi − µ)2

n
(10.7)

Thus, the computation of the εRMS is based on the typically unknown ground truth
value µ. As a replacement, the empirical mean X̄ can be used. Another term for εRMS

is residual error.

An interesting relationship can be established between the RMS error εRMS on the
one hand and mean and standard deviation on the other hand [Wile 05]. Expanding
Equation (10.2), one obtains

σ2 =

∑n
i=1(ε2i − 2εiµ+ µ2)

n− 1

= (
n

n− 1
)(

∑n
i=1 ε

2
i

n
− 2µ

∑n
i=1 εi
n

+ µ2

∑n
i=1 1

n
)

= (
n

n− 1
)(ε2RMS − 2µµ+ µ2)

= (
n

n− 1
)(ε2RMS − µ2) (10.8)

Isolating εRMS in Equation (10.8) yields

εRMS =

√
(
n− 1

n
)σ2 + µ2, (10.9)

104

and for large n
εRMS ≈

√
σ2 + µ2. (10.10)

Thus, at least theoretically, the overall error can be seperated in its systematic (accu-
racy) and random (precision) components. However, this explicit separation is difficult to
obtain and useless for practical purposes. Following the principles of the GUM [ISO 08],
we therefore just estimate the overall εRMS, interpret it as the uncertainty and model it
in terms of σ, distributing the deviations around 0.

Note that this is exactly what happens when we switch from repeatability conditions
to reproducibility conditions: with each additional systematic effect µi that is “revealed”,

the overall empirical µ =
∑n
i=1 µ

2
i

n approaches 0 since the systematic effects cancel each
other out globally whereas σ increases. Fortunately, it is enough to conduct these ex-
periments under reproducibility conditions to obtain a realistic σ, an explicit statement
of the various systematic effects µi is typically not needed. They can be subsumed in
the single quantity σ.

For multidimensional error distributions, this result can be extended [Kana 93]
[Kana 96].

εRMS =
√

tr(Σ) + ‖µ‖2. (10.11)

Here, tr(Σ) represents the trace norm of the covariance matrix Σ and ‖µ‖ is the Eu-
clidean norm of the expected error µ. If we assume unbiased, independent, and isotropic
errors, we obtain

tr(Σ) =
N∑
i=1

σ2
i = ε2RMS. (10.12)

Thus,

σ2
i =

1

n
εRMS (10.13)

Equations (10.12) and (10.13) allow for the simple conversion between general covariance
matrices and the scalar RMS value, based on the simplified assumption of unbiased,
independent, and isotropic errors.

The RMS error is particulary useful for the specification of errors for 3D position mea-
surements since its value then corresponds to the average Euclidean distance error. When
matching point clouds from different coordinate frames, it is defined as follows [Wile 05]:

εRMS =

√√√√ 1

n

n∑
i=1

‖Hpi − qi ‖2 =
√

tr(Σ3×3
pos) =

√
µ2 + σ2 (10.14)

Thereby, pi and qi are corresponding 3D position measurements in different coordinate
frames P and Q, related by the 6DoF pose H. The root of the mean of the squared
Euclidean distances ‖ . ‖ of the mapped point sets is equivalent to the root of the trace
tr of the 3D covariance matrix Σ3×3

pos . Assuming an isotropic error model, εres can also
be expressed in terms of the expected deviation µ (systematic error) and its standard

105

deviation σ (random error). When observing several point clouds measured in the same
coordinate frame, Equation (10.14) is slightly modified to obtain the RMS per point i

εRMSi =

√√√√ 1

m

m∑
j=1

‖ pi,j − p̄i ‖2 (10.15)

where p̄i is the mean of all measurements j at position i. The overall RMS error then is

εRMS =

√√√√ 1

n

n∑
i=1

(
1

m

m∑
j=1

‖ pi,j − p̄i ‖2). (10.16)

10.1.4. Expressing Orientation and Pose Error

In this context, rotations are expressed in terms of unit quaternions [Kuip 02]. Alto-
gether, a 6DoF pose transformation of a 3-vector x is represented as follows.

xnew = t+ qrxq
∗
r . (10.17)

Thereby, t is a 3-vector describing the translation and qr is a unit quaternion repre-
senting the rotation. The ∗ is the quatnerion conjugation. See also [Pust 04] for the
representation of spatial transformations in Ubitrack.

A rotational error can be expressed in terms of an unnormalized “small” quaternion

qe ≈ (er,x, er,y, er,z, 1)T (10.18)

that is multiplied with the actual rotation. This yields the following pose transformation
including error:

xnew = t+ te + qrqexq
∗
eq
∗
r . (10.19)

The uncertainty of this transformation can be expressed in terms of a 6x6 covariance
matrix Σ.

(te,x, te,y, te,z, qe,x, qe,y, qe,z)
T ∼ N(0,Σ) (10.20)

A much simpler representation of rotational error can be obtained by converting qe to
the axis-angle representation

φ = 2 arccos(qw)

ax = qx/
√

(1− q2
w)

ay = qy/
√

(1− q2
w)

az = qz/
√

(1− q2
w) (10.21)

where a is the associated axis and φ is the angle of rotation about this axis [Hart 00].
The conversion back to the quaternion is given by

q = (asin(
φ

2
), cos(

φ

2
))T (10.22)

The axis associated with the erroneous orientation is often of secondary importance only.
More interesting is the associated angle. It provides an intuitive scalar error measure,
as can be seen in Figure 10.1.

106

10.2. Error Standards for Spatial Measurements

Several standards are available that describe in detail the assessment of uncertainties of
metrologic measurement devices.

• ISO 10360 (Parts 1-13):Acceptance and re-verification tests for all kinds of coor-
dinate measuring machines

• VDI/VDE 2634: Optical 3D measuring systems

– Part 1: Imaging systems with point-by-point probing. This includes devices
using optical (triangulation) and tactile probing.

– Part 2: Imaging systems for surface probing

– Part 3: Multiple view systems based on area scanning. This describes devices
using triangulation from multiple viewpoints for 3D reconstruction. This
part explicitly excludes those devices where the sensor is positioned using
translational and rotational axes.

• VDI/VDE 2617, Parts 1-13: Accuracy of coordinate measuring machines—Para-
meters and their reverification. Accuracy assessment for all kinds of coordinate
measurement machines. E.g., part 9 describes mechanical measurement arms.

• ASMEB89.4.22: Methods for Performance Evaluation of Articulated Arm Coordi-
nates Measuring Machines. Similar to VDI/VDE 2617 (Part 9).

A brief overview of these standards is given in the following, focussing on the issues
relevant for this thesis. An in-depth treatment has been provided by Chmill [Chmi 08].
Their primary goal of the mentioned standards is the standardization of

• acceptance tests, to be carried out by the system vendor, maybe at the customer’s
site.

• reverification test, to be performed at the customer’s site

• between-process inspection and testing, is performed frequently with mechanic
CMMs or laser trackers by returning to a home calibration sphere inside the mea-
surement volume to confirm system consistency by confirming the reproducibility
of point probing or the estimation of the diameter of special calibration spheres
from various directions.

Depending on the type of device, the measurement prescriptions vary. Deviations
exist mainly in the regulations for the placement and orientation of measurement de-
vices, probes and reference objects, as well as the repetition of measurements under
reproducibility conditions (cf. 10.1.1). The quantities to be measured mainly are

• probing error, that is the measurement of position, diameter, and shape (round-
ness) of individual rigidly installed reference spheres in the volume by touching
them from different directions

107

• length measurement error, assessed using length standards and artefacts which
can be measured by optical or tactile probing, like other typical workpieces, for
different orientations of the artefact in the volume

Length measurements might seem unintuitive. Practically, however, they are often
easier to obtain. When combining two sensor systems, e.g., in a cooperative fusion
setup, the errors of both devices have to be considered when performing the registration
(cf. 7.2) between them. Note that perfect length measurements in both modalities also
yield perfectly matching point clouds in both modalities and therefore an error-free
registration. This emphasizes the usefulness of the generic length measurements.

In VDI/VDE 2634 (Part 1), only length measurements are conducted explicitly. The
probing errors are incorporated implicitly in these measurements since all measured
lengths depend on the proper probing of the points defining the length. An example
from this norm is shown in Figure 10.2.

Figure 10.2.: Recommendation for distances to be measured in a given volume according
to VDI/VDE 2634 (Part 1) [VDI 02]

For example, VDI/VDE 2617 (part 9) for measurement arms requires three spheres
to be probed in the measurement volume at different distances (arm deflection lower
than 30%, between 30% and 70%, and higher than 70%) from the arm’s major axis.
For reproducibility, these spheres have to be touched from five different directions. This
ensures that different joint configurations are used and thereby facilitates the revelation
of systematic errors. The ASME B89.4.22 goes a bit further than VDI/VDE 2617 (Part
9). It requires error statistics to be computed instead of a simple compliance with the
maximum deviation values. It also provides guidlines for machine classification, envi-
ronmental specifications (temperature, humidity, vibration, oscillation, external forces
e.g., on device carrier), and machine performance in terms of comparison tests.

The described standards only cover classical measurement setups. Often, these sys-
tems are rather simple and their operating conditions are well-defined, facilitating a val-
idation based on empirical measurements. However, even closely related devices, such
as a mechanical measurement arm equipped with a laser scanner unit, are not covered.

108

To assess the accuracy of such systems, the existing standards have to be interpreted
accordingly. The described uncertainties for point probing and length measurements
generally keep their worthiness, only the testing modalities have to be adapted to the
charachteristics of the new device. An example for such an adaption is given in [Chmi 08].

The complexity of the adaption thereby depends on the complexity of the sensor
system. Measuring the distance between tactile points is rather straightforward for a
mechanical measurement arm, not however for an IR tracking system consisting of sev-
erall cameras, because the performance now also depends on the camera setup (extrinsic
camera parameters) as well as the number and distribution of fiducials on the probe
and the tip offset. The degree of complexity is also increased drastically when multiple
devices are incorporated in a single setup because then, also uncertainties from the reg-
istration of the devices with respect to each other have to be considered. This however
cannot be accomplished in a general way by the system vendor any more. In 2.3.4 it has
been mentioned that these registrations might have to be repeated frequently, depending
on the definition of the production process.

As a consequence, acceptance tests for such systems tend to be performed according to
the customer’s requirements, at the customer’s site, and no longer in a general fashion
in the lab of the vendor. Some vendors resorted to publishing their own guidelines
for the assessment and reverification of the accuracies of their sensors. For example,
the guidelines published by NDI for their Polaris and Vicra position sensors [NDI 11]
explicitly mention the German VDI/VDE 2617 and the American ASME B89.4.22 as
its basis [Wile 05]. This approach however does not scale very well to the combination
of devices from different vendors.

The increased effort for accuracy assessment can be mitigated by extensive use of
simulation models such that the number of empirical measurements can be kept at an
acceptable level, as shown in 11. This can be accomplished by simulation and error
propagation models which do not only incorporate the uncertainties of the individual
sensors, but also the geometric constellations they are used in.

In IAR, the challenge is to combine all uncertainty specifications in an overall applica-
tion error. Offline metrologic devices still affect the registration accuracy which in turn
burdens the real-time application with systematic error. Errors in the real-time tracking
add to this error, resulting in a complex error behavior that cannot be easily described.

10.3. Propagation of Uncertainties

Whenever unknown parameters are estimated from known measurement data, it is desir-
able to propagate the uncertainties associated with the measurements to the estimated
parameters. This allows for statements about the uncertainty that are meaningful for
the intended IAR application. Various methods are available for the propagation of
uncertainties. An overview is given in the following, together with related work in the
field of AR. This is the basis for our propagation framework to be discussed in Chap-
ter 11. First, however, a brief overview of parameter estimation is given, as parameter
estimation and the propagation of uncertainties are inextricably connected, as we will

109

see.

10.3.1. Short Survey of Parameter Estimation

The field of adjustment theory generally seeks to solve problems of the type

f(P) = L P ∈ RM , L ∈ RN , M < N, (10.23)

which is a mapping from some unknown values in parameter space RM to measurements
in measurement space RN . P denotes the unknown parameters and L the typically
erroneous measurements that can be represented by a functional model f in terms of
the parameters [Koch 97] [Niem 08] [Luhm 00a] [Hart 00].

L n

L
` L

S

Figure 10.3.: Relationship between the functional model and the measurement space

Assuming (unknown) true values L̄, there exists a vector of parameters P̄ and the
range of f(P̄) is a submanifold S of RN with dimension M of all potentially valid
measurement vectors Li. This is sketched in Figure 10.3. In the overdetermined case,
due to errors, in general L /∈ S. The maximum-likelihood estimate (MLE) L̂ of the
unknown true values L̄ is the point on S (or its linear approximation as shown in
Figure 10.3) closest to the erroneous measurements L. ‖L̂ − L‖ is the overall residual
error. It can be computed when estimates L̂ are available. ‖L̄ − L̂‖ is the overall
estimation error. It can only be computed for synthetic data for which L̄ is known. The
following Pythagorean equality holds:

‖L− L̄‖2= ‖L− L̂‖2+‖L̄− L̂‖2 (10.24)

MLE methods are typically applied whenever there is an overdetermination of the
equation systems to be solved. Assuming a Gaussian error model, the estimation error
in associated with the unknown parameters decreases with an increasing number of
observations. In case of a linear functional relationship L = f(P), this is called linear
least-squares (LLSQ). In case of non-linear functional relationships, equation systems
are formulted by linearization of f using a Taylor series aborted after the linear part

110

and a solution is obtained by an iteration until convergence. This technique is also
known as non-linear least-squares estimation (NLLSQ). A reasonable approximation of
the solution must be provided for the iteration to converge to the true solution.

Bundle adjustment is a prominent example for the application of these concepts to the
computer vision domain where problems typically are highly overdetermined [Doyl 64]
[Luhm 00a] [Atki 96]. The techniques are integrated in many current computer vision
algorithms, especially in real-time tracking techniques based on simultaneous localization
and mapping (SLAM) [Bles 06]. [Klei 07].

NLLSQ is also useful for the implementation of calibration and registration algorithms
that estimate some geometric properties or spatial relationships between different coor-
dinate frames (cf. 7.2) from noisy measurement data. The uncertainties of the estimated
parameters are obtained as a direct result of the optimization process. Furthermore,
NLLSQ methods often yield superior results, as compared to the corresponding closed-
form solution. Dornaika in 1998 for example compared different linear closed form and
non-linear solutions for the hand-eye calibration problem (see 7.2.2). He obtained the
best results with the NLLSQ solution, for uniform as well as for Gaussian noise [Dorn 98].
The result is also backed by Zhuang [Zhua 94]. This fact could however be outdated
already by the findings of Daniilidis who described a linear close-form solution based on
dual quaternions that gets along with one single solution stage [Dani 99]. Prior closed-
form solutions always needed two stages to solve for rotation and then for translation,
e.g [Tsai 88].

Our own experience in relation with the absolute orientation problem (cf. 13.2.1) does
not yield any preferences. Still, NLLSQ has the advantage that it provides Type A
uncertainties (cf. 10.1.1) out-of-the-box. Furthermore, it allows for statistical hypoth-
esis tests to be implemented right away [Niem 08] [Koch 97]. This general overview is
substantiated for the case of point-based registration in 12.3.

10.3.2. Propagation of Uncertainties in the Literature

There exist many prior works in the field of online and offline error estimation and prop-
agation to understand uncertainties in tracking setups. Error propagation techniques
have been applied successfully to assess the accuracy of individual tracking or metro-
logical systems. Pentenrieder discusses the assessment of uncertainties for an optical
square marker tracker [Pent 06]. This is achieved by automatic generation of artificial
camera images. She also validates the simulation approach using high-precision ground
truth measurements. Similarly, Hastedt uses a Monte Carlo approach to simulate the
behavior of a photogrammetric system [Hast 04]. Similarly, Davis et al. predict the
accuracy in pose estimation for marker-based tracking, resulting in suggestions for ad-
vantageous marker design [Davi 03][Davi 04]. In such propagation approaches, critical
elementary influence factors can be determined which are not easily available for direct
measurements.

Error propagation has also often been useful to assess the performance of a certain
algorithm, e.g., [Dani 99] [Hart 00]. Furthermore, an important field of application for
propagation techniques is to predict the overall system uncertainties that are relevant

111

for the application. One of the oldest works to predict pose error is by Woltring et
al. [Wolt 85] who analytically derive the effects of isotropic 3D error on an isotropic
distribution of fiducials and who observe that the error is minimal at the centroid of the
fiducials. Holloway used maximum error statistics to derive uncertainties in a medical
HMD application [Holl 97] [Holl 95] with an outside-in head tracking system. It incor-
porates static and dynamic errors according to Azuma [Azum 97], registration, tracking,
visual overlay errors. Fitzpatrick [Fitz 98] give a formula for estimating the target regis-
tration error based on the simplifying assumption of an isotropic fiducial location error.

Allen et al. follow a general approach for the estimation of asymptotic or steady-state
positional/orientational error at systematically chosen points throughout the tracking
volume, incorporating also a motion model [Alle 05] [Alle 07]. The variances for raw
sensor measurements are assumed to be known. Using 3D visualization techniques, the
system gives insight into “variations in the expected performance throughout the desired
working volume for a particular design choice, as well as the relative global effects of
variations between candidate designs, independent of the tracking algorithm chosen for
the real system”. According to the authors, the approach could be adapted to “virtually
anytracking or motion capture system”. It aims at a lower level, optimizing the choice
and constellation of sensors, as well as their sampling frequency, for the intended working
volume and expected scene dynamics, irrespective of the chosen tracking algorithms and
motion paths. Furthermore, it does not consider uncertainties arising from the alignment
of static objects in space (registration, cf. 7.2).

There also exist several online error propagation approaches to predict the current
tracking error of the application in real-time [Baue 06] [Fitz 98] [Hoff 00]. Those ap-
proaches simulate the error only for the current system state, which allows assessing the
currently available accuracy. This is typically not possible for legacy systems since the
internal error prediction is not accessible. Also a prediction throughout the entire error
propagation chain requires linearization of each computational step. Additionally, for
online capabilities the estimation often relies on a linear propagation model which might
not be as precise but is fully sufficient to give the user an insight of the current system
performance. Also, in IAR, the validation of a tracking system requires assessment of
the overall system performance before deployment, that is what offline error estimation
is used for.

Pentenrieder et al. describe an error propagation framework for industrial metrology
based on photographs [Pent 09]. Coelho et al. [Coel 04] use the unscented transforma-
tion [Juli 04] to propagate tracking errors through a scene graph into the image shown
to an AR user.

The online error propagation systems described so far either assume sensor errors to
be known a priori [Hoff 00], or underestimate the total error by considering only jitter,
thereby neglecting the systematic errors that are often even more important [Holl 95]
[Baue 06]. Experiments with optical IR tracking systems reveal that the overall error
largely consists of systematic error [Baue 06] [Keit 08].

112

10.3.3. Linear Propagation of Uncertainties

The GUM suggests to use a linear error propagation model to assess the uncertain-
ties of a measurand L ∈ RN that is assessed indirectly by measuring a random vec-
tor P ∈ RM , based on the the functional relationship L = f(P), see e.g., [ISO 08]
[Niem 08]. Hoff used this technique for the estimation of head tracking accuracy in
a medical application with a combination of optical outside-in and inside-out tracking
systems [Hoff 00]. Bauer applied these concepts in the case of optical tracking where
2D uncertainties on the image plane are propagated to the uncertainty of the tip of a
tracked instrument [Baue 06]. Pustka described their application in the context of Ubi-
track in general [Pust 04] [Pust 11] and in particular in the context of IR fiducial marker
tracking [Pust 10]. A review of the basic formulas is given next. A detailed derivation
can be found in the literature, e.g., [ISO 08] [Koch 97] [Hart 00] [Niem 08].

Forward Propagation

The basis for linear error propagation is a linear or linearized functional model. If f is
a non-linear function, a Taylor-series approximation can be used according to

L = f(P) ≈ f(P̄) + Jf (P − P̄) (10.25)

where P̄ is the expectation value of the parameters P , and Jf is the partial derivative
matrix (Jacobi matrix) of f at P̄ . This linearization can be omitted, if the function is
already linear. The mean and covariance matrix of L can be obtained from P̄ and the
covariance matrix ΣP of P by forward propagation according to

L̄ = f(P̄)

ΣL = JfΣPJ
T
f . (10.26)

A derivation can be found e.g., in [Koch 97] [Niem 08] [Hart 00]. From this elementary
rule, concrete propagation formulas for all trivial data flow operations such as inversion
or multiplication can be derived [Baue 07].

Backward Propagation

Often, the explicit observations are given in terms of L and the unkown parameters P
of f are to be estimated. In this case, the covariance matrix ΣL is given. By backward-
propagation, the covariance ΣP of P can be estimated according to

ΣP = (JTΣ−1
L J)+, (10.27)

where + denotes the pseudo-inverse [Koch 97] [Niem 08] [Hart 00]. Bauer used back-
ward propagation to estimate the uncertainty in 6DoF pose estimation from 2D image
observations [Baue 06].

113

Relation to Adjustment Theory

Backward propagation of uncertainties is an integral part of all adjustment computations
as described in 10.3.1. In the general case of a non-linear functional model f , the
adjustment problem can only be solved by an iterative approach, relying on a repeated
linearization of f at the last estimate of P 0. The linear part of this Taylor series is often
denoted as the design matrix A, as a synonym for the Jacobi matrix. If A has full rank
then ΣP is positive definite [Koch 97] [Niem 08] [Hart 00].

Thereby, the assumed a priori covariance matrix ΣL of the measurements L is trans-
formed to an a posteriori covariance matrix incorporating the actual uncertainties of the
observations. Figure 5.3 shows an example for the a posteriori covariances of a planar
geodetic network from surveying a district; the overall covariance matrix has been split
into covariances of the individual 2D points which are represented in terms of confind-
ence ellipses [Niem 08] [Baue 06]. Although equal a priori covariances were assumed,
the a posteriori covariances become larger in the boundary region of the network and
smaller in its center. This is a natural consequence of least-squares optimization; it tries
to balance the errors to keep the overall sum of squares small.

However, it is not sufficient to consider the uncertainties of the measurements only. For
example, the covariance of a homography H estimated by some registration algorithm
(cf. 7.2) depends on many additional factors [Fitz 98] [Baue 07]:

• The sensitivity of the chosen registration method: Different algorithms may have
a different sensitivity with respect to measurements uncertainties or differ in their
numerical stability.

• Number of correspondences: More correspondences improve the accuracy of the
estimated homography. Imagine a homography that was estimated from the min-
imum number of correspondences. ΣP would be 0 in this case, nevertheless the
estimate probably is rather coarse.

• Spatial distribution of correspondences: The distribution of measured point cor-
respondences should cover the intended working volume. Imagine a homography
that was estimated from almost colinear points. Residual error is the same as
for an equally distributed point cloud, but the estimated homography probabably
contains large errors in the orientation around the axis formed by the measured
points, due to the degenerate configuration.

The forward and backward error propagation techniques can be easily integrated into
the (N)LLSQ parameter estimation techniques since the (linearized) functional relation-
ship is already given and the computation requires the same intermediary steps. In
adjustment theory, the terms functional model and statistical model are used to deter-
mine the (linearized) functional relationship and the input covariances that are needed
to setup the adjustment computation.

Now, the elementary formulas for the NLLSQ estimation are stated, along with some
background that is relevant in this context. For a complete description, please refer

114

to [Niem 08]. First, the functional model f is linearized around the initial solution P 0:

f(P 0 + p) ≈ f(P 0) +Ap (10.28)

This yields the shortened parameters as well as the shortened observations

p = P − P 0

l = L−L0 = L− f(P 0). (10.29)

The constant part f(P 0) can be omitted from now on, only the linear part is important
for parameter estimation and error propagation. The following problem is to be solved:

l̂ = l+ v = Ap̂ (10.30)

The stochastic model is given in terms of an a priori covariance matrix ΣL as follows:

ΣL = σ2
0QL (10.31)

Q is called the cofactor matrix. The unknown variance factor σ2
0 is estimated by the

NLLSQ process. This partitioning represents the fact that only the relative weighting
of elements of Σ0 is of importance for MLE estimation, the a priori σ0 can be chosen
arbitrarily; it can also be ignored.

The MLE estimate of the (incremental) parameters p̂ minimizes the sum of squared
corrections that have to be applied to L such that the equation is balanced. These
corrections represent the residual error in Figure 10.3.

‖L− L̂‖2QL= vQ−1
L v → min. (10.32)

Now, (10.30) can be solved using the so-called normal equations to find the (incre-
mental) MLE estimate p̂ of the unknown (incremental) parameters p.

p̂ = (ATQ−1
L A)−1ATQ−1︸ ︷︷ ︸

F

l (10.33)

From this, also the cofactors QP of the estimated parameters can be derived, using the
rule of forward error propagation (cf. 10.3.3),

p = F l

QP = FQLF
T , (10.34)

plugging in (10.33), and simplifying the term.

QP = (ATQLA)−1 (10.35)

By application of forward propagation to l̂ = Ap̂ stated in (10.33), the cofactors QL̂ of
the corrected observations can be obtained.

QL̂ = AQPA
T (10.36)

115

A slightly more compelex derivation yields the cofactorsQv of the corrections v = Ax̂−l.
One has to plug in (10.33) for p̂, then use (10.35), factor out l, and simplify the term.

Qv = QL −AQPA
T ⇐⇒ QL = Qv +QL̂ (10.37)

Thus, the cofactor matrix of the corrected observations QL̂ is smaller than the un-
known true cofactor matrix of the original observations. This directly corresponds to
the Pythagorean equality (10.24) stated above.

An estimate σ̂2
0 for the unknown variance factor σ2

0 can be derived from the sum of
squared corrections in (10.32).

σ̂2
0 =

vQ−1
L v

n− u
(10.38)

Here, n is the number of observations, i.e. the dimension of L and u is the degrees
of freedom of the problem, i.e. the dimension of P . This estimate is correct only if
the functional and stochastic model assumed above were correct. With this a posteriori
estimate of the variance factor σ2

0, an a posteriori covariance can be derived using (10.31).
In an estimation of variance components, it is even possible to estimate multiple variance
factors related with a partionned covariance matrix [Niem 08].

It shall be mentioned that the covariances that result from (non)-linear least-squares
optimization in the overdetermined case represent Type A uncertainties in the sense
of the GUM. This is concretized in the context of point-based registration below 12.3,
including also an example of the above-mentioned formulas.

Another advantage of the concepts of adjustment theory is the straightforward im-
plementation of statistical hypothesis tests [Niem 08] [Luhm 00a] [Koch 97] [Atki 96].
Global hypothesis tests are available to evaluate the consistency of the chosen functional
and statistical model with the empirical measurements. Other tests evaluate the ad-
herence to given constraints such as the identity points, collinearity of several points,
right angles, ... Last but not least, statistical tests guess the adherence of the individual
measurements with the estimated parameters. They can be used for a semi-automatic
detection of outliers. Unfortunately, hypothesis tests are beyond the scope of this thesis.

Linear Propagation of Uncertainties in Ubitrack

Linear propagation of uncertainties has the advantage to be quite efficient, since only ma-
trix operations are needed. This renders it quite suitable for real-time processing. Bauer
used it to assess the accuracy of a multi-camera IR tracking setup, based on the assump-
tion of 2D Gaussian noise on the image planes of the involved cameras [Baue 06]. In this
context, he also gave a review of propagation rules for the trivial data flow operations
such as Inversion or the Multiplication of one or two erroneous measurements [Baue 07].
The concepts have been incorporated into the Ubitrack tracking framework conceptu-
ally [Pust 04]. The transformation types Error Pose and 3D Error Position (cf. 5.1.2)
represent spatial transformations with their covariance matrix attached. These data
types are also supported by the elementary base patterns (e.g., Calibration Reader, Static

116

Transformation), the mentioned trivial operations plus Interpolation as well as the impor-
tant query patterns (e.g., Application Sink, Calibration Writer, Recorder).

Also, the Optical Square Marker Tracker pattern provides an Error Pose on its output,
which is obtained by backward-propagation from the assumed 2D uncertainties of the
four corner points for a square marker [Pust 11]. Furthermore, generic Kalman Filter
patterns are provided, e.g., for the fusion of several generic Error Poses [Pust 06b] or
of an Error Pose with rotational information from a gyroscope, e.g., to improve 6DoF
tracking under the influence of fast head movements [Pust 08].

However, linear error propagation always requires an explicit implementation in terms
of a linearization of the underlying functional model of the component. Therefore, propa-
gation support still lacks in many components, in particular for the essential registration
algorithms (cf. 7.2), as already mentioned above. Suitable approaches are available in
the literature, e.g., [Zhua 94] for the hand-eye calibration.

10.3.4. Monte Carlo Simulation

The Monte Carlo technique is generally attributed to Metropolis who used it for the
analysis of differential equations in 1949 [Mete 49]. According to Dimov, “Monte Carlo
methods are methods of approximation of the solution to problems of computational
mathematics, by using random processes for each such problem, with the parameters
of the process equal to the solution of the process. The method can guarantee that
the error of Monte Carlo approximation is smaller than a given value with a certain
probability” [Dimo 05]. And “usually Monte Carlo methods reduce the problem to
the approximate calculation of mathematical expectations” [Dimo 05]. A Monte Carlo
algorithm gives more precise results the longer it is run1.

Monte Carlo simulation represents one of two major fields of Monte Carlo methods
where random variables are investigated following the underlying “physical, chemical,
or biological processes under consideration” [Dimo 05]. This is also called Monte Carlo
integration and should be distinguished from Monte Carlo numerical algorithms which
solve deterministic problems based on an artificial random process modeled e.g., as
a Markov chain. A prominent example is the Metropolis-Hastings algorithm and the
simulated annealing method derived from it [Metr 53] [Kirk 83].

Applied to the problem at hand, Monte Carlo simulation means to work on given spa-
tial transformations as ground truth data (parameters of the problem) to which artificial
noise is added. This perturbed data is then fed into the Ubitrack data flow (physical
model) to propagate the assumed uncertainties to the desired spatial transformation
(solution of the process).

The Monte Carlo method is a good alternative for the propagation of uncertainties.
Based on the generally non-linear functional relationship L = f(P), the parameters P
are sampled many times from any probability distribution and the behavior of L is ob-
served by forward propagation. Alternatively, backward propagation yields the behavior
of P if measurements L with associated uncertainties are provided. Requirement is the

1as opposed to a Las Vegas algorithm that gives the right answer, but whose run-time is indeterminate

117

existence of some means to evaluate f−1, be it an analytic inversion of f or an NLLSQ
method (cf. 10.3.3).

There is no requirement to use Gaussian probability density functions. It does not
require a linearization of the functional model and is therefore always applicable, even for
problems where an analytic propagation is difficult to achieve. This simple mechanism
makes Monte Carlo a good choice for many purposes. Often however, it is not suitable
for real-time processing since the computational complexity increases exponentially with
the dimensionality of the parameter vector P .

The unscented transform is also sometimes used for error propagation. It has sim-
ilarities with the Monte Carlo method. However, the number of samples is decreased
drastically by assuming again a Gaussian distribution. This allows one to observe the
behavior of a few so-called sigma points in the parameter space only, instead of hundreds
or thousands of samples. A detailed description of this method can be found in [Juli 04].
A review of related work is provided by [Baue 07]. The unscented transform is generally
considered to be superior to the linear propagation of covariance that is implemented in
Ubitrack, due to better handling of non-linearities. It has been shown, however, that the
Monte Carlo method yields similar results to the linear error propagation in the context
of fiducial marker tracking [Pust 10].

A Monte Carlo simulation framework for Ubitrack is described in 11. It is shown that
it solves all practical issues related to IAR.

10.3.5. Elementary Specification of Uncertainty

Regardless of whether an analytic propagation model (cf. 10.3.3) or simulation (cf. 10.3.4)
is used, the uncertainties that go into the simulation have to be specified. For this, the
following questions have to be answered:

Abstraction Level The data can be given at different levels of abstraction, in particular
as 2D or 3D positions or also as 6DoF poses. The term abstraction thereby rep-
resents the fact that typically, higher-dimensional information is computed from
lower-dimensional data, e.g., 3D positions from 2D positions by triangulation or
6DoF poses from 3D positions by absolute orientation (cf. 7.2). The decision on the
granularity highly depends on the used system setup. If the layout and the number
of fiducials allowed for marker design are predefined, it could make sense to spec-
ify a 6DoF pose error. Similarly, in an optical multi-camera tracking setup with
arbitrary camera arrangement, rather a 2D value is specified since the uncertainty
of a 3D position of a fiducial depends on the number, distances, and distribution
of cameras. Sensor uncertainties can and should be specified at a level that allows
for maximum generality. This concerns specifications provided by system vendors
as well as third-party accuracy assessments.

Error Distribution According to the GUM [ISO 08] sensor noise may follow different
error distributions. By default, one might assume a Gaussian error distribution.
However, there are tracking systems where global systematic distortions of the

118

tracking volume dominate the overall error behavior [Keit 08]. In such cases, a
uniform distribution could be preferred in order not to underestimate extreme
values. Also a combination of different error distribution might be used since
systems often suffer from sensor noise as well as systematic errors.

Error Magnitude Finally the magnitude of the error has to be provided. Also the degree
of the noise depends on the setup and on environmental influences. If the actual
amount of error is not known a priori, simulation with different assumed error
levels can still help to define the maximum allowed sensor noise to stay in-line
with the overall application specifications.

The means to address these issues are often non-trivial. It was denoted the elementary
specification of sensor uncertainty above. This corresponds to the specification of a
functional and a statistical model in adjustment theory (cf. 10.3.3).

Ideally, the information is provided by the system vendor, e.g., [Wile 05]. Typically,
high-precision ground truth measurements are needed for this purpose. However, this
might not be applicable for all kinds of systems, e.g., the provider of a markerless tracking
algorithm. The accuracy of a markerless tracking system is highly impacted by the used
optics as well as the illumination and texture properties of the concrete environment.
Therefore, no general statements can be given. In such cases, accuracy assessments as
described in 12 might help. As a last resort, an a priori covariance can be assumed as
an initial guess. It can then be refined in an iterative approach until accordance. This
method has been formalized in the field of adjustment theory under the name variance
component estimation [Koch 97] [Niem 08].

10.4. Conquering the Complexity of IAR Applications

Due to the reasons explained in 1.4, IAR tracking setups may become quite complex,
requiring the interaction of various sensor devices and objects. Especially for those com-
plex IAR setups it is challenging to assure compliance with production tolerances. This
has to cover the entire chain of uncertainty from registration to real-time tracking. Typ-
ical generic vendor specifications are often insufficient to provide a reliable assessment
of the tracking system performance in the explicit use case scenario.

Following the ideas described in 10.2, the application would have to be validated based
on exhaustive empirical measurements in the target environment since the individual
use cases and sensor constellations cannot be handled in a generic way be the system
vendors. However, it is often very difficult to provide a sufficient number of ground
truth measurements in the target environment. Other means are needed to strengthen
the confidence in the tracking infrastructure.

We propose to combine a small set of representative empirical measurements with a
comprehensive simulation to cover all possible constellations and system configurations in
the use case scenario. Therefore we describe a framework that allows for a standardized
and integrated implementation of all necessary computations.

119

The goal is to generalize the concepts for the assessment of uncertainties described in
10.2 and integrate them with the SRG and Ubitrack concepts described in the previous
part of this document about data flow management. Therefore, statistical simulation
based on the error propagation concepts described in 10.3.4 is incorporated. The follow-
ing three sections describe the approach in more detail and distinguish it from related
concepts.

10.4.1. Proposed Approach

Following industrial standards, classical validation requires exhaustive empirical mea-
surements to validate the entire system operation [ASME 06] [VDI 02]. The combi-
nation of extensive statistical simulation, backed by selected empirical measurements
is motivated by the ASME guide for verification and validation in computational solid
mechanics [ASME 06]. The Verification and Validation [VeVa 11] addon for Matlab
Simulink for example provides integrated verification and validation facilities using ex-
actly these concepts, though not for tracking. The consistency of simulation, analytic
error propagation, and empirical measurements is important to gain confidence in the
correctness of the assumptions that were made regarding the error model. For this ap-
proach to be feasible, it has to be proven first that the simulation system yields realistic
results.

This overall concept is integrated with the design phases of an IAR application ac-
cording to 2.2, as depicted in Figure 10.4. During its definition phase, a verification of

Definition Verification
based on simulation of the tracking setup

Deployment
Validation

based on simulation and empiric
measurements in target environment

Operation and
Maintenance

Runtime Error Mitigation
using runtime error estimation and system

failure detection

Figure 10.4.: IAR design phases

the intended IAR application is performed. It is mainly based on statistical simulation.
First, the correctness of the simulation system needs to be proven to assure that the

assumptions made are specific enough to obtain realistic results. An important question
is about the assumptions to be made for the type and magnitude of the basic sensor
noise. For the example of an optical tracking system, uncertainties may be assumed
either for the 2D observations on the image plane or for 3D observations in the tracking
volume. As will be seen, this specification depends on the chosen sensor type(s) and
the underlying measurement principles. It is also shown that simplifications regarding

120

the error model may be necessary and reasonable in order to handle the complexity of
measurement uncertainty.

This step is typically based on extensive empirical measurements according to the
concepts described in 10.2, paired with a detailed understanding of the underlying mea-
surement principles. In many cases, the necessary information is already available, either
in terms of vendor specifications or in terms of evaluations described in the literature.
Having proved the validity of the simulation model, one can evaluate easily various as-
pects or hypothetical variations of the system. This would be very expensive if based on
empirical data, or even impossible in case the assumed hardware is not at one’s disposal.
Proving the correctness of the simulation system can be quite complex. The good news
is: it has to be shown only once for a certain constellation of sensors.

Once the correctness of the simulation system has been proven and a basic sensor noise
assumption has been made, it is possible to benchmark various hypothetical scenarios
even using different tracking systems, since no hardware is needed yet. Forward propa-
gation can be applied to propagate the assumed uncertainties through the entire chain
of uncertainty. By this, the behavior of the overall system and also of its individual
components can be analyzed. Also, the influence of critical individual factors on the
overall performance can be evaluated.

The final goal of the simulation is to verify the overall concept and to decide on a cer-
tain variant before deployment. It can help to state the general feasibility of a proposed
setup, to justify purchase decisions, or to decide on which particular algorithms to use.
To represent the system behavior correctly, it might also be necessary to simulate critical
subsystems by refining black box systems down to the internal estimation algorithms.
This depends on the basic sensor noise assumptions already mentioned above. The bet-
ter the whole system is understood by simulation, the more accurate the subsequent
validation will be.

After deployment, this is complemented by a validation based on empirical measure-
ments in the target environment. For a realistic result, these measurements should
incorporate the whole chain of uncertainties. This however makes measurement acqui-
sition quite cumbersome, since a valid ground truth must be provided. In the target
environment, this is typically possible only for very a small number of measurements.
It shall be mentioned that for validation, it is not enough to use relative distance or
point probing measurements as described in 10.2. This would neglect relevant parts of
the chain of uncertainties, in particular the static uncertainties in registrations of mark-
ers and sensors in the world. Such relative measurements are only representative for
uncertainties of individual systems, relative to their individual coordinate systems.

Basically, the findings from the verification stage are confirmed by these measurements.
Ideally, the validation is as simple as this. In case of any contradictions, plausible
explanations have to be found. In the worst case, the verification and validation process
has to be reiterated, involving a refinement of the simulation model.

Last but not least, runtime error mitigation is needed in the operation & maintenance
phase in terms of runtime consistency checks and techniques for the straightforward
localization of system failures. A detailed system knowledge has been acquired during

121

verification and validation that increases the confidence into the overall system. This
allows one to implement runtime error mitigation in terms of consistency checks for the
automatic identification of possible system malfunction. These checks use confidence
intervals for measurement noise and systematic error in the system to detect these error
cases. Those can be interpreted and traced back to a certain system component to help
guide mitigation steps.

To summarize the approach, the effort for validation based on empirical measurements
is reduced. Instead of individually validating all IAR applications by exhaustive empiri-
cal measurements in the target environment, the simulation system shall be validated in
a generic and reusable way. Still, exhaustive measurements are needed for this, but only
once. Furthermore, this proof can be rendered in a dedicated laboratory environment
instead of in adverse industrial target environments. Adaptation to the target environ-
ment then happens mostly by means of simulation. Only few empirical measurements
are then needed to validate the IAR application finally in its target environment.

In 13, the feasibility of this approach is demonstrated in a test scenario using high
precision ground truth data that is compared with the results of our simulation frame-
work.

10.4.2. Focus

The proposed verification and validation approach is integrated with the Ubitrack and
SRG concepts described in Part II. Verification could thereby be based on linear error
propagation, as described in 10.3.3. For the purpose of an efficient and generic imple-
mentation, it has been decided to follow the approach of a Monte Carlo simulation, as
described in 10.3.4. It has the advantage of supporting all existing and new Ubitrack
functionality right away, without the need for providing a linearized functional model.
Furthermore, the real-time capabilites of linear error propagation are not considered
necessary for the described IAR applications. The focus is on deriving reliable, static
guidelines for the IAR applications that can be incorporated into the exact specification
of an industrial work process. Runtime uncertainty information is not considered here.

The verification & validation concepts are tested exemplarily on mainly two IAR
scenarios. These two scenarios make heavy use of cooperative fusion approaches (cf.
2.3.2). Competitive fusion concepts based on Kalman [Kalm 60] [Koch 97] [Welc 01]
[Hoff 00] or particle filters [Douc 01] also heavily rely on measurement uncertainties.
They are not covered by subsequent evaluations, though.

Clipp et al. described a filtering concept that could make sense in combination with an
industrial measuring application [Clip 07]. They run two Kalman filters, a “current” and
a “delayed” one. The delayed filter is fed with the “good” observations only, according
to the information of the current filter about e.g., reprojection error. This should result
in a higher quality of the delayed signal. The current signal could be used for real-time
visualization, the delayed signal for interactive measuring where a slight lag can be easily
tolerated.

Related to this issue is the tradeoff between motion and measurement uncertainty.
The measurement noise decreases over time due to averaging whereas the motion noise

122

increases over time due to increasing uncertainty of the motion prediction. Therefore,
an “optimum frequency” can be found. It would be interesting to test the described
concepts in IAR. However, this is beyond the scope of this thesis, refer to [Pust 11] for
a treatment of this topic.

Furthermore, this part is restricted to the analysis of statistical errors. The problem
of blunders that are often caused by human failure in the described scenarios, are not
treated any further. Statistical tests as those mentioned in 10.3.3 could be applied for
their treatement, as well as other robust appraoches such as RANSAC [Fisc 81] [Hart 00].

Azuma distinguished between static and dynamic errors. The latter are caused by two
phenomena. Firstly, lag in communication paths always results in a delay between the
physical action and the reaction of the AR system. Secondly, in a sensor fusion setup,
the relative time-synchronization of the sensors with respect to each other is always an
issue (cf. 5.4.3). Simple strategies are followed to mitigate the problem in this context.
For a general solution, refer to [Schl 11].

10.4.3. Outline

To implement the described concepts, a Monte Carlo simulation system is integrated
into the Ubitrack tracking framework in terms of several data flow components. This
integration is described in Chapter 11. The simulation approach requires a detailed
understanding of the used tracking devices, first of all to support the validity of the
simulation system, in particular the inherent assumptions about the granularity of un-
certainty specifications, and secondly also to quantify the individual sensor uncertainties.
This analytic evaluation of individual sensors is treated in Chapter 12. In Chapter 13,
the described verification & validation concepts are then applied to the exemplary IAR
scenarios, the intelligent welding gun and the augmented airplane cabin. On this basis,
an approach for runtime error mitigation is formulated in Chapter 14. A discussion in
Chapter 15 wraps up the concepts for error management.

123

11. Ubitrack Monte Carlo Simulation
Framework

For now, we assume the elementary specification of uncertainties of the involved sensors
to be known. Different ways to determine them are described in 12. First, the adap-
tion of Monte Carlo simulation techniques to Ubitrack is described. This starts with a
closer look at the underlying simulation model, the Ubitrack data flow network in 11.1.
Next, the required data flow components are described in 11.2. This is followed by an
investigation of the computational complexity of Monte Carlo simulation in 11.3. This
is completed by several exemplary simulations that give insight into typical registration
and other problems.

11.1. The Chain of Uncertainty

The Monte Carlo simulation is to be implemented on the basis of an already existing
Ubitrack data flow for the sake of simplicity. Furthermore, its implementation shall
again yield a valid Ubitrack data flow for straightforward development.

From the Ubitrack point of view, the tracking data flow is fed by its source com-
ponents. Driver components provide erroneous sensor measurements. Static spatial
transformations are provided to the data flow, too, e.g., by the Static Transformation or
Calibration Reader components. They have been computed by a precedent instance of
another (registration) data flow and are also subject to error. This can be regarded as
a recursive problem, tracing back all erroneous signals to non-static errnoneous signals
of some sensors. A single sensor may even contribute several times to the overall ap-
plication error if it is used not only in the application data flow, but also in precedent
registration data flows. Pentenrieder called this backtrace of errors the chain of uncer-
tainty [Pent 09]. An important facet of this problem is the incorporation of errors arising
from the combination of offline metrologic and online tracking systems, as needed for
example by the airplane cabin scenario (cf. 7.1.2).

General approaches to deal with this problem are not yet available. Pentenrieder
lists various influences along the chain of uncertainty in a factory planning application.
These are the uncertainties from the detection of markers, camera calibration (intrinsic
parameters), referencing offset (registration), and model (rather the deviation of physical
model from the CAD model). The author itself calls this strict sequence of a “flat SRG”
concept. She describes forward uncertainty propagation rules to compute in real-time
the overall application error in this case from the known input uncertainties, based
on a linearized functional model. Different registration techniques based on 2D, 3D
and 6DoF measurements are evaluated and compared based on empirical ground truth

124

measurements. The focus was on the practical viability of the registration methods.
However, no rigorous comparison based on elementary specification of uncertainty is
given. Furthermore, Pentenrieder conducted a simulation experiment based on synthetic
camera images to assess the quality of optical square marker tracking. In this case, the
application error is considered to be the 2D overlay error for the augmentation on the
still image [Pent 06] [Pent 09].

Pentenrieder’s chain of uncertainty actually has the topology of a chain and its chain
links have the strict order given above. A Ubitrack data flow, however, has thetopology
of a cyclic graph in general. This can be seen for example in the airplane cabin exemplary
scenario, see 7.1.2 and 7.2. The two data flows logically belong together. They can be
linked at the Calibration Writer component for the offset between the Reference Target
(LED) and Reference Target (CAD) in the registration data flow and the corresponding
Calibration Reader component in the application data flow. It becomes obvious that the
tracking data of the probe tip is used twice, ending up in a single Application Push Sink
Position component interfacing to the application, cf. also the complete data flows in
Appendix A.1. Thus, the two paths originate and terminate at a common component,
resulting in a cyclic data flow graph.

The application error can be a 2D overlay error as above, or any other data type
supported in Ubitrack. For our IAR applications, rather 3D position or 6DoF pose
measurements are relevant. In this thesis, the focus regarding error management is
built on a consistent handling of the chains of uncertainties contributing to the overall
application errors.

11.2. Simulation Data Flow

A generic simulation system is described next which is able to propagate forward such
an elementary specification of uncertainty to simulate the uncertainty of the algorithm’s
outcome. It is integrated into the Ubitrack framework to allow for the simulation of
arbitrary Ubitrack data flows, in the style of the Matlab Simulink [Simu 11] simulation
concepts.

A Ubitrack simulation data flow consists of four elementary steps. First, ground truth
data has to be provided. Second, synthetic measurements can be computed by adding
noise to certain spatial transformations. Third, these measurements are fed repeatedly
into the actual registration / tracking algorithm. Forth, from the results, a covariance
can be estimated. These steps are be detailed in 11.2.1 - 11.2.4. A simulation data
flow can be distinguished from a normal data flow in that it does not contain any real
sensors. The special synchronization issues resulting from this are discussed subsequently
in 11.2.5.

The necessary steps for construction of a simulation data flow are demonstrated step-
by-step, using the example of a typical absolute orientation registration data flow based
on user-triggered point measurements (cf. 7.2.1 and Figure 7.5). The complete SRG and
DFG are depicted in Figure 11.1 and 11.2.

125

11.2.1. Ground Truth Data

The simulation system shall imitate the expected constellations of the planned real
system. For this, hypothetical data has to be provided in terms of assumed spatial
relationships. Hypothetical trajectories for moving objects can be provided in terms of
previously recorded or synthetically generated continuous movements or alternatively
in terms of a discrete grid. The Player or Calibration Reader components can be used
to inject this data into the data flow network. Furthermore, static transformations
describing the setup have to be provided. This synthetic data represents a ground truth;
it does not contain any measurement errors.

Tracker

Point
Cloud

Measurement
[3D Position List]

Measurement [Static]

B2A

Estimate [Error Pose]

World

Perturbed Measurement
[3D Position List]

AC
[3D Position List]

Measurement B
[3D Position List]

Figure 11.1.: SRG for solving the absolute orientation problem based on user-triggered
measurements (cf. Figure 7.5). See also the corresponding DFG in Fig-
ure 11.2.

For the ground truth data to be consistent, it is necessary to avoid over-determination.
This is equivalent to avoiding cycles in the SRG. Figures 11.1 and 11.2 depict the simu-
lation SRG and DFG for our example. It is enough to specifiy the 6DoF transformation
between Tracker and World (Static Pose) as well as a 3D Point Cloud known in the World
(Calibration Reader). Instead of explicitly specifying the ground truth data in textual
lists, suitable data can also be generated on-the-fly, using the Perturbation component.
In our example, e.g., the Point Cloud could be created by sampling with a uniform dis-
tribtion from a specified volume. This often speeds up the specification of a suitable
ground truth. This is sufficient to derive the Point Cloud also in the Tracker coordinate
frame, are described next.

126

Figure 11.2.: DFG for solving the absolute orientation problem based on user-triggered
measurements (cf. Figure 7.5). See also the corresponding SRG in Fig-
ure 11.1.

11.2.2. Synthetic Measurements

Based on the ground truth data specified according to 11.2.1, synthetic measurements
are generated. For this, the ground truth data first needs to be transformed into the
coordinate systems in which the elementary specification of uncertainties of the involved
sensors is provided. The usual spatial-relationship patterns are used for this. In our

127

example in Figures 11.1 and 11.2, the Multiplication component transforms the Point
Cloud to the Tracker coordinate frame. Then, by sampling from the given probability
density function, the data is perturbed accordingly. The Perturbation component is again
used for this. The Trigger component standing in-between are explained below. This is
the general procedure for the generation of synthetic measurements.

Note that ground truth data does not necessarily have to be given at the abstraction
level of the elementary specification of uncertainty. For example, the ground truth may
be specified conveniently in terms of 6DoF poses whereas error is assuemd in 2D pixel
coordinates. Another example making use of this property are provided below in 11.4.

In case a static transformation has already been estimated in a precedent simulation
step, its mean can be directly adopted and its covariance can be used to parametrize the
Perturbation component, instead of using the elementary specification of uncertainty of
an individual sensor.

The GUM suggests to use either a Gaussian, a uniform, or a triangular distribu-
tion for the specification of measurement uncertainties [ISO 08]. In a sensitivity anal-
ysis of the hand-eye calibration problem, Dornaika used either uniform or Gaussian
distributions [Dorn 98]. The Perturbation component also supports uniform and Gaus-
sian distributions. In case an estimated variance or covariance matrix shall be used to
parametrize a uniform distribution, the corresponding minimum/maximum values have
to be computed according to Equation (10.6). The Perturbation component currently
only supports an uncorrelated and isotropic error model. The current implementation
could be improved by a method for the generation of multidimensional uniformly dis-
tributed random variables. It should support general covariance matrices having also
off-diagonal entries. See also 10.1.2.

11.2.3. Registration/Tracking Algorithm:

The perturbed measurements are propagated through the data flow network of the algo-
rithm to be simulated. This resembles the normal calibration/registration or application
data flow. Various kinds of spatial relationship patterns are at our disposal, besides the
trivial Inversion and Multiplication, this comprises many common calibration and reg-
istration methods, see also 5.3.2. In our example in Figure 11.2, the data flow to be
simulated consists of the single Absolute Orientation component only. However, more
complex data flows would also be possible. Unlike in 7.2.1, the pattern is now used
in the implicit space-expanded form. The measurements actually do not have to be
captured manually, thus, a whole list of measurements can be processed in one step.

11.2.4. Covariance Estimation

The previous two steps, generation of synthetic measurements (cf. 11.2.2) and running
the registration/tracking algorithm (cf. 11.2.3) are repeated iteratively. Samples are
produced by perturbation and then propagated through the data flow by running the
corresponding algorithms. Each iteration results in a single output of the simulated al-
gorithm. Accumulating these output values, using descriptive statistics, the covariance

128

associated with the registration or tracking result can be estimated by the Covariance
Estimation component [Niem 08] [ISO 08] [Koch 97] [Dimo 05]. After the specified num-
ber of iterations, a single mean and covariance is dumped, in our example in Figure 11.2
to the Print Sink component.

For efficient incremental estimation of the pose covariance, the following relationship
can be exploited [Koch 97]:

VAR[X] = E[(X − µ)2] = E[X2]−E[X]2. (11.1)

Thus, the empirical mean value µ does not have to be known in advance. The two
expectation values E[X2] and E[X]2 can be estimated incrementally, by representing
Equation (10.1) as a weighted sum. In a recursive approach, the first summand represents
all previous measurements, the second summand represents the current measurement.
Assuming that n−1 measurements were processed already, the E[X2]n can be computed
according to

E[X2]n =
n− 1

n
E[X2]n−1 +

1

n
x2
n. (11.2)

Similarly, E[X]2n is obtained by the recursive formula

E[X]n =
n− 1

n
E[X]n−1 +

1

n
xn (11.3)

and applying the square after the last measurement has been incorporated.

For multidimensional measurements, the scalar product in the above equations is
replaced by the outer vector product and one obtains the covariance matrix ΣX instead
of VAR[X]. Therefore, the application of Equations (10.1) and (10.2) is straightforward
for the expression of 2D or 3D positional errors.

For the representation of orientation, however, additional steps are necessary. For a
further description of quaternions in general, see also 10.1.4 and [Horn 87] [Kuip 02] and
[Pust 04, Pust 08]. The additive 7x7 covariance matrix estimated using Equations (11.1),
(11.2), and (11.3) has to be converted to a multiplicative 6x6 covariance matrix compat-
ible with Equations (10.19) and (10.20). In other words, one would like to represent an
arbitrary estimated rotation q by a multiplication of the unknown true quaternion q0

with a small multiplicative error quaternion qe according to Equation (10.18).

q = q0qe = q0(qid + qadd) (11.4)

Here, qid is the identity quaternion ((0, 0, 0), 1) and qadd is a quaternion with expectation
((0, 0, 0), 0) and a 3 × 3 covariance matrix covering only the imaginary part. The vari-
ance of the real part is assumed to be 0 to obtain a non-over-paramterized uncertainty
specification, see also [Mark 04]. Together (qid + qadd) represents a small quaternion
qe = ((erx, ery, erz), 1).

When estimating the mean and covariance of the quaternion according to Equa-
tions (11.1), (11.2), and (11.3), however, one obtains the following additive represen-
tation instead:

q = q0 + q′e (11.5)

129

Note that qe and q′e are not identical. Equating Equations (11.4) and (11.5), this yields

q0(qid + qe) = q0 + q′e

qid + qe = q0q0 + q−1
0 q′e

qe = qid + q0q
′
e − qid

qe = q0q
′
e (11.6)

Thus, one has to rotate the distribution by the inverted quaternion q0. The variance
of the real part can then be discarded, as it should be ≈ 0. This can be seen from
Equation (10.22): for small φ, the gradient of cos(φ) is small, and so is the variance of
qe,w.

11.2.5. Data Flow Synchronization

The simulation has been implemented in terms of a few additional data flow components.
Their interaction is discussed next.

Basic Operation

Two components occuring in Figure 11.2 have not been described so far, the Application
Push Source (Button) component and the Trigger component. The former is used to kick-
start the simulation once in the beginning. Unlike during normal operation where at least
one sensor pushes events into the data flow network, thereby triggering the computation
of a result (cf. 5.4), in the simulation data flow there is no natural source of PUSH events.
Therefore, the Covariance Estimation component itself drives the data flow; indeed it runs
a dedicated thread for this. Whenever a new iteration is initiated, an event is issued on
one of its output ports. Generally speaking, this event activates upstream parts of the
data flow such that a new outcome of the data flow algorithm can be computed. The
Covariance Estimation component then just waits for the outcome to be computed before
initiating the next iteration. This goes on until the preconfigured number of outcomes
has been incorporated and the estimated covariance can be dumped. In our example,
the event activates the Trigger component. Whenever it receives an event, is pulls a
measurement and pushes it onwards to (again) initiate a new sample of the outcome of
the algorithm.

First of all, this push-style synchronization scheme ensures that the simulation data
flow runs efficiently, as a new iteration is triggered immediately after the previous itera-
tion has been completed. Furthremore, it also allows for nesting of data flow operations,
as discussed next.

Systematic Sampling

In case one wants to systematically vary some of the spatial assumptions (cf. 11.2.1),
e.g., to sample a predefined grid of positions within the tracking volume, the Covariance
Estimation has to be repeated for each grid position. To automate this, the Trigger Loop
component can be used, as depicted in Figure 11.3.

130

As with the Covariance Estimation, the Trigger Loop is triggered externally and runs
its own thread internally, allowing for recursive nesting. It also issues events to initiate
the next iteration. In each iteration of the loop, one or several Buffer components can be
updated; the necessary ground truth information can e.g., be fetched from preconfigured
lists of data in textual representation using the Calibration Reader and List Extractor
patterns.

Note that the initialization, i.e. updating the Buffer, is guaranteed to be executed
before the Covariance Estimation component is triggered anew since the latter has a lower
priority in the Ubitrack data flow. See also 5.4. Another interesting aspect revealed
in Figure 11.3 is the Synchronized-PUSH operation in the inner covariance estimation
loop. The two Trigger components assure that Paramter B and Parameter C both obtain
the timestamp associated with the Loop [Event] issued by the Covariance Estimation.
Therefore, the Black Box Algorithm can process them, see also 5.4.

Instead of a single covariance, many covariances are generated. They can be gathered
in a text file for post-processing in an external tool, using the Recorder pattern. This
strategy was pursued in the evaluations of the industrial use case scenarios discussed in
Part 13.

Nesting Operations

In the case where an application data flow requires the prior registration of a static
transformation, the question arises whether to simulate everything in a single mono-
lithic data flow or to determine the uncertainty of the registration in a prior simulation
step. The latter method is simpler to implement, however useful information may get
lost by describing the uncertainty in terms of a covariance and injecting it into the sub-
sequent application data flow, together with the assumption of a uniform or Gaussian
distribution. Therefore, the implemented simulation concept also allows for the nesting
of such operations.

A practical application of this technique is given in the validation of the airplane
cabin exemplary scenario in 13.2.2. The metrological probe whose uncertainty is to be
simulated is also used in the prior registration step for the reference target (cf. 7.2.3). In
a monolithic data flow, a list of 25 perturbed positions of the probe tip is generated on-
the-fly for all 25 drillings in the reference target before generating one perturbed sample
of the offset between the CAD model and the LEDs. The basic data flow design pattern
is depicted in Figure 11.4. This technique will be picked up in 13.2. The complete SRG
and DFG can also be found in Appendix A.1.

Often, nested loops are needed to construct lists of artificial measurements on-the-
fly. The Time-To-Space-Expansion Converter component is used for this purpose in the
depicted data flow. Note that Ubitrack supports one-dimensional lists of measurements
only to be conveyed between output and input ports. If each element of a list A shall be
used to generate a whole list of measurements Bi, the creation of the lists Bi in general
has to be rolled out as a nested operation.

In the example, the nested loop is located right in the beginning of the covariance
estimation loop, therefore, the Trigger Loop is triggered directly by Covariance Estimation

131

component. For an arbitrary other location, the Trigger Loop would have to be activated
by another Signal Generator component. Recursive nesting of operations is feasible with
this technique.

11.3. Computational Complexity

An interesting question is the number of samples needed for a sufficiently accurate esti-
mate of the covariance. I have chosen to present a rather informal consideration in this
context. It neglects the influence of multiple sources of uncertainties as well as multidi-
mensional correlated random variables. Some aspects of these issues are also discussed
in [Dimo 05].

For estimating a mean value, Equation (10.3) gives insight into the convergence rate
of the Monte Carlo method.

VAR[X̄] =
σ2

n
⇒
√
n =

σ

sX̄
(11.7)

Thus, if we want to achieve a standard deviation for the mean of 1/10 of the assumed
uncertainty σ, then 100 samples are needed.

Our main interest however is the estimation of a covariance matrix. For the variance
of the empirical variance, the following relationship can be shown [Kenn 52]:

VAR[s2] = σ4(
2

n− 1
+
κ

n
) (11.8)

where κ is the excess kurtosis, which is 0 for a Gaussian distribution. Consequently, if
we want to achieve a standard deviation for the empirical standard deviation of 1/10 of
the assumed uncertainty σ, then ≈ 20000 samples are needed. This consideration just
sheds light on convergence given an assumed standard deviation σ. This σ is not only
influenced by the uncertainty of the observations but also heavily depends on the sensi-
tivity of the estimation algorithm itself [Robe 04]. No general statement can be given.
Therefore, the number of samples should be chosen adaptively, taking into considera-
tion the problem at hand as well as the desired degree of approximation [Cox 06]. An
example for the convergence of the absolute orientation algorithm [Horn 87] is discussed
below in 12.3.2.

11.4. Example: Comparison of Monte Carlo with Online Error
Propagation

The following example demonstrates the results of Monte Carlo simulation in a direct
comparison to analytic error propagation (cf. 10.3) [Pust 10]. The task is the estimation
of pose tracking uncertainty for a point-of-interest (POI) to which a fiducial marker sim-
ilar to 1.6(b) is rigidly attached. Both propagation techniques use identical assumptions,
in particular the elementary specification of uncertainty is given in 2D. Ground truth

132

data is assuemd in terms of 6DoF poses. The SRG and the corresponding explicitly
space-expanded pattern (cf. 5.3.5) are depicted in Figure 11.5.

The pattern does not represent a full-fledged pose estimation; rather only the NLLSQ
optimization is performed, based on the given Initial Pose of the Body with respect to
the World. This is enough for our simulation purposes since the required initialzation
can be taken directly from the ground truth data. Furthermore, the intrinsic (projection
matrix) and extrinsic (pose of Camera with respect to the World) camera parameters
have to be known. From this, the corresponding 2D coordinates on the individual Image
Planes can be derived by projection and artificial measurments can be generated by
perturbation. From this, the pose of the Body can be computed again.

The space-expansion affects the number of cameras available in the pattern, two in
this case. The time-expanded version of the pattern would consist of only one, though
movable camera. Unlike for the Absolute Orientation pattern, time-expansion would
not make much sense here since the extrinsic camera parameters are assumed to be
known, which means that the camera would have to be tracked such that the pattern
can be applied. With space-expansion, the extrinsic camera parameters are assumed
to be constant. This demonstrates that not all expansion types make sense for all
algorithms [Pust 06b].

The simulation is a simplification of the real situation, in particular the effects of fully
or partially hidden fiducials are neglected; rather, only their 2D and 3D coordinates are
used. The analytical model uses backward propagation (identical to NLLSQ) to estimate
the 6DoF uncertainties from 2D pixel uncertainties. It then uses forward propagation to
propagate the 6DoF error to any Point of Interest (POI). The simulation uses the same
NLLSQ algorithm for pose estimation. 1,000,000 samples were used to estimate the pose
covariance. The complete SRG and DFG can be found in Appendix A.1.

The purpose of this evaluation, that is not reproduced in detail here, was to estimate
the point-of-minimum-error (PME) in the coordinate system of the fiducial marker at
which the translational uncertainty is minimized. It could be shown that the PME is
generally distinct from the center-of-gravity (COG) of the fiducial marker. Furthermore,
a method is provided that allows one to deduce the PME given the covariance matrix at
the COG, the POI, or any other point in the coordinate system of the fiducial marker.
For details, please refer to [Pust 10]. The important fact that is relevant in this context, is
just stated here without reproducing the data. It says that the analytic error propagation
and the Monte Carlo simulation yielded the same result, aside from some small differences
in the off-diagonal entries of the covariance matrix.

133

Figure 11.3.: Simulation data flow with systematic sampling from a list of data. The Trig-
ger Loop systematically varies Parameter A of the algorithm to be simulated
between individual runs of the Covariance Estimation whereas Parameter B
and Parameter C are just reused over and over again. The Event Generator
informs the outer Trigger Loop about the termination of the inner Covari-
ance Estimation loop. The three reddish colored arrows indicate the three
different levels of PUSHes propagated through the data flow and reveal the
nested loop structure at the same time. The list of estimated covariances
is stored by the Recorder component.

134

Figure 11.4.: Simulation data flow with nested on-the-fly generation of a list of synthetic
measurements. In each iteration of the Covariance Estimation, a nested loop
is executed, steered by the Trigger Loop and Event Generator components.
Both components syntactically confine the nested loop; whenever the Event
Generator receives a pushed measurement, it informs to Trigger Loop to
initiate the next iteration of the nested loop. When the preconfigured
loop counter is reached, the Trigger Loop issues a final event on its other
output port. The nested loop feeds individual measurements into the Time-
To-Space-Expansion Converter which aggregates a list. As soon as the list
contains the determined amount of data, the outer Covariance Estimation
loop continues operation.

135

Camera
1

World

Image
Plane

1

Fiducial Positions
[3D Position List]

Body

Projection Matrix [3x3 Matrix]

Refined Pose [Error Pose]

Initial Pose Camera
2

ExtrinsicsExtrinsics

Projection Matrix [3x3 Matrix]

Image Measurements
[2D Position List]

Image Measurements
[2D Position List]

Image
Plane

2

Points

(a) SR pattern

Camera
1

World

Image
Plane

1

Body

Fiducial Positions
[3D Position List]

Initial Pose

ExtrinsicsExtrinsics

Projection Matrix [3x3 Matrix]

Image Measurements
[2D Position List]

Camera
2

Projection Matrix [3x3 Matrix]

Refined Pose [Error Pose]

Image Measurements
[2D Position List]

Fiducials

Image
Plane

2

Point of
Interest

(POI)

Offset [Static]

Result

Error Estimate
[Error Pose]

(b) SRG

Figure 11.5.: SR pattern and SRG for the 2D-6D pose estimation problem. Two cameras
track the fiducials of a marker (Body) inside the commonly visible volume.
Their 6DoF poses in the world are known (Extrinsics), as well as their
projection matrices. From the 2D observations of both cameras, a 6DoF
pose is reconstructed by a NLLSQ method. The uncertainty is estimated
for an assumed Point of Interest (POI) that is rigidly connected with the
marker. In the SRG, only the important spatial relationships are shown,
most intermediary results are hidden for the sake of clarity.

136

12. Sensor Errors

In 10.3 and Chapter 11, the propagation along the chain of uncertainties was described.
So far, the elementary specification of sensor uncertainty was assumed to be given. In
some cases, it is given by the system vendor, however often, the desired specification is
not available. Important standards and guidelines for the determination of uncertainties
for spatial measurement devices were already introduced in 10. This chapter addresses
the topic of formulating an elementary specification of uncertainty in some more detail.

First, a review of related work is given in 12.1 regarding the assessment of uncertainties
for sensors typically used in AR. Next, the term elementary specification of uncertainty
introduced in 10.3.5 is further motivated in 12.2. Then, two different techniques are
described in 12.3 that allow for an assessment of the sensor uncertainties based on
3D position measurements. The presented concepts are not exhaustive, rather, the
focus is laid on optical tracking systems and online metrologic measurement devices
such as mechanical measurement arms, coordinate measurement machines (CMM), and
laser trackers. This is accompanied by practical examples and case studies. A detailed
example in 12.4 completes the treatment of sensor uncertainties.

12.1. Assessment of Uncertainties in the Literature

Ideally, the vendor itself publishes a basic sensor uncertainty specification for his prod-
ucts. This is a must for vendors in the metrology domain where specifications are
often published on their website1. Some vendors provide an even more detailed insight
into their systems, thereby allowing for detailed reverification tests at the customer’s
site [Wile 05]. Schmidt et. al use a high precision linear stage to evaluate various NDI
tracking systems along the three spatial axes [Schm 09].

The situation is less straightforward for tracking systems that emerged in the MR
domain, where the assessment of uncertainties is often still a research issue.

Satoh et al. use an industrial robot to move an HMD through the tracking vol-
ume to evaluate the VICON [Vico 11] and laserBIRD [lase 11] optical tracking sys-
tems [Sato 06]. It allows for systematically reproducible measurements with arm poses
known with high precision. The pose error of the HMD as well as registration error
in pixels is evaluated. Thereby, jitter at a constant pose is distinguished from system-
atic error in relative position and orientation changes. Using this technique, substantial
parts of the chain of uncertainty from tracking to visualization can be covered, though
e.g., the world registration or the arrangement and design of markers, still lacks. A

1Examples are FARO [Faro 11a] and NDI [NDI 11]

137

framework is presented for this purpose which is applicable also to other systems. How-
ever, it requires dense ground truth data from a high-precision industrial robot. We
believe that the major contribution of such works—besides validating a particular AR
environment—is restricted to an elementary statement about the investigated tracking
systems only.

Rohling et al. conducted a comparison of the accuracy of a mechanical measurement
arm2 and an optical position tracker3 for image-guided neurosurgery. Thereby, IR LEDs
are mounted rigidly near the tip of the probe. Relative distances are compared against
the gold standard obtained from a calibration device [Rohl 94].

Other works restrict themselves to the assessment of an individual system. Much of the
work has been conducted in the field of optical square marker tracking [Pent 06] [Zhan 02]
[Malb 02] [Abaw 04]. Malbezin et al. pointed a camera towards the marker from different
positions and angles. They assessed the error in camera pose of the ARToolKit tracker
using physical measurements as a reference. The latter were obtained using complex
manual measurements and geomteric constructions on the plane containing the marker
as well as the tripod carrying the camera with a plumb-line mounted below. Maximum
errors of these more or less rude methods and their contribution to the pose error are
pre-estimated and considered in the analysis of the results [Malb 02].

Zhang et al. compare four different available optical square marker tracking systems
according to various factors, including accuracy [Zhan 02]. They measure feature regis-
tration error on the image plane. As a ground truth they use the well established corner
detection algorighm of OpenCV as well as an alternative line-fitting algorighm to esti-
mate the features with the best possible accuracy. Thereby, they did not rely on pose
errors or back-projection since those methods depend on camera internal parameters
and calibration algorithms.

In contrary to that, Abawi et al. estimated pose error, again using physical mea-
surements [Abaw 04]. Thereby, systematic error and standard deviation are treated
separately. Both may have huge impact on the overall error. From this, an accuracy
function is derived for the prediction of accuracy based on the pose of the camera with
respect to the marker.

Lieberknecht et al. use a FARO measurement arm to generate ground truth im-
age data which is then used to assess the quality of different markerless tracking algo-
rithms [Lieb 09].

12.2. Elementary Specifiation of Uncertainties for Sensors

The assessment of uncertainties as described above in 12.1 is tedious work and often
also requires the use of expensive equipment to obtain ground truth measurements.
Unfortunately, only some of the described works is useful in a general means for the
purposes of propagation of uncertainties according to 10.3. For example, the knowledge
of pose errors in monocular square marker tracking for a certain constellation of camera

2FARO
3NDI Optotrak

138

linearization model, marker tracking algorithm, marker type and size, camera model,
and lens model is not generally useful to predict the overall application error in similar
setups.

To get the most benefit from expensive accuracy assessments, a standardization of the
process is required. Uncertainties must be assessed and specified in a way that allows
for flexible reuse of the data.

In the mentioned example it would be more useful to have knowledge about 2D uncer-
tainties on the image plane of a certain constellation of linearization model, camera, and
lense. It could be reused to predict pose errors also in similar setups using other tracking
algorithms, marker layouts and dimensions. Probably, an additional uncertainty value
has to be estimated in 2D for the feature detection algorithm being used. However,
the uncertainties of image acquisition should be distinguished from those of the feature
detection for maximum reusability.

Similarly, in a multi-camera IR tracking setup, pose uncertainties heavily depend on
the arrangement of the cameras (extrinsic camera parameters). Knowledge of the pose
uncertainties in a given setup is not transferable to other setups, even if the same number
of cameras is used. If the uncertainties were specified in terms of 2D image plane errors
for individual fiducials, pose errors for any setup using such cameras could be easily
predicted.

For multi-camera setups installed in a single, rigid frame, the specification of uncer-
tainties for individual fiducials in also 3D comes into consideration. NDI follows this
approach. In this case, the manufacturer’s calibration protocol that has been pub-
lished for customer reverification tests, is also based on ground truth measurements in
3D [Wile 05]. This way, the specification can be used to predict pose errors for targets
of arbitrary geometry and numbers of fiducials.

The challenge is to state the uncertainties in a way that makes them maximally
reusable and guarantees consistent simulation results at the same time. This shall be
called the canonical representation of the uncertainty specification and corresponds to
the definition of the elementary specification of uncertainties given in 10.3.5. First of all,
a data type has to be chosen for a particular system that represents best the properties
of the system. Then, the magnitude of the basic uncertainty has to be either directly
measured, or inferred by some suitable means. Methods to accomplish this in the con-
text of optical IR tracking is presented in the remainder of this chapter. A transfer to
other sensor systems is considered necessary by the author, it is however beyond the
scope of this thesis. The correctness of the chosen uncertainty specifications regarding
their capability to yield realistic simulation results is analyzed in this context.

It shall be noted that the basic uncertainty specification should not be restricted to
errors that are caused by the physical entity one would intuitively associate with the
data type chosen for this specification. In other words, if 2D image plane errors are
chosen as the error model, then the specified quantity should not only comprise CCD
pixel noise, as assumed by Bauer [Baue 06] [Baue 07]. It should also contain for example
those uncertainties that result from the inadequateness of the camera model or fabrica-
tion tolerances of the used optics. Bauer already observed that such systematic effects
dominate the overall tracking accuracy. Nevertheless, he excluded them from his real-

139

time prediction system for instrument tracking. He stated that such systematic effects
should rather be removed by improved calibration procedures. Indeed, it is desirable
to reduce uncertainties by using better models and calibration routines. Yet, they will
never be fully eliminated. Following the philosophy of the GUM, they should rather be
accepted and incorporated, subsumed unter the pragmatic term uncertainty.

12.3. Residual Error from Point-Based Registration

Many registration methods are based on corresponding 2D or 3D position measurements.
Several such methods are available in Ubitrack, e.g., the Absolute Orientation or SPAAM
Calibration (cf. 5.3.2 and 7.2). The 3D-2D problem can be solved using DLT, followed
by an iterative NLLSQ optimization that minimizes geometric error [Hart 00]. For the
2D-2D and 3D-3D problems, linear closed-form solutions exist that directly yield the
least-squares solution. See also 10.3.1.

Point correspondences have to be collected for all these algorithms. In the following
two methods are discussed that allow one to assess sensor uncertainties from this data.
Basically, it does not matter whether the point correspondences are collected for the
sake of registration or quality assessment or both. Our pragmatic approach aims at
estimating the accuracy of one or several tracking devices, after they have been installed
in a certain setup and also after they have been calibrated using the proprietary methods
provided by the vendor. This also allows one to perform the analysis for the typical
tracking volume to be used later on in the application. Furthermore, typical pointing
devices, measurement tools or other targets can be incorporated, as long as they allow
for reproducible point measurements.

The following treatment mainly discusses the 3D-3D case, although the proposed
methods can also be used in the other cases. Two techniques are discussed in 12.3.1 and
12.3.2, the NLLSQ Helmert transformation used in metrology, and a linear approxima-
tion to this concept. Initially, the registration incorporates ground truth data that can
be obtained, e.g., from high-precision coordinate measurement machines or mechanical
measurements arms. The final goal is the derivation of a method that allows one to
assess uncertainties even without having ground truth data.

Assuming n corresponding point measurements {pi ↔ qi}, a pose transformation
matrix H can be estimated such that

pi = Hqi for all i ∈ [1..n]. (12.1)

pi and qi are thereby assumed to be homogeneous vectors. For tracking scenarios, H
normally is an invertible rigid (euclidean) transformation of 2D (3 DoF) or 3D (6 DoF)
space, or a 3D-2D projection (11 DoF) [Hart 00]. If the problem is overdetermined, the
measurements won’t fit perfectly and Equation (12.1) becomes pi ≈ Hqi instead. The
main idea is the statistical analysis of residual errors arising from this over-determination.

140

12.3.1. General Non-Linear Solution: Helmert Transformation

In adjustment theory, the problem of matching point clouds is treated by an NLLSQ
approach (cf. 10.3) called Helmert transformation. It allows one to estimate spatial
transformations in 1D/2D/3D having various DoF. Free and commercial tools are avail-
able for this purpose. For our purposes, the free Java Graticule 3D [Grat 11] is used. It
implements the method described by [Jage 05]. Therefore, only the fundamental idea is
sketched here.

Two point clouds are assumed to be given, measured independently in coordinate
frames P and Q, potentially using distinct devices. One of these point clouds, say P ,
is defined to be the target coordinate system. These observations are gathered in the
observation vector L, consisting of vectors LP and LQ. The basic idea is to estimate

from all oberservations LP and LQ a consistent point cloud X̂P in coordinate system

P as well as transformation parameters Ĥ.
This functional model f is linearized around the initial solution X0 and H0 and

contains only their corrections x̂P = X̂P − L, ĥ = Ĥ −H. Since only the corrections
are included, this is also called shortened observation equations.

l̂ =

[
lP
lQinP

]
︸ ︷︷ ︸

l

+

[
vP
vQinP

]
︸ ︷︷ ︸

v

=

[
I 0
I Af

]
︸ ︷︷ ︸

A

[
x̂P
ĥ

]
︸ ︷︷ ︸
p̂

(12.2)

Here, Af(H0) = Af is the design matrix (Jacobi matrix) of the spatial transformation
parameterized by H0. lP and lQinP have been computed based on the initial solution
of the parameters and the observations according to[

lP
lQinP

]
= f(XP,0,H0)−

[
LP
LQinP

]
. (12.3)

The v are the corrections to be applied to these shortened observations to fulfill the func-
tional model. The first line of Equation (12.2) is a simple identity transformation since
the point cloud to be estimated is in coordinate system P . The second line represents
the yet to be transformed point cloud Q, it also involves the design matrix Af(H0).

The stochastic model is described by

ΣL =

[
ΣP 0
0 ΣQinP

]
. (12.4)

Here, ΣP is the a priori covariance matrix associated with LP . ΣQinP is the a priori
covariance associated with LQ, but propagated to the target coordinate system A based
on HA, 0

B using forward error propagation according to 10.3.3:

ΣQinP = AfΣQA
T
f (12.5)

The NLLSQ process described in 10.3.3 computes estimates X̂P and Ĥ for the un-
known parameters X̄P and H̄ such that the necessary corrections vP and vQinP are

141

minimized. Obtained estimates X̂P and Ĥ become the initial solution XP,0 and H0 for
the next iteration until convergence. In particular, the covariance matrix ΣQinP has to
be adapted in each iteration. Depending on the weighting of ΣP and ΣQinP in ΣL, the

estimated point cloud X̂P is closer to LP or LQinP . Each estimated point p̂ will end
up on a straight line between p and Hq, all other choices of p̂ would result in a greater
norm of v, regardless the chosen a priori covariance matrix ΣL.

12.3.2. A Linear Approximation

Next, a linear method is described for the estimation of uncertainties from point-based
registration. The derivation assumes isotropic error in coordinate frames P and Q. It
relates the residual error (cf. 10.1.3) with the concepts of MLE estimation (cf. 10.3.1).
It helps to develop a method for the estimation of uncertainties even without having
ground truth data.

Residual Error Revisited

Assuming error in coordinate frame Q only, residual error and estimation error per
measurement are defined as

εres =

√√√√ 1

dn

n∑
i=1

‖qi − q̂i‖2

εest =

√√√√ 1

dn

n∑
i=1

‖q̄i − q̂i‖2, (12.6)

where d is the dimensionality of the problem, e.g., 3 for 3D points, ‖·‖ is the Euclidean
distance and q̂i is the maximum likelihood estimate (MLE) of the unknown true point
q̄i. This is a just a reformulation of Equation (10.14).

For the sake of completeness, a related, more general error norm shall be mentioned.
The Mahalanobis distance weights the measurements according to their covariance ma-
trix Σ. Using the Mahalanobis distance, however, one sacrifices the nice property of a
direct, metric interpretability of εres and εest.

εres,Σ =

√√√√ 1

dn

n∑
i=1

(qi − q̂i)Σ(qi − q̂i)

εest,Σ =

√√√√ 1

dn

n∑
i=1

(q̄i − q̂i)Σ(q̄i − q̂i), (12.7)

For the general case of errors in both measurements, residual and estimation errors

142

become

εjoint res =

√√√√ 1

2dn

n∑
i=1

(‖pi − p̂i‖2+‖qi − q̂i‖2)

εjoint est =

√√√√ 1

2dn

n∑
i=1

(‖p̄i − p̂i‖2+‖q̄i − q̂i‖2). (12.8)

The factor 2 in the denomenator reflects the fact that errors arise in both coordinate
frames now. Equations (12.6) and (12.8) compute a per single coordinate measure of
the standard deviation of measured minus estimated (residual) and estimated minus
unknown true points. In other words, the uncertainty is balanced equally between both
modalities.

Residual error is also known as geometric error. Please note that it is different from
symmetric transfer error [Hart 00].

εsym =

√√√√ 1

2dn

n∑
i=1

(‖H−1pi − qi‖2+‖pi −Hqi‖2) (12.9)

Though easier to compute since no point estimates p̂ are needed, the latter does not
directly relate to the standard deviations of the two sensors and is therefore not very
helpful for our purposes.

Parameter Estimation

In case of error in one frame only, the true points p̄a are known and P consists only of
the parametrization of the homography H to be estimated, e.g., 3 translational and 3
rotational parameters for 3D-3D pose estimation. In case of errors in both coordinate
frames, P also contains dn entries for p̂a, thus altogether 6+dn entries. L consists of all
measurements, either in frame Q only, or both, stacked together. It therefore contains
N = dn or N = 2dn entries.

Hartley and Zisserman [Hart 00] derived formulas for the expectation values of εres and
εest that depend on the assumed standard deviation in measurement space, the number
of measurements and the degrees of freedom of the problem.

εres =

√
E[
‖L̂−L‖2

N
] =

√
σ2(N −M)

N
) = σ

√
(1− M

N
) (12.10)

εest =

√
E[
‖L̂− L̄‖2

N
] =

√
σ2
M

N
= σ

√
M

N
(12.11)

The derivation is based on the total variance associated with the measurements L
which is the trace of the covariance matrix. In the case of isotropic error, total variance

143

thus becomes Nσ2. According to Equation 10.24, estimation error is the deviation of
estimated measurements L̂ from the true measurements L̄, which is given by a projection
of the Gaussian distribution of L on the submanifold S of RN (cf. Figure 10.3).

Errors in directions orthogonal to S become 0 by this projection and the remaining
total variance of L̂ ∈ S becomesMσ2. Note thatM is the dimension of S. The derivation
for εres is similar. Figures 12.1(a) and 12.1(b) show the behavior of εres and εest assuming
σ = 1 mm for the 3D-3D pose estimation problem as a function of the number of point
correspondences for the cases of error in frame Q only and errors in both frames.

0 5 10 15 20 25 30
points

0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014

error @mD

(a) Error in one coordinate frame only

0 5 10 15 20 25 30
points

0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014

error @mD

(b) Error in both coordiante frames

Figure 12.1.: Behavior of residual error εres (solid, red) and estimation error εest (dotted,
green) in 3D-3D pose estimation as a function of the number of point corre-
spondences. A standard deviation of σ = 0.001 m per measured coordinate
is assumed.

In both cases, residual error increases quickly after the minimum number of measure-
ments has been taken. At the same time, estimation error decreases quickly. For errors
in frame Q only, residual error for single coordinates (qx, qy, qz) of the points qi converges
against the assumed standard deviation of σ = 1 mm whereas estimation error for these
coordinates converges against 0. This becomes clear from the fact that both L̂ and L̄ are
elements of the only 6-dimensional submanifold S. With more and more measurements
available, the orthogonal projection referred to above assigns more and more of the total
variance of the measurements to directions that are orthogonal to S. In case of errors in
both frames, however, the dimension of S increases with the number of measurements.
The common asymptotic value of εjoint res and εjoint est is σ/

√
2 because the true coor-

dinates are not known any longer but are estimated from two measurements each, one
in frame P and another in Q, related by the estimated homography H. And with two
measurements for each coordinate, the variance of the estimate (mean value) is 1/2 (cf.
Equation (10.3)) of the variance of the single measurement. This directly corresponds
to the Pythagorean equality in Equation 10.24 stated above. For errors in frame Q only,
‖L̄ − L̂‖2 converges to 0 and ‖L − L̂‖2 converges to the real error. For errors in both
frames, ‖L̄− L̂‖2 never becomes 0.

Using the Mahalanobis distance, a more general form of Equation (12.10) can be
derived. For this, the Euclidean distance is just replaced by the Mahalanobis distance

144

and the σ is removed.

εres =

√
E[
‖L̂−L‖2Σ

N
] =

√
(N −M)

N
) =

√
(1− M

N
) (12.12)

εest =

√
E[
‖L̂− L̄‖2Σ

N
] =

√
M

N
(12.13)

The computed norms can be plotted similarly to Figure 12.1, though without the metric
interpretability. Still, such plots could provide valuable information to the user during
measurement acquisition for registration procedures, see also 14.1.

Estimation of Corrected Points

In the case with error in frame Q only, estimated points q̂ are trivially obtained from the
true points p̄ by q̂i = Ĥ−1p̄i, using the transformation Ĥ estimated before (see 12.3.2).
In the general case, estimates p̂ and q̂ can not be obtained as easily. For this, we
use a modification of an error function proposed by Sampson for conic fitting [Hart 00]
[Samp 82]. It gives us the MLE of the points p̂ and q̂ which allows us to compute the
residual error using Equation (12.8).

The Sampson approximation is normally used for the iterative estimation of both
the unknown parameters of the function to be estimated and corrections to the noisy
measurements in an NLLSQ approach. Since we already have the MLE estimate of the
parameters from the closed-form solution, Sampson’s formula gives us the estimated
corrections of the noisy measurements in one step.

In the general case of a projective transformation in 3D, Equation (12.1) can be written
as

k

px
py
pz
1

 =

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

qx
qy
qz
1

 =

hT1
hT2
hT3
hT4

qx
qy
qz
1

 . (12.14)

k is some constant that allows one to have 1 in the forth row of the homogeneous vectors
on both sides.4 Setting k = hT4 q yields

 hT4 qpx
hT4 qpy
hT4 qpz

 =

 hT1 q

hT2 q

hT3 q

 . (12.15)

4Note that k = 1 for affine transformations for which h41 = h42 = h43 = 0 and H44 = 1. In particular,
pose transformations fall in this category.

145

Sorting this equation system by the entries of H yields

 qT 0T 0T −pxqT
0T qT 0T −pyqT
0T 0T qT −pzqT

h1

h2

h3

h4

 = Ah = 0. (12.16)

In the overdetermined case, Equation (12.16) 6= 0 but it yields the algebraic error
vector

εalg = Aih =

 A1
...
An

h (12.17)

for each point correspondence {pi ↔ qi} . It does not have a geometrically meaningful
interpretation except for the case when it is 0. In this case, the point correspondence
fits perfeclty to the given homography H and geometric error becomes 0, too.

We introduce the 6-vector Li = (pTi , q
T
i)T and the 6n-vector L = (LT1 , . . . ,L

T
n)T .

The algebraic error vector can be approximated by a Taylor expansion around the given
point measurements.

εalg(L0 + ∆L) ≈ εalg(L) + J εalg(L0)∆L (12.18)

with ∆L = (L̂ − L). Given a certain homography H, the goal therefore is to compute
points p̂ closest to our measurements p that also fulfill Equation (12.16). This is a
minimization problem with constraints and can be solved using Lagrangian multipliers.
A derivation is given in [Hart 00]. To solve the problem, the Jacobian

J εalg(L0) =
δ

δL
εalg|L0 =

δ

δL
Ah|L0 (12.19)

of εalg w.r.t. the measurements L has to be computed. It has block-diagonal structure,
with

J =

J1 0 . . . 0

0 J2
. . .

...
...

. . .
. . . 0

0 . . . 0 Jn

 (12.20)

and the 3×6 matrices J i according to Equation (12.21). Please note that the first-order
approximation in term of J is exact in the case of an affine transformation. This becomes
clear by setting h41 = h42 = h43 = 0 and h44 = 1.

J i =

 h11 − pxh41 h12 − pxh42 h13 − pxh43 −hT4 q 0 0

h21 − pyh41 h22 − pyh42 h23 − pyh43 0 −hT4 q 0

h31 − pzh41 h32 − pzh42 h33 − pzh43 0 0 −hT4 q

 . (12.21)

146

We obtain corrections for the measurements P by

∆P = −JT (JJT)−1εalg. (12.22)

In the general case, the covariance matrix would have to be incorporated:

∆P = −ΣLJ
T (JΣLJ

T)−1εalg. (12.23)

This allows us to compute the MLE estimates of the measured coordinates P̂ =
P + ∆P . Since the Sampson approximation to NLLSQ is correct for our affine case,
so are the computed corrections, provided that H indeed was the MLE estimate. This
requirement is met e.g., by the absolute orientation algorithm used for 3D-3D pose
estimation [Horn 87]. Having this, geometric error according to Equation (12.8) can
be computed. The derivation assumed measurements in 3D space. It is similar for 2D
measurements.

Estimation of Variance Components

In the following, we use again the simplified assumption of an isotropic error model.
As already stated in 12.3.1, the joint residual error remains constant, regardless how
we distribute the uncertainties to the involved modalities. The estimated (corrected)
point just moves on a straight line between the two erroneous measurements since all
other estimates would result in a higher residual, regardless which a priori variance or
covariance is assumed. It might be wrong but the estimated joint residual error remains
constant. Assuming independent and isotropic errors in each of the two frames, (12.10)
can be converted to

εjoint res =

√
σ2

joint(N −M)

N
≈

√
σ2

joint

2
=

√
0.5(σ2

p + σ2
q)

2

2εjoint res =
√
σ2

joint =
√
σ2
p + σ2

q . (12.24)

The true joint uncertainty σjoint is composed of the unknown individual true uncer-
tainties σp and σq. σjoint can be computed from the computed residual εjoint res. This
also explains again the nature of the factor

√
2 appearing in the denominator of Equa-

tion 12.8 and the lower limit of the residual error in Figure 12.1(b), as compared to
Figure 12.1(a). Note that the assumption of isotropic error allows us to neglect the
otherwise necessary transformation of the covariance according to Equation (12.5) since
by a rigid transformation, the norm of the RMS is not changed. Therefore, the RMS
values of both modalities can simply be added.

The final goal is to estimate σp and σq. From a single set of point correspondences,
this is not possible. At least three independent sets of correspondences are needed in
order to obtain unique results by solving the following equation system:

σ2
a + σ2

b = σ2
jointab

σ2
b + σ2

c = σ2
jointbc

σ2
a + σ2

c = σ2
jointac

(12.25)

147

As explained above, the MLE estimate p̂ moves freely between p and Hq, depending on
the choice of variance or covariance in the the coordinate systems P and Q. The joint
residual error εres is not influenced by this a priori assumption of the uncertainties. The
assumption of uncertainty in one frame only, say Q, is just an extreme case. Instead of
(12.24), we then obtain

εres =

√
σ2

joint(N −M)

N
) ≈
√
σ2 =

√
(σ2
p + σ2

q)

2
. (12.26)

The system of equation (12.25) remains unchanged. This simplification renders the
explict computation of corrected points p̂i according to 12.3.2 useless. It can be omitted
if the corrected points are not explicitly needed, simplifying the whole process.

Example: Simulation Experiment

A simulation based on synthetic data shows the principal feasibility of our approach.
This is supported by two experiments based on real sensor data. Three corresponding
sets of 3D points are given in coordinate frames P , Q, and R. They are chosen to be
uniformly distributed on a unit sphere. The three frames are related by an identity
transform, i.e. no translation, no rotation. Then, isotropic Gaussian noise is applied
to all points. Different standard deviations σp, σq and σr are used for the three point
clouds.

From this data, the three rigid transformations HAB, HBC , and HAC are computed
using Horn’s abosolute orientation algorithm [Horn 87] applied to the noisy data. Then,
point corrections ∆ab, ∆bc, and ∆ac are computed using (12.22). Using (12.24), they
result in the joint residual errors σ̂ab, σ̂bc, and σ̂ac that are used to solve for the desired
standard deviations σ̂a, σ̂b, and σ̂c according to Equation (12.25).

The experiment is conducted twice, once with σi being close together (σa = 1 mm,
σb = 2 mm, and σc = 3 mm) and once with σi differing by an order of magnitude
(σa = 0.1 mm, σb = 1 mm, and σc = 10 mm). In each experiment, the size of the
point sets is increased one by one, starting with the minimum number of three points,
stopping at 1000 points per set. For each number of points, a new sample is drawn from
the uniform distribution, and a new error is added to each set, drawn from the isotropic
Gaussian distribution.

The results are summarized in Figure 12.2. In both cases, with increasing number of
points, the estimated standard deviations σ̂i become more and more stable and approach
the true standard deviations σ̄i chosen before. See also 11.3. Quantities lower than
50-70 don’t seem to yield stable results. Note that the (12.25) is not always solvable
with real numbers, especially for few point correspondences and σ being close to 0. The
corresponding measurements are missing in the plots, especially for σa in Figure 12.2(b).
As a workaround, one could compute the absolute value of the variance before extracting
the root to compute the standard deviation.

148

200 400 600 800 1000
points

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

std. dev. @mD

(a) σa = 1 mm, σb = 2 mm, and σc = 3 mm

200 400 600 800 1000
points

0.002

0.004

0.006

0.008

0.010

std. dev. @mD

(b) σa = 0.1 mm, σb = 1 mm, and σc = 10 mm

Figure 12.2.: Behavior of estimated standard deviation as a function of the number of
point correspondences

12.3.3. Practical Considerations

In the case where ground truth data for comparison is available, both, the Helmert trans-
formation and the linear approximation can be used to assess the unknown uncertainties
of a tracking device. This can be achieved at several levels of abstraction. Position mea-
surements can be generated by a single fiducial, as shown in Figure 12.3. Alternatively,
the tip of a pointing device (see Figure 1.6(b)) can be used as well.

With a pointing device the correspondence property between measurements of different
modalities can be established easily by repeatedly probing the same physical points.
It might therefore be easier to handle, provided that suitable points are available for
probing. With respect to a generally useful elementary specification of uncertainty, the

149

Figure 12.3.: Three-sensor evaluation setup

former method should be preferred though. The results can then be applied to arbitrary
marker layouts.

When capturing position measurements synchronously, irrespective of whether a single
fiducial or a pointing device is used, a proper time-synchronization is indispensable. This
can be achieved in general by a proper synchronization of the associated timestamps,
cf. 5.4.3. Also, a high-precision robot could be used to keep constant the position for the
time span that is needed for a safe acquisition of measurements with all involved devices
(cf. 12.4), superseding a proper time-synchronization. Alternatively, special plates or
3D structures can be used that allow for reproducible fiducial placement. High-precision
variants of the latter are typically used in close-range photogrammetry, see for exam-
ple [Luhm 00a].

In the experiment depicted in Figure 12.3, three different IR stereo tracking sys-
tems were compared against ground truth measurements of a FARO arm. The tracking
systems had a baseline of 50 cm each, but considerably different focal lengths. A retrore-
flective fiducial was mounted as the tip of the mechanical tracking arm. Obviously, it
can be tracked by the IR tracking systems simultaneously, resulting in measurements of
the center-of-gravity of the sphere. Furthermore, the ball was calibrated as the tip of
the arm, instead of the default 3 or 6 mm ceramic measurement sphere. In this way,
corresponding measurements could be recorded simultaneously by all four devices. For
this, the arm was moved to different positions approximately aligned with a 4 × 4 × 4
grid, resulting in 64 point measurements. Point measurements were acquired discretely
and manually, point by point; at each position, the arm was fixed by a screw clamp to
circumvent the problem of not properly synchronized timestamps.

150

The three point clouds obtained from IR tracking can be matched with the ground
truth point cloud, yielding a residual error according to Equation (12.6). Alternatively
the Helmert transformation could also be used. The former method was applied to
the measurements from the described experimental setup, resulting in the uncertainties
given in Table 12.1.

Table 12.1.: RMS error [mm] from point-based registration of three different IR tracking
systems using ground truth measurements. A 6 DoF rigid body transfor-
mation and a 12 DoF affine transformation are used for registration.

RMS error
IR tracking system Focal length [mm] 6 DoF matching 12 DoF matching

NDI Polaris 6 0.4 0.4
A.R.T. SmARTrack 3.5 2.3 1.0
A.R.T. TrackPack 2 12.4 5.2

The low RMS error for the NDI Polaris shows that the calibration of the retro-reflective
fiducial as the tip of the FARO arm is quite accurate, otherwise the error would have been
higher. The comparison is somewhat unfair, due to the quite different focal lengths. The
huge tracking volumes of the A.R.T. systems had to be restricted to the much smaller
volume of the NDI Polaris for the acquisition of identical point clouds. Unlike the NDI
Polaris, the A.R.T. systems have to be calibrated on-site before usage. For this, a wand
with a defined length and a fiducial at each of its ends is used. Since we suspected
scaling problems caused by this calibration procedure, we also computed a 12 DoF affine
transform (non-isotropic scaling along arbitrary axes) to match the point clouds, using
the DLT method [Hart 00]. For the A.R.T. systems, the error dropped by more than 50
percent, suggesting that the prescribed calibration procedure with the wand is critical
and should be optimized. For the NDI Polaris, the 12 DoF transformation did not make
a difference, suggesting that its factory calibration is quite optimal, at least globally
(considering the complete tracking volume).

Unlike in the described test setup, also tracking modalities based on distinct measure-
ment principles can be compared. In this case, the different fiducials can be mounted
rigidly to a common target that can be moved in space. The individual fiducials will
have an offset in between, but if the offset can be kept constant by the experimental
setup, the point clouds can still be matched. This approach is further detailed below in
12.4.

Now, the assessment of uncertainties without ground truth data is discussed. Having at
least three corresponding point clouds, this can be achieved by solving Equation (12.25).
Four point clouds are available from the experiment described above, considering the
FARO measurements not any longer as a ground truth. Table 12.2 lists the results for
the four possible combinations of three point clouds, respectively.

The last two combinations correspond quite nicely to the results in Table 12.1 whereas
the first two combinations yield rather different results. Combination two is obviously
heavily corrupted since the estimated uncertainty for the FARO arm is far too high.

151

Table 12.2.: RMS error [mm] from point-based registration of four different tracking
modalities without assuming ground truth data. Four different combina-
tions of three corresponding point-clouds are given.

Combination FARO arm NDI Polaris A.R.T. SmARTrack A.R.T. TrackPack

1 - 4.8 5.3 13.4
2 4.8 - 5.4 13.3
3 0.8 0.9 - 12.4
4 0.5 0.3 2.2 -

This evaluation reveals an interesting aspect. Solving Equation (12.25) seems to yield
reasonable results if the majority of the involved systems are globally scaled correctly.
The method fails if two of the involved systems suffer from a globally wrong scaling as
shown in Table 12.1. The method then is no longer capable of re-establishing the true
scaling, resulting in wrong error estimates.

A further, interesting possibility is briefly sketched in this context. It would allow for
the assessment of uncertainty for a single tracking modality only, which is more desirable
than the assessment of three systems in parallel. The difficulty in practice is to measure
the same point cloud several times and with different orientations inside the tracking
volume to “reveal” the systematic effects. A physical setup is needed for a reproducible
fiducial placement. It should be large enough to cover a considerable part of the whole
volume. From at least two point clouds (the more, the better) captured this way, the
uncertainty could then be estimated from the joint residual (cf. Equation (12.8)) by
splitting it up in equal parts to the involved poses of the physical setup (cf. Equation
(12.24)). Unlike the methods to provide ground truth discussed above, the geometry of
this physical setup can be unknown, it just has to be rigid. Therefore, its construction
might be simpler and cheaper. This method would not reveal isotropic scaling effects,
due to the unknown geometry of the setup. However, it could reveal the non-isotropic
scaling effects that were not treated correctly for the first two combinations in Table 12.2.
An unknown distance should remain constant for different orientations in the volume.

A similar situation arises in case that we already know the uncertainty of one device,
σa, maybe from a previous inspection. We can then allocate the remainder of the error
to the σb to be estimated, again using Equations (12.8) and (12.24). It is important,
however, to use the system under equal operating conditions such that the a priori
accuracy is really valid.

12.4. Example: Specification of Elementary Uncertainty for the
Airplane Cabin

In the following, a reasonable elementary specification of uncertainty is provided for the
exemplary airplane cabin scenario (see also 1.3.2 and 7.1.2) [Keit 10b]. It represents the
basis for verification and validation of this application in the target environment in 13.2.

152

However, it is relevant also for other scenarios based on the same tracking equipment
and can be directly reused.

The validity of the elementary specification of uncertainty is supported by a simulation
experiment of the indirect tracking scenario, following the concepts described above
in 11. The consistency of simulation and empirical data is shown based on extensive
measurements in a controlled setup.

12.4.1. Setup

The IR real-time tracking system (see foreground of Figure 12.4) consists of three line
cameras, mounted rigidly in a single housing. Extrinsic and intrinsic parameters have
already been estimated by the vendor before delivery. It provides 6DoF poses of the
probe and reference targets. Nevertheless it is not feasible to specify the error at that
abstraction level since we use custom marker layouts. The error of 6DoF pose tracking
highly depends on layout and dimension and therefore cannot be stated in a general way
by the vendor, cf. 13.1.5. Applying the error to the 3D positions of the individual LEDs
is more appropriate. This quantity can be estimated in a general way, due to the rigid
arrangement of cameras. The vendor specifies an RMS uncertainty for the position of
a tracked LED that depends on the depth with respect to the cameras [Opto 11]. The
uncertainty in the horizontal/vertical/depth directions is 0.1/0.1/0.15 mm at 2 m depth,
0.15/0.15/0.25 mm at 4 m depth, and 0.25/0.25/0.45 mm at 6 m depth.

An uncertainty specification on the sensor’s image plane using 2D noise would also be
possible. However, internal details about the intrinsic and extrinsic camera parameters
would be required for this. Therefore, we stick to the above uncertainty specification in
3D.

In the experiments described next, we first try to reproduce this elementary specifica-
tion of uncertainty. Then, a simulation experiment is conducted to prove the principal
suitability of this elementary specification of uncertainty to obtain reasonable results.

To evaluate the consistency of the simulation, we rely on distance measurements as
proposed by international metrological standards [VDI 02] [ASME 06], as well as point-
based registration and adjustment theory [Niem 08]. We designed a test target (small
picture in Figure 12.4) that consists of a tracking target for the online metrological
system (black LED target) and a laser reflection target (silver sphere) for the offline
metrological system, a high-precision laser tracker5. Both tracking systems are located
in front of the target to be able to identify the reference target’s positions.

A high precision coordinate measurement machine6 (CMM) is used as a reference. It
allows us to move the test target to an arbitrary specified location within a volume of
6x4x2.5 m3, with an RMS uncertainty of 0.01 mm + 0.014 mm/m its coordinate origin.
The laser scanner is specified with 0.049 mm RMS at 10 m distance.

We programmed the CMM to scan the entire measurement volume as shown by the
small spheres in Figure 12.5, stopping at each position for 3 seconds. The distance
between the grid positions was 20 cm in each direction. We furthermore scanned three

5FARO Ion [Faro 11b]
6DEA Lambda

153

Figure 12.4.: Laboratory setup for the derivation of a consistent elementary specification
of uncertainty. A high-precision CMM and a laser tracker provide ground
truth measurements to estimate the uncertainty of 3D position tracking of
a single IR LED. (Courtesy of EADS Innovation Works [Keit 10b])

orthogonal lines along the coordinate axes of the real-time tracker, at a regular distance
of 1 cm. The frustum of pyramid in Figure 12.5 indicates the tracking volume as specified
by the vendor.

Pausing at every position for 3 seconds allowed us to synchronize programmatically
the three systems afterwards, as well as to assess the precision (affected by noise) and
accuracy (affected by systematic errors) of LED tracking. The real time system runs
at 30 Hz and theoretically provides 90 samples for each measured position. However,
the window of 3 seconds was clipped at its beginning to remove inertial effects coming
from the sudden stop of the movement of the CMM. For each measured position, there
remain 60 valid samples.

12.4.2. Noise

The first experiment estimates the influence of random noise on LED tracking. The rea-
son to estimate noise separately is the hope of lowering measurement errors by averaging

154

Optical tracker

Laser tracker

CMM

near

far

-1000

0

1000

2000

3000

vertical @mmD

-2000

-1000

0

1000
2000

horizontal @mmD

-6000-4000
-2000

0
depth @mmD

Figure 12.5.: Measurement volume, point grid and lines along coordinate axis. The
“simulated” reference target is located in the areas marked “near” and
“far”, as indicated by the quadrangles.

in our exemplary scenario. The result is shown in Figure 12.6. For each position on the
three densely sampled lines (x-axis), an RMS residual error is computed according to
(10.15). The evaluation shows that noise is constantly low in the horizontal and vertical
directions. It increases however with the depth, assumably due to a decreasing number
of affected pixels on the sensors. Still, random noise is of secondary importance, with
a maximum RMS of 0.06 mm in the far end of the volume. More important are the
systematic effects described next.

12.4.3. Systematic Effects

The accuracy of distance measurements between LED positions on the lines is evaluated
by a comparison against the corresponding distance measurements of the CMM. Noise
has been practically eliminated before by averaging over all 60 samples per position. The
result is shown in Figure 12.7. Three different distances are considered in the range of
10 mm up to 100 mm. Each of these distances was moved incrementally along the three
densely sampled axes (x-axis). The deviation of two corresponding lengths is plotted at
that position (y-axis).

155

ææ
ææ

æææ
æ

æ

ææ
æææææææææ

ææ
ææææææææ

æ
ææ

æ
æææ

ææ

æ

æ
æ
ææ

æææææææææ
æ
æ
æææææææææ

àààà
à
àà

ààà
à
à
àààààààààààà

à
ààààààà

à
à
à
ààà

ààààààààààààà
àà

àà
ààà

à
à
ààà

à

ì

ì

ì

ì

ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ìì

ì

ì

ìì

ìì

ì
ìì

ì

ì

ì

ì

ì

ìì

ì

ì

ì
ì

ì
ì

ì

ì

ìì
ìììì

ì

ì
ì

ì
ì
ì

ì

ììì

ì

0 50 100 150
pt. index

0.01

0.02

0.03

0.04

0.05

0.06

0.07
std. dev. @mmD

(a) Horizontal LED movement

æ
æ
æ

æ

ææææ
æ
æ

ææ
ææ

æ
æ
ææ

æææ
æ
ææææ

æ
æææ

ææ
ææ

æææææ
æ
ææææ

ææææ
æ
æææ

æ
æ
æ
æ
æææ

æ

æ
ææ

æ

æ

æææ

àààààààààààà
à
ààààààààààà

à
ààààààààààààààààààààààààààààààà

à
ààààààà

àààà

ì

ì

ì

ì

ì
ì

ì

ì
ì

ì

ì
ì

ì

ì
ì
ì

ì
ì
ì

ì

ìì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ì
ì
ì

ì

ì
ì
ì
ì

ì
ì

ì

ìì

ì

ì

ìì

ì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ìì

ì

ì

ì

ì
ì
ì

ì

0 50 100 150 200
pt. index

0.01

0.02

0.03

0.04

0.05

0.06

0.07
std. dev. @mmD

(b) Vertical LED movement

æææ
æ
æææææææææææææ

æææææææææææææ
æ
ææææææ

ææææ
æ
ææææææææææææ

æ

ææ
æ

ààà
à
à
à
àààààààààà

à
ààààààààààààààà

ààààà
ààà

à
à
à
ààààà

àà
à
ààààà

ààààà
àààà

à
à
à

ì
ì
ìììììììììììì

ìì
ìì
ììì
ì
ììì
ì
ì

ì

ììììì
ììììììììììììììì

ì
ìì

ì
ì

ìì
ì

ì
ì
ì
ììì

ì

ì

ìì

ì

ì
ì

ì
ì
ì

ì
ì
ì
ìì

ì

ì

ì

ì

ìì
ì

ì
ìì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ììì
ì

ì
ì

ì

ì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ì

ì

ì

ìì

ìì

ì

ì

0 100 200 300
pt. index

0.01

0.02

0.03

0.04

0.05

0.06

0.07
std. dev. @mmD

(c) LED movement in depth direction

Figure 12.6.: Noise: standard deviation [mm] of LED position along horizontal/verti-
cal/depth lines, computed from 60 samples per position, plotted separately
for each coordinate (© (blue): horizontal, � (purple): vertical, ♦ (brown):
depth)

There is no systematic effect for smaller distances. The error is small and increases
in magnitude for larger depths. For larger distances, however, there is a tendency to
overestimate lengths in the near part and to underestimate them in the far part of the
volume. This indicates that systematic errors take effect rather globally than locally.

Next, systematic effects are analyzed in the grid covering almost the entire tracking
volume. By each of the three measurement systems, a point cloud as shown in Figure 12.5
has been recorded. Matching these point clouds by a 6DoF Helmert transformation
pi = Hqi (cf. 12.3.1) or the linear approximation method (cf. 12.3.2) gives information
about the accuracy of the individual systems [Niem 08]. Noise again has been practically
eliminated before. The CMM measured its tip position, not the position of the LEDs.
However, the orientation of the tip remained constant, so the desired positions of the
LEDs could be translated by a constant offset from the actual measurements. This is

156

æ

æ

ææ
æ

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ
æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ
æ

æ
æ

à

à

à
à
à

à
à
à
àà

à
à
à

à

à

à

à
à

à

à
à

àà

à

àà

à
à

à

à

à
à
à

à

à

à

à
à
àà

à
à

à

à

à
à

àà
à
à
à

à

à

à

à

àà
à
à

à
à

à
àà

ì

ì

ìì

ì
ì
ìì
ì
ì
ì
ìì
ì
ì
ì
ì
ììì

ì
ììì
ì
ì

ì

ì

ì
ì
ììììììììììììì

ì
ì

ìì

ì

ì

ì

ììììììì

ì

ì
ìì
ìì
ì50 100 150

length index

-0.3

-0.2

-0.1

0.1

0.2

0.3
deviation @mmD

(a) Horizontal axis

æ
æ

æ
ææææææ

ææ
æ
æ
æ
æ

æ

æ
æ
æ

æ

æ

æ

æ

æ
ææ

ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ

æ
ææ

æ
æ
æ
æ
æ
æ

æ
æ

æ
æ
æ

æ
æ
æ
æ
æææ

æ
ææ

æ
æ

à
à

à
à

àà
à
à
àà
à
à
àà
à
à
àà
à
à
à
à
àà

à

à
à

àà
à
à
à
à
à
à

àà
ààà

à
à

àà

à
à

à
àà

à
à

à
à

ààà

àà

ààà
à
à
àà
à

à
à

ìì
ì
ì
ììì

ì
ììì

ììì
ìì
ìì
ì

ì
ìììììì

ì

ììì
ì
ì

ì
ì
ì
ì
ì

ì
ìì
ì
ì

ìì

ìììì
ì
ì
ìì

ì
ìì

ìì

ììì
ììì
ì
ì

ìì
ì

50 100 150 200
length index

-0.3

-0.2

-0.1

0.1

0.2

0.3
deviation @mmD

(b) Vertical axis

æ

æ

æ

æ

ææ

æ
ææ

æ
æ

ææ
æ

æ
æ
æ
æ
æ
æ

æ

æ
æ
ææ

æ

æ
æ
ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

à

à

à

à

à

à

à

à
à

à
à

à
à

àà
à
à
à
à

à
à
àà

à

à

à

à

à
à

à
àà

à

à

à
à

à

à

à
à

à

à

à

àà

à

à

à
àà

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à
à

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì
ìì

ì

ì
ì
ììì

ìì
ì
ì

ì

ì
ì

ì

ì

ìì

ì

ì
ì
ì
ì
ìì

ì

ìì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì
ì

ì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

100 200 300
length index

-0.3

-0.2

-0.1

0.1

0.2

0.3
deviation @mmD

(c) Depth axis

Figure 12.7.: Systematic error: deviation [mm] of distance between two measured LED
positions (mean of 60 samples) from the corresponding reference distance
(© (blue): 10 cm, � (purple): 50 cm, ♦ (brown): 100 cm)

157

handled implicitly by the transformation H. The same holds for the offset between the
LEDs and the laser reflection target. For the Helmert transformation, a random subset
of 200 points was used, instead of the almost 2000 available points, due to computational
complexity and limitations in Java Graticule 3D.

Matching the point clouds from CMM and laser tracker with the linear method results
in an RMS of only 0.0369 mm. This overall RMS covers the errors of both systems. Its
low value is in accordance with the specified accuracies. In conclusion, both systems,
CMM and laser tracker, provide a good ground truth for testing the accuracy of the
real-time tracking system.

Ideally, a 6DoF rigid body transformation should suffice to match the real-time track-
ing system with the CMM. The Helmert method yields a joint RMS of 0.440 mm, which
is mostly caused by the real-time tracker, since the error of the CMM is by an order of
magnitude lower, as specified by the vendor and shown above. The linear approximation
method (cf. 12.3.2) results in a similar value of 0.406 mm. Matching the real-time track-
ing with the laser tracker using the linear method results in 0.410 mm. Considering the
vendor specification, Equation (10.14), and the fact that most grid points are located in
the far part of the pyramid, these are reasonable values. The resulting deviation vectors
are shown in Figure 12.8, scaled by a factor of 100 for better visibility.

(a) Deviation vectors, scaled by 100 (b) Error isocontours for 0.5722 / 0.8 / 1.0
/ 1.2 mm RMS

Figure 12.8.: Systematic deviations in tracking volume

The plot reveals that there are systematic effects, especially in the outer areas of the
volume. The computed H minimizes the RMS. Therefore, errors are lower in the center
of the volume and increase towards the boundaries. This is the same effect as in Fig-
ure 5.3. Furthermore, errors on the boundaries are balanced through the minimization.
According to Equation (10.14), the RMS value specified by the vendor and confirmed

158

by our measurements, consists of a dominating systematic error µ and a minor noise
component σ. Computing a more general 7 DoF similarity transform using the Helmert
method yields a similar value of 0.439 mm RMS. However, the 12 DoF affine transform
reduces the error to 0.253 mm RMS, indicating that a better pre-calibration of the sys-
tem on behalf of the vendor would be possible. This is similar to the system we evaluated
in [Keit 08].

It is worth noting that the RMS error for matching the point clouds of two LEDs (e.g.,
LED 1 and 2) is only one fourth of the global RMS (0.116 mm). This indicates that
there is a strong local dependency of the deviation vectors, in other words, a systematic
error.

To give an intuitive example of the consequences, one might consider the probe target
shown in Figure 1.6(c) which has an edge length of 5 cm. The span of this target is small
compared to the distances at which systematic distortions take effect (cf. Figure 12.7
and Figure 12.8), and therefore all LEDs are affected by a similar deviation vector. This
results in a direct error in the position estimate. Its orientation, however, is estimated
better than the specified error model predicts because the relative constellation of the
four LEDs is barely affected. This fact has an impact on the experiment described next.

The captured point clouds lend themselves to also test the estimation of variance
components (cf. 12.3.2) to assess the uncertainties of all involved devices without any
prior assumptions about their accuracy. The result is an RMS error of 0.0286 mm for
the CMM, 0.0467 mm for the laser tracker, and 0.407 mm for the LED. The latter value
is almost identical to the results obtained above, assuming the CMM / laser tracker as a
ground truth. Also, the estimated values for CMM and laser tracker come pretty close to
the specification of the vendor (see above). Given enough measurements, the technique
thus yields very accurate results.

12.4.4. Indirect Tracking Experiment

The consistency of our simulation model is supported by a comparison with extensive
empirical measurements in the CMM setup. For this, we focus on the accuracy of indirect
tracking since it has a major impact on the overall accuracy of our sample scenario and
dominates the impact of probe tracking, tip calibration, and world registration. Thus,
we estimate how accurate a given POI can be estimated in world coordinates, under
the influence of an error prone tracking of the reference target. Based on the grid
of measured LED coordinates, we defined a virtual reference target consisting of four
adjacent grid positions (20x20 cm2). As highlighted in Figure 12.5, the virtual reference
target is iterated through the two marked areas in the center (near) and at the end of
the pyramid (far).

Indirect tracking uses the reference target to self-localize the tracking system and
thereby derive the estimate for the POI. This means the given POI should remain con-
stant in world coordinates for any position of the reference target. Due to errors in LED
tracking, this is not perfectly true. A 3 × 3 covariance can be estimated for the POI,
once for the empirical LED positions, and once for the simulation, perturbing the ground

159

truth grid positions using the vendor’s uncertainty specification. In case the specification
and our simulation model are correct, the resulting covariances should match.

The result is shown in Figures 12.9(a) for the near and 12.9(b) for the far location of
the reference target.

(a) near reference target (b) far reference target

Figure 12.9.: Comparison of simulation (green) and empirical measurements (red)

The plots show the confidence ellipsoids corresponding to these covariance matrices
(enlarged by a factor of 100) for various POIs throughout the volume. First of all, it
can be seen quite clearly that errors increase with an increasing distance of the probe
with respect to the reference target, an important fact for the definition of future work
processes. Furthermore, the simulated covariance matrices always enclose the empirical
covariance matrices but otherwise have a similar shape. This means the simulation yields
a reasonable qualitative description of the error, but in this case is an upper bound.

There is a simple explanation for this fact: the rather low frequency of the systematic
distortions mentioned above. It results in a lower rotational error than the assumption
of a purely Gaussian error would predict which in turn increases the performance of
indirect tracking. The noise specified by the vendor is globally correct but has local
dependencies as seen in the error analysis before. The overestimated rotational error in
the simulation is propagated over a long axis and therefore leads to an over-estimation
of the indirect tracking error.

The experiment has been repeated using other, larger sizes of the reference target, up
to an edge length of 6 grid positions (120x120 cm2). Figure 12.10 shows the empirical
and simulated minimum and maximum errors. The larger the target, the better the
empirical results are approximated by the simulation.

160

æ
æ æ æ æ æ

à

à

à
à à à

ì

ì
ì ì ì ì

ò

ò

ò

ò ò ò

20 40 60 80 100 120
ref. target size @cmD

1

2

3

4

5

6

7

RMS @mmD

(a) near reference target

æ
æ

æ æ æ æ

à

à

à

à
à à

ì

ì
ì ì ì ì

ò

ò

ò

ò
ò

ò

20 40 60 80 100 120
ref. target size @cmD

1

2

3

4

5

6

7

RMS @mmD

(b) far reference target

Figure 12.10.: POI RMS errors [mm] for indirect tracking (4 (green): simulation max-
imum, � (purple): empirical maximum, ♦ (brown): simulation minimum
© (blue): empirical minimum) depending on the size of the reference tar-
get (1: 20 cm, 2: 40 cm, 3: 60 cm, 4: 80 cm, 5: 100 cm, 6: 120 cm)

12.4.5. Summary

Altogether, the evaluation of the optical IR tracker in the CMM setup coincides with
both, the vendor specifications and prior evaluations [Wile 05] [Schm 09]. We could
verify its magnitude and also its correlation with depth. Nevertheless, some impor-
tant additional facts are revealed for the subsequent accuracy analysis in the target
environment. Systematic errors dominate the overall error, especially for marginal posi-
tions. Thus, for critical applications, some outer parts of the pyramid might be clipped.
Likewise, only small benefits can be expected from computing mean values for posi-
tions measurements. Also the strong local coherence of the systematic error leads to
an overestimated positional error for small targets whereas the orientational error is
underestimated, compared to the assumption of a globally random error.

161

13. Verification & Validation

In the following, the approach of integrated verification & validation is applied in terms
of comprehensive evaluations of the two sample scenarios. This makes heavy use of the
concepts for simulation described in Chapter 11 and also the basic uncertainty specifia-
tions described in Chapter 12.

13.1. Example: Indirect Tracking of the Intelligent Welding
Gun

In theory, indirect tracking as described in 7.1.1 works properly. In practice, however,
the indirection via the Mobile Target and the Mobile Cameras can result in serious errors
estimating the pose of the Welding Gun with respect to the Stationary Cameras which
determines the world coordinate system. The goal is to reduce those errors and thereby
ideally close the gap in tracking accuracy between indirect and direct tracking [Keit 08].

Positional errors in the concatenated transformations just accumulate when transform-
ing the measurement of the mobile cameras back into our reference frame defined by the
Stationary Cameras. Any rotational error, however, results in positional errors at the
region of interest which increase linearly with the distance [Holl 95] [Holl 97] [Baue 06].
This particularly holds for the orientation of the Mobile Target, the orientation estima-
tion of which we assume to be rather imprecise. To clarify the importance of accuracy
for the proposed setup, one may imagine that a deviation of 0.1 in the estimated pose
of the Mobile Cameras results in a displacement of 1.7 (3.4) mm between estimated and
true position of the Welding Gun in a distance of 1 (2) m from the mobile setup. This
follows directly from the sine function. The general idea for reduction of this error is
to use common reference points somewhere in the scene which are visible to both, the
Stationary Cameras and the Mobile Cameras, in order to estimate the orientation of the
Mobile Cameras as good as possible, as depicted in Figure 13.1.

The work on this scenario was initiated in 2006. At this time, the Monte Carlo
simulation techniques (cf. Chapter 11) were not yet at our disposal. Also, ground truth
measurements were not available right from the beginning. Results of this evaluation
are presented in chronological order. Experiments for the validation are presented first.
They are backed by a retrospective validation based on simulation.

13.1.1. Correcting Rotational Errors

As already stated above, to improve the accuracy of indirect tracking setups, it is crucial
to minimize the error in orientation estimation of the mobile tracking setup. In this

162

Figure 13.1.: Indirect tracking setup to mitigate the occlusion problem. Two reference
targets are used to correct for rotational errors in tracking the mobile cam-
era system, see also Figure 1.12.

section, methods are presented which allow for on-the-fly compensation of this error
without extensive recalibration. The first method assumes that the mobile setup is
being tracked and constantly corrects the orientation by one or two additional reference
points in the scene. The second method gets by without tracking the mobile setup.
It needs at least three reference points for pose estimation. Even though the latter
approach is not new, we incorporate it in our evaluation for the sake of completeness
and also as a reference for our correction methods.

Tracking of Mobile Setup

One (implicit) reference point correspondence is already given by the center-of-gravity
(COG) of the Mobile Target if we assume that position tracking of the Mobile Target
with respect to the Stationary Cameras is not error-prone and that the Mobile Target is
registered well with the Mobile Cameras. Additional reference points may come from
marker balls or complete 6 DoF targets that are suitably placed in the scene and that
are seen by both tracking systems.

Especially when using a big mobile target (such as shown in Figure 7.1), it is important
to apply the rotational correction in a coordinate frame with the COG of the target
marker balls as its origin because it probably is the center of rotation where the rotational
error gets added to the true orientation of the target in the pose estimation algorithm
used by the vendor [Egge 97]1. Usually, however, the target frame defined by the vendor
differs. The situation is depicted in Figure 13.2.

Via the static transformation TCMT2MC between the Corrected Mobile Target and the

1See also 11.4 for a discussion about the correctness of this assumption

163

Correction Transform
[Pose]

Offset [Static]

Offset [Static]

Rotational Correction
[3D Rotation]

Tracked

Tracked [3D Position]

Tracked [3D Position]

Direct Tracking

Combined Measurement

Indirect Tracking

Tracked

Tracked [3D Position]

Tracked [3D Position]
Offset [Static]

Figure 13.2.: SRG for indirect tracking of the intelligent welding gun. Using at least one
Reference Target that is seen by Stationary Cameras as well as the Mobile
Cameras, a Rotational Correction for the error of outside-in tracking of the
Uncorrected Mobile Target can be computed. Only the important spatial
relationships are shown, most intermediary results are hidden for the sake
of clarity.

Mobile Cameras and the translational offset T−1
MT2COG between the Mobile Target and the

Center of Gravity, we are able to transform the positional measurements of the Reference
Target(s) made by the Mobile Cameras to the Corrected Center of Gravity coordinate frame.
TMT2COG can be obtained from the body calibration of the Mobile Target. Estimation
of TCMT2MC is a bit more complicated (cf. section 13.1.2). Concatenation of both
transformations results in a 3D position of the reference point(s) (as seen by inside-
out tracking) in the Corrected Center of Gravity coordinate system. We call these the
reference points

pref = T−1
MT2COGTCMT2MCpmobile. (13.1)

The corresponding measurement made by the stationary tracking system pstationary can
be transformed to the Uncorrected Center of Gravity frame. However, since the transfor-
mation between the Stationary Cameras and the Mobile Target T SC2UMT is perturbed by
rotational error by assumption, this yields a wrong 3D position of the reference point(s)
(as seen by outside-in tracking) in the Uncorrected Center of Gravity coordinate system.
We call these the erroneous points

perr = T−1
MT2COGT

−1
SC2UMTpstationary. (13.2)

Based on the reference point correspondence(s), a rotational correction Rcorr is com-
puted between Uncorrected Center of Gravity and Corrected Center of Gravity, using one
of the methods described in the following subsections. The indirect tracking equation

164

then becomes

pstationary = T SC2UMTT corrTCMT2MCpmobile (13.3)

with the additional correction transform

T corr = TMT2COGRcorrT
−1
MT2COG =

[
R −Rt+ t
0 1

]
. (13.4)

One Reference Point Correspondence Let us assume for now that rotational error
occurs only in directions that are orthogonal to the line joining the center of gravity of
the mobile target and a known reference point in the scene. We call this line the direction
of the reference point. Let us further assume that the position of the mobile target is
tracked perfectly and that the 3D position of the reference point is known perfectly in
both tracker frames.

The geometry of this problem is shown in Figure 13.3. The COG of the mobile target
lies in the center of a unit sphere. By normalization, a general point in the scene can
be converted to a point on the surface of the sphere. It is sufficient to consider this
directional vector. Every rotation about some axis through the rotation center lets this
direction vector describe a circular orbit on the surface of the sphere.

Figure 13.3.: Simple correction of rotation using a single reference point in the scene.
Only the part of the rotational error that is orthogonal to the line joining
the center-of-gravity (COG) of the mobile target and the reference point
itself can be corrected.

First, the erroneous point as well as the reference point are projected onto this sphere.
Thereby, they define the normal vector to a plane through the COG. It contains all
the axes that would be suitable for mapping the erroneous point back to its reference
position. Furthermore, all axes pass through the rotation center. The rotation axis
about which the original error rotation took place, is shown in the Figure 13.3 but its
orientation in the plane is unknown. However, we obtain another (normalized) rotation

165

axis from the vector cross product of the two measurements of the reference point.

a =
pref × perr

‖pref × perr‖
(13.5)

With a rotation about this axis, by the angle between the two directions of the er-
roneous point and the reference point, it is always possible to map the erroneous point
back to its reference position. The rotation angle φ is obtained by

φ = cos−1(pTrefperr). (13.6)

This rotational correction can then be in terms of a quaternion using Equation (10.22).

For points different from the erroneous point, this correction yields wrong results as
soon as the error rotation axis contains the direction of the reference point in its linear
combination. In most cases, the error can still be reduced. Due to its lengthy and flat
shape, e.g., our mobile target (see Figure 7.1) probably exhibits the greatest rotational
uncertainty in its pitch axis (parallel to the long edge). If the reference target is placed
in front of the cameras, the orthogonality assumption might be save.On the other hand,
an error with its axis being aligned with the direction of the reference point can not even
be detected using a single reference point since the point is mapped onto itself by the
error. For the sake of brevity, this approach will also be called simple correction in the
following.

Two Reference Point Correspondences As an alternative, we use two additional point
correspondences A and B, thus an overall count of three if the implicit COG is also
counted. The spatial relationships are again depicted in Figure 13.2. The availability
of three non-collinear point correspondences principally enables us to solve the absolute
orientation problem (7 DoF similarity transformation between two point sets) between
the stationary and mobile tracking system using any absolute orientation algorithm (cf.
section 13.1.1, see also [Egge 97]). However, the problem at hand allows us to make
various simplifications which lead to a neat solution of the problem.

• It is not necessary to find a scaling factor because both tracking systems already
provide metric measurements. This reduces the problem by one degree of freedom.

• If we again transform the known 3D measurements of the two reference targets
from their respective coordinate frames of the stationary and the mobile tracking
system into the frame of the mobile target’s COG, then both coordinate systems
already share the same origin. Thus, it is not necessary to solve for the translational
part. This reduces the problem by another three degrees of freedom.

The remaining problem is a 3 DoF rotation about the COG of the mobile target. A
nice solution has been presented by Horn for estimating the orientation in the special
case of coplanar point sets [Horn 87]. It is particularly suitable for three point corre-
spondences which are always coplanar. A sketch is given in Figure 13.4. Since one

166

(a) First correction step (b) Second correction step

(c) Combined

Figure 13.4.: Full correction of rotation using two reference points in the scene. (a) First,
the plane defined by the erroneous points (red) and the center-of-gravity
(COG) is mapped to the plane defined by the reference points (green) and
the COG by a rotation about the intersection line of these two planes.
This maps the reference points to the intermediary points. (b) An in-plane
rotation about the COG then maps the intermediary points to the reference
points. (c) Effect of both correction steps combined. The true error axis is
reconstructed.

correspondence is given by the common origin of the COG reference frame, the remain-
ing two correspondences result in two independent position vectors perrA and perrB for
the erroneous points and prefA and prefB for the reference points.perri and prefi define
two planes, one containing the erroneous points and one containing the reference points.
An informal description of the algorithm is given in the following.

167

1. The first step is depicted in Figure 13.4(a). Normals to both planes are computed
using the vector cross product. From these normals, a rotation axis is deduced,
again by the cross product. The angle between the plane normals is the searched
for rotation angle. By using Rodrigues’ formula for rotating one plane by the
computed angle about the computed axis, both sets of coplanar points are mapped
into a single plane. This step of course only yields correct results if either all the
points are lying in an exact plane or only three points are used. This corresponds
to a mapping of the plane spanned by the erroneous points and the origin (COG)
to the plane spanned by the reference points and the origin. Thereby, the erroneous
points are mapped to the intermediary points.

2. Step two according to Figure 13.4(b) is a rotation in the reference plane about the
normal to that plane, which maps the intermediate points from the last step to the
reference position. Estimating the angle which yields the least-squares solution is
now only a one DoF problem. In contradiction to Horn’s solution, however, we
do not consider the distance between the original points, but the distance of the
normalized points on the unit sphere. Thus, the optimal angle is given by the
mean of the angles between points A and B. This corresponds to a mapping of the
intermediary points to the reference points.

The result of combining these two steps is depicted in Figure 13.4(c). It will also be
called full correction in the following.

General Absolute Orientation Approach

Another approach to solve the indirect tracking problem is to abandon the idea of a
tracked mobile setup in combination with one or two additional reference points in the
scene and use a large number of point correspondences instead. This solution would
require a brief calibration process after movement of the mobile setup and before the
ongoing tracking process where the tracked object is being panned within the close-up
range of the mobile system which is also visible by the stationary system. The resulting
point correspondences could be used to solve the general absolute orientation problem
each time the pose of the mobile setup has changed 2.

Several closed-form least-squares solutions exist for the absolute orientation problem.
A comparison conducted by Eggert et al. [Egge 97] did not yield a particular preference
for any of them. For our experimental evaluations, we used Horn’s quaternion-based
solution, in a slightly stripped-down version which does not optimize for the scaling
factor [Horn 87]. This version of the algorithm is also contained in Ubitrack (cf. 5.3.2).

13.1.2. In-vitro Validation of Indirect Tracking

The methods for correction of rotational error described in the previous section have
been evaluated on real tracking data in the lab. All tests were carried out using a

2The mobile target might still be useful in order to detect these position changes.

168

stationary A.R.T. system consisting of three ARTtrack 1 cameras and a mobile A.R.T.
SmARTrack system mounted on a tripod, consisting of two ARTtrack 2 cameras with
a baseline of approximately 0.5 m. The latter is depicted in Figure 7.1. The acquisition
of measurement data was carried out using the the Ubitrack framework (cf. 5) and with
the aid of trackman (cf. 6). Data was evaluated offline with Mathematica3.

Calibration and Registration

For calibration of the camera setups and the involved tracking targets, the mechanisms
prescribed by the vendor were used. Each target was calibrated in the stationary tracking
setup. It is supposed to yield better results than a two-camera setup with a small
baseline of 50 cm. The mobile target was mounted to the mobile setup before calibration
of extrinsic camera parameters in order to avoid negative effects of this mechanical
intervention with regard to both, camera and target geometry.

It is crucial to register the mobile target and the mobile cameras very accurately.
Based on our experiences, though without any explicit evidence yet, the method based
on the average of multiple absolute orientations was chosen for this (cf. 7.2.2). The topic
is picked up again below in 13.1.4. Assuming that orientation tracking of the mobile
target suffers from pose-dependent systematic errors, we decided to use measurements
from several poses of the mobile setup in the registration process.

For each pose of the mobile setup, points were measured with a pointing device in
both tracker coordinate systems. Pointing at a rigid surface ensures that the tool tip
remains constant during the acquisition of its position by the two measurement systems
even under the influence of misaligned sensor timestamps. In a proper setup allowing for
continual measurements, one would have to synchronize the cameras using a common
sync source which should not be a problem with quality tracking equipment.

Next, the absolute orientation problem was solved independently for each pose of the
mobile setup (cf. section 13.1.1). The solutions corresponding to the different poses
were then combined to a single transformation in order to obtain a single calibration of
higher precision.This was done by averaging the translational offsets in each axis as well
as the Euler rotation angles, as described in 7.2.2.

Evaluation of the Indirect Tracking Setup

The pointing device was also used to make measurements. Unlike in the intended use-
case, it was always visible in both tracking systems. By this means, a relative comparison
was possible of 3D points measured indirectly via the mobile system against those mea-
sured directly by the stationary system.

For the acquisition of evaluation data, the mobile system was sequentially set up in
two distinct poses one and two within the tracking volume of the stationary cameras.
For each pose, 35 point correspondences were measured on a rigid surface in the common
tracking volume of both systems. No averaging was performed for the point measure-

3Wolfram Research

169

ments. Figure 13.5 shows the measurements of the stationary tracking system as well as
the COG of the mobile target for pose one as spheres.

center of gravity
of mobile target

1

7

8

35

dev. without corr.

dev. after corr.

Figure 13.5.: Evaluation setup for pose one. The vectors show for each point the de-
viation of indirect tracking from direct tracking whereas larger deviations
result from indirect tracking without rotational correction. Smaller devia-
tions in this example result from the simple correction using reference point
18.

Instead of placing reference targets in the scene, different subsets of the measured
points were used as reference positions in the offline evaluation of the data.

For both poses of the mobile system, the three approaches described in section 13.1.1
were tested and compared to the naive indirect tracking approach which works without
any correction at all. In Figure 13.5 the distance of the indirectly tracked points obtained
from the naive approach from the corresponding directly tracked points are depicted by
light-colored lines, lengthened by a factor of 50 for better visibility. Results for other
poses of the mobile setup feature a similar systematic behavior, and the orientation
of deviation vectors varies depending on the chosen pose. This suggests a significant
amount of systematic error which we cannot fully explain at the moment. The shorter
dark lines depict—exemplarily for the simple correction using the point with ID 18 as
reference point—the distance of the indirectly tracked points to their directly tracked
correspondences, again lengthened by a factor of 50. All conducted evaluations are
described in the following.

Simple correction (1 additional point) Based on one reference point correspondence,
a correction of the orientation of the mobile target was carried out following the
approach described in section 13.1.1. As stated there, this method only corrects
those parts of the original rotational error that are orthogonal to the line joining
the COG of the mobile target and the reference point. The correction results are
presented in table 13.1 for six reference points with varying positions relative to
the mobile cameras.

Full correction (2 additional points) The information of two of the measured points
was used to compute an orientation correction according to the method described

170

in section 13.1.1. The correction result is presented for six pairs of reference points
with different positions relative to the mobile cameras. As a test for robustness,
the first three pairs were chosen to contain points very near together. The last
three pairs eachcontain points on opposite sides of the volume.

General absolute orientation (5 points) A subset containing five of the measured 35
points is used to compute a rigid transformation with an absolute orientation
algorithm(cf. 13.1.1). The correction result is presented for three sets of five points
each, one near and one far to the mobile cameras as well as one random sample of
all points.

General absolute orientation (all points) All point correspondences are used to com-
pute the absolute orientation. Since the resulting rigid transformation is optimal
in a least-squares sense (cf. 13.1.1), the measurement residuals give information
about how well the actual mapping can be described by a rigid transformation.

For each indirect tracking approach, the RMS deviation was computed in mm and the
results are shown in Table 13.1.

Table 13.1.: RMS error of rotational correction approaches. For all evaluated constella-
tions of correction approach, mobile setup pose, and reference points, the
RMS euclidean distance [mm] between indirectly and directly tracked points
is given.

No corr. Simple corr. Full corr. Abs. orient. Gen. abs. orient.

Pose 1 Pose 2 Pt. Pose 1 Pose 2 Pts. Pose 1 Pose 2 Pts. Pose 1 Pose 2 Pose 1 Pose 2
3.1 2.7 1 1.2 1.8 4,11 1.8 1.6 1,4,7, 1.2 1.6 1.0 1.2

15 1.1 1.4 18,25 1.2 1.5 9,13
29 1.1 1.4 25,32 1.2 3.4 22,25,28, 1.0 1.3
4 1.1 1.7 1,14 1.4 1.8 31,34
18 1.1 1.3 15,21 1.1 1.4 1,10,22, 1.1 1.4
32 1.1 1.6 22,35 1.1 1.4 32,35

The residuals from the absolute orientation with all points represent the greatest
lower bound for all error corrections based on optimizing a rigid transform. Lower resid-
uals could only be achieved by fitting a more general, maybe even non-linear mapping.
However, for a metric measurement system, this is not desirable. There must be a
considerable amount of probably systematic error left that can only be explained by
discrepancies between the two tracking systems. Possible reasons are the following:

• Deficiencies in the room calibration algorithms of the manufacturer which deter-
mine the intrinsic and extrinsic camera parameters

• Errors introduced during body calibration

• Errors introduced during tip calibration of the measurement tool

171

• Insufficient number of point correspondences during those two types of calibration

• Inaccurate 3D point measurements due to merging markers which is when two
marker balls come close to the same line of sight and converge to a single point
measurement on the image plane

• Tolerances in the manufacturing process, each marker ball is laminated with retro-
reflective foil by hand.

All correction mechanisms perform quite well in converging to the theoretical lower
bound. In most constellations, at least two third of the residuals can be explained and
corrected by the assumption of erroneous orientation estimation of the mobile target.
The full correction seems to have problems with point correspondences that are chosen
too close together, especially, if they are far away (points 25 and 32) and therefore result
in very similar direction vectors. Thus, reference points should be chosen carefully in
order to avoid such degenerate configurations.

Astonishingly, the simple correction is not worse than the full correction. This could
be explained by the layout of our mobile target which suggests that pitch movements of
the mobile setup can be detected worst by the stationary cameras. Since this pitch axis
is roughly orthogonal to the line joining the COG of the mobile target and the reference
point, these errors can be corrected quite well. In general, the full correction with a
reasonable pair of reference points should be preferred, if it is feasible. A good alternative
is the general absolute orientation, if enough point correspondences are available or can
be obtained without much effort.

13.1.3. In-situ Validation of Application

In the next step, the evaluation described above was repeated in the intended working
environment.

All tests were carried out using a stationary A.R.T. system consisting of five ARTtrack
1 cameras and a mobile A.R.T. SmARTrack system mounted on a mobile workshop cart,
consisting of two ARTtrack 2 cameras with a baseline of 1 m. The setup is depcited in
Figure 13.6.

Additionally, ground truth measurements were conducted using a FARO mechanical
tracking arm similar to the one shown in Figure 1.7. The arm was registered with
the stationary cameras in advance, using the absolute orientation method based on 10
measured 3D point correspondences (cf. 7.2.1). An idential registration was also made
for a particular setup of the mobile cameras, to assess their quality for direct tracking.
This allows one to use the SRG depicted in Figure 13.7 for evaluation. The distance of
the mobile cameras to the measurement volume was approximately 1.5 m, the distance
of the stationary cameras approximately 3.0 m.

For validation, the deviations of direct and indirect tracking with respect to the ground
truth measurements made with the mechanical arm were assessed. Coordinates were
measured on a front vehicle as depicted in Figure 1.6(b). A point probe (as depicted
in the same image) was used instead of the real welding gun to ensure consistent point

172

(a) Stationary camera system (b) Mobile camera system

Figure 13.6.: Tracking systems used in in-situ validation of indirect tracking

Correction Transform
[Pose]

Offset [Static]

Indirect Tracking (no corr.)
[3D Position]

Indirect Tracking (simple corr.)
[3D Position]

Indirect Tracking (full corr.)
[3D Position]

Faro [3D Position]

Rotational Correction
[3D Rotation]

Stationary
Cameras

Uncorr.
Mobile
Target

Tracked

Offset [Static] Uncorr.
Center of
Gravity

Corr.
Mobile
Target Offset [Static] Corr.

Center of
Gravity

Tracked [3D Position]

Ref.
Target

2

Tracked [3D Position]

Ref.
Target

1

Mobile
Cameras

Pointing
Device

Faro
Arm

Tracked [3D Position]

Tracked

Direct Tracking [3D Position]

Offset [Static]
Tracked [3D Position]

Figure 13.7.: SRG for in-situ validation of indirect tracking setup. Direct tracking, as
well as indirect tracking in its corrected and uncorrected versions can be
directly compared against the ground truth measurements made in advance
with a FARO mechanical tracking arm. Only the important spatial rela-
tionships are shown, most intermediary results are hidden for the sake of
clarity.

probing using the probe and the tracking arm. 14 drillings were prepared on the steel
sheet to ensure the reproducibility of point-probing.

First, the quality of direct tracking was assessed. The 14 points were measured with

173

both, the stationary and the mobile system, the latter being at the pose used for reg-
istration (see above) . All measurements of the different optical tracking approaches
were transformed to the FARO reference coordinate system for comparison, via the reg-
istration described above. For the stationary cameras, a residual error of 0.77 mm RMS
was measured, the mobile cameras yielded 0.73 mm RMS. Each system on its own thus
provides the necessary accuracy.

For indirect tracking, the hand-eye problem first had to be solved. Again, the method
based on averaging multiple absolute orientations was used (cf. 13.1.2 and 7.2.2). For
this, the mobile cameras were brought to five different poses throughout the measurement
volume of the stationary cameras and the 10 points used already above where probed
for each pose of the mobile cameras.

For the indirect tracking measurements, two reference targets were placed in the scene,
similar to Figure 13.1. Indirect tracking was performed without any reference targets
(no correction), with one (simple correction), and with two (full correction). Six poses
of the mobile system were used for measurement acquisition, the latter two of them at
a target distance to the measurement volume of 3.0 m.

Figure 13.8 shows the deviations of all 14 points, exemplarily for a near (3rd) and a far
(6th) pose of the mobile system. The bars represent the euclidean distance computed for
all 14 points, using the different optical tracking modalities with respect to the ground
truth measurements of the mechanical arm. With correction, the quality of indirect
tracking almost corresponds to that of direct tracking. Surprisingly, for some points (1,
2, 4, 11, 12, and 13), the error is even lower with indirect tracking than with direct
tracking. The error of approximately 1 mm measured for these points comes close to
the internal accuracy of the stationary system (0.76 mm, see above). Maybe, tracking
can even benefit from indirect tracking under certain conditions. A justification for this
could be the fact that the large mobile target with 3 cm markers can be tracked better
than the small probe. The results for all poses of the mobile system are summarized in
Table 13.2.

Table 13.2.: RMS error [mm] of rotational correction approaches versus ground truth
measurements

Pose / Indirect Tracking Direct Tracking
app. distance No corr. Simple corr. Full corr.

1st / 1.5 m 2.3 2.1 1.9 1.4
2nd / 1.5 m 2.6 1.7 1.6 1.4
3rd / 1.5 m 4.3 1.7 1.8 1.6
4th / 1.5 m 3.2 3.1 3.1 1.5
5th / 3.0 m 13.8 2.5 3.2 1.6
6th / 3.0 m 12.1 3.0 3.8 1.7

Direct tracking reproducibly yields similar results; the different poses of the mobile
setup ideally should not have any influence on this. The slight deviation between 1.4
mm in the beginning and 1.7 mm in the end can be traced back to probing the same

174

direct

1 2 3 4 5 6 7 8 9 10 11 12 13 14
simple correction

full correction
no correction

pt. index

0.000

0.005

0.010

0.015

RMS @mD

(a) 1.5 m distance (3rd pose)

direct

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
simple correction

full correction
no correction

pt. index

0.000

0.005

0.010

0.015

RMS @mD

(b) 3.0 m distance (6th pose)

Figure 13.8.: RMS error [mm] of indirect tracking without correction, with simple cor-
rection, with full correction, and direct tracking with stationary cameras
for two exemplary poses of the mobile system

175

points several times under repeatability conditions. Maybe, the front vehicle was slightly
moved during the experiment.

Interestingly, there is a discrepancy between the results for the static tracking exper-
iment described above which led to a deviation of less than 0.8 mm RMS. They could
be a sign of an displacement of the front car between the direct and indirect tracking
experiment. The front car was mounted on a dolly that could have been moved easily
by an unintentional hit because only two of its four wheels could be locked.

For indirect tracking, the correction methods lead to a significant improvement in all
cases. For larger distances of the mobile setup, the deviations slightly increase. This
is nothing unexpected since any remaining error in the orientation of the mobile setup
propagates to a positional error that increases linearly with its distance. In particular for
larger distances, the correction yields a tremendous improvement over the uncorrected
indirect tracking and thereby demonstrates the principal correctness of the chosen correc-
tion approach. For the first three poses, even the uncorrected indirect tracking features
quite low deviations, rendering the advantage of the correction approaches being not so
drastic. For the 4th pose , there is no improvement at all from the correction, however
the correction does not harm. Maybe, a partial occlusion of one or both reference targets
existed, hindering the correction to be really effective.

Since the accuracies of the individual systems is approximately 0.8 mm RMS for both,
at a distance of 1.5 m to the measurement volume, the obtained results for indirect
tracking with correction are close to what is possible at all. Note that even with rota-
tional correction, the positional errors of both systems still add. In summary it can be
said that indirect tracking is not much worse than direct tracking. This is balanced by
a much higher flexibility due to the extended tracking range.

13.1.4. Verification of Mobile Tracking Setup

After the simulation concepts described in 11 had become available, they were applied
to investigate the until then open question of how to determine the offset between the
mobile target and the mobile cameras as well as to simulate the overall behavior of the
indirect tracking setup.

Basic Setup

Two variants have been discussed in 7.2.2 to estimate the offset between the mobile
target and the mobile cameras. The first is a straightforward hand-eye calibration,
the second computes the average of multiple absolute orientations. Unlike in the SRG
depcited Figure 13.2 that was used for validation, no shift of the origin of the mobile
target to its COG is needed. Rather, the simulation data flow implicitly assumes the
origin to be in the COG.

Both variants were evaluated based on the assumption of an isotropic and uniformly
distributed error for the transformation between Stationary Cameras and Mobile Target as
well as between Mobile Cameras and Probe. The uniform distribution was chosen because
of the systematic error behavior of the used tracking systems, see also Figure 10.1(b).

176

Rough indications from prior experiments were used to derive a 6DoF elementary
specification of uncertainty. For the positional uncertainty, the RMS errors from the
direct comparison against the FARO arm in 13.1.3 can be consulted. They actually
describe the uncertainty of the tip of the Probe, 0.77 mm for the static and 0.73 mm
for the mobile tracking system. The approximately 0.8 mm RMS is converted by the
Perturbation component to a maximum deviation using Equation (10.6), resulting in 1.39
mm. It shall be noted that the large mobile target is probably tracked more precisely
than the rather small probe used in the referred experiments; thus, these figures might
be too pessimistic for the mobile target.

For the rotational error, a maximum deviation of 0.2◦ was directly assessed in Fig-
ure 10.1(b). It is assumed for both tracking systems. A more fine-graned elementary
specification of uncertainty would be desirable, in particular a distinction of the ori-
entational uncertainties between the mobile two-camera and the stationary five-camera
setup. Unfortunately, the corresponding ground truth measurements were not available.

Furthermore, an offset of 0.4 m was assumed between the mobile target and the mobile
cameras. The orientation is set to identity for all involved coordinate frames, for error
propagation, only the distance has an impact on the resulting uncertainties. Depending
on the chosen registration variant, different movements are necessary for the Probe, as
well as for the mobile setup consisting of the Mobile Target and the Mobile Cameras.
These movements are created on-the-fly in the simulation data flow, based on a common
basic pose, using the Perturbation component. Further details about theses movements
are given below. The basic pose of the Probe/Calibration Object is assumed to be 3 m
below the Stationary Cameras. The basic pose of the Mobile Target is assumed to be 2 m
below the Stationary Cameras.

The corresponding data flows are described next. They are based on the concepts
described in 11.2 and are also available for reference in Appendix A.1.

Simulation of Hand-Eye Calibration

Using this method, the Calibration Object is assumed to remain constant at its basic pose
(see above). The movement of the mobile setup is generated on-the-fly in the data flow by
a perturbation of the basic pose. In successive runs of the data flow, 5/10/20/40/80/160
different poses where sampled using a uniform distribution from inside a unit sphere
with a diameter of 4 m and arbitrary orientation. The data flow was reconfigured after
each run to increment the number of poses; it was executed five times. 1000 samples
where used in each execution of the data flow to estimate the behavior of the registration
procedure. Figure 13.9 shows the results.

With an increasing number of poses, the estimation error decreases. The evaluation
shows that 20-40 poses represent a good trade-off between registration effort for collection
of measurements and the resulting estimation error. With fewer poses, the error is
unnecessarily high, more poses only yield a slight improvement.

177

5 poses 10 poses 20 poses 40 poses 80 poses 160 poses

amount of poses

0.000

0.001

0.002

0.003

RMS @mD

(a) Positional error

5 poses 10 poses 20 poses 40 poses 80 poses 160 poses

amount of poses

0.00

0.05

0.10

ang. err. @deg.D

(b) Rotational error

Figure 13.9.: Result of simulation for hand-eye calibration of the offset between mobile
target and mobile cameras

Simulation of Absolute Orientation

As opposed to the hand-eye calibration variant, the absolute orientation variant depends
on mainly two factors, the number of 3D positions measured with the Probe for each
computation of the absolute orientation as well as the number of absolute orientations
used to compute a mean value. The movements are again generated on-the-fly, by
a perturbation of the respective basic pose (see above). The fact that the absolute
orientation is performed many times for each pose of the mobile setup is reflected in a
nested layout of the corresponding data flow given in Figure A.16 in Appendix A.1. In
fact, the Covariance Estimation component is used twice; in the inner loop it is “abused”
to compute perturbed samples of the desired mean value, the also computed covariance

178

is discarded. For nested simulation data flows, see also 11.2.5.
The 3D points to be probed were assumed to be distributed uniformly inside a unit

sphere with a diamter of 2 m located at the basic pose of the Probe. The evaluation
was performed for 5/10/20/40 corresponding point measurements. For the mobile setup,
5/10/20/40 different poses where sampled, again using a uniform distribution from inside
a unit sphere with a diameter of 4 m and arbitrary orientation. Figure 13.10 shows the
results.

40 poses
5 points 10 points 20 points 40 points

20 poses
10 poses

5 poses

amount of points

amount of poses

0.000

0.001

0.002

0.003

RMS @mD

(a) Positional error

40 poses
5 points 10 points 20 points 40 points

20 poses
10 poses

5 poses

amount of points

amount of poses

0.00

0.05

0.10

ang. err. @deg.D

(b) Rotational error

Figure 13.10.: Result of simulation for mean of absolute orientation of the offset between
mobile target and mobile cameras.

As expected, position and rotation errors decrease with increasing number of point
measurements as well as poses of the mobile setup. However, the benefit from a larger
number of poses of the mobile setup is much higher than the impact from an increased
number of points.

179

Conclusion

The evaluation agrees with our initial experiences registering the offset between mobile
target and mobile cameras in 13.1.2. Even with a small number of user-triggered point
measurements (cf. 7.2.1), the absolute orientation method yields better results for the
orientational part. For example, using the hand-eye method, 10 poses of the mobile
setup result in a positional error of 1.6 mm RMS and in a standard deviation of 0.058◦

for the rotation. With the abosolute orientation method, the same 10 poses, paired
with only 5 additional position measurements per pose, result in 1.7 mm RMS but only
0.038◦. Especially the orientation seems to benefit from the widely distributed reference
points.

For practical implementation, the fact has to be taken into account that the stationary
and mobile trackers do not belong to the same trigger group; therefore, a convenient dis-
crete collection (cf. 7.2.1) of many pose measurements was not an option and a manual
arrangement of the mobile setup is time-consuming. Some user-triggered point measure-
ments, however, are easily obtained.

Whereas the simulation of the two alternative registration methods helps to obtain a
deeper understanding, it might not provide reliable quantitative figures for the concrete
setup used in 13.1.3, due to the rather rough elementary specification of uncertainty
used. At least it can be stated that a the result could have been improved much by more
than only 5 poses of the mobile setup for registration.

13.1.5. Verification of Application

For verification of the application, the SRG depicted in Figure 13.2 was embedded into
a simulation data flow (see also Figure A.20 in Appendix A.3) according to the methods
described in 11.

The same elementary specification of uncertainty was used as above in 13.1.4. Fur-
thermore, the simulation results from 13.1.4 were reused for the offset between mobile
target and mobile cameras. During validation (see 13.1.2), 5 poses where used, with 10
point correspondences each. According to Figure 13.10, this yields a positional error of
2.3 mm RMS and a rotational error of 0.055◦. These values are used to perturb the
offset between the mobile target and the mobile cameras again.

As above, the assumed offset between mobile target and cameras is again 0.4 m.
Furthermore, the distance between the mobile cameras and the probe was assumed with
1.5/3.0 m in horizontal direction and between the stationary cameras and the mobile
target with 3.0 m in vertical direction. The positions of the two reference targets are also
varied. Twice, they were placed close to the probe, 0.5 m closer to the mobile cameras
than the probe itself, thus at 1.0/2.5 m distance. Once, they were placed far away at
1.0 m while the probe was at 3.0 m. The distance between the reference targets was
constantly set to 1.0 m.

The described ground truth data is provided in terms of the SRG edges between
Stationary Cameras and Probe, Stationary Cameras and Mobile Target, and Mobile Target
and Mobile Cameras. The forth transformation between Mobile Cameras and Probe is

180

derived from the other three edges by closing the loop in the SRG, to obtain a consistent
set of ground truth data. Table 13.3 shows the simulation results for the described
assumptions. Both correction approaches reduce the errors of indirect tracking, full

Table 13.3.: Simulated RMS error [mm] of rotational correction approaches

Probe dist. / Indirect Tracking
ref. target dist. No corr. Simple corr. Full corr.

1.5 / 1.0 m 4.2 2.3 2.0
3.0 / 1.0 m 6.4 4.0 3.5
3.0 / 2.5 m 6.4 2.1 1.9

correction performing slightly better than simple correction. These results will now be
discussed in more detail.

13.1.6. Discussion

Only a rough elementary specification of uncertainty was used for verification. Never-
theless, the simulation results in Table 13.3 come quite close to the empirical results in
Table 13.2, at least when the probe is 1.5 m away from the mobile cameras. The posi-
tion of the reference targets seems crucial for the performance of rotational correction,
as indicated by the second row. This somehow foils the idea of indirect tracking for
the reduction of occlusion effects; at least, indirect tracking cannot reach very deep into
occluded areas without loosing too much accuracy.

This might also explain why the simulated uncertainties for a long distance between
probe and mobile cameras of 3.0 m are better (up to 1.9 mm with full correction) than
in in-situ validation (> 3.1 mm with full correction). In the latter experiment, the probe
was used at distances from the reference targets that were significantly larger than 0.5
m for most of the measured points, up to 1.5 m for some.

Nevertheless, the verification does not really explain why indirect tracking without
correction performed so badly (> 12 mm) over a distance of 3 m during validation.
There are three possible explanations:

1. The registration of the mobile target and the cameras could accidentially have been
corrupted during the experiment, especially the orientational part of that pose.
This would explain the constantly bad results for indirect tracking (mostly > 3
mm) with correction during the second half of the experiment (fourth/fifth/sixth
pose in Table 13.2) as compared to the first half (< 2 mm). It would also explain
the bad performance for indirect tracking without correction for the last two poses.
It would however not explain why indirect tracking without correction for the forth
pose (3.2 mm) was not much worse than for the first three poses (2.3/2.6/4.3 mm);
it should have also been affected.

2. Therefore, it is also reasonable that one of the reference targets was badly tracked
by the stationary cameras during the second half. It could have been touched

181

during the experiment, resulting in merging markers or some of the spheres moving
fully or partially outside of the tracking volume of the stationary cameras. Note
that the mobile cameras were moved, which would probably have resolved such
a problem with the next pose. A badly tracked reference target could explain
the annihilation of the correction effects for the forth pose and a degradation
for the far aways fifth and sixth pose. After all, the simulation also indicates
that the correction works better for longer distances between mobile cameras and
probe/reference targets. However, the huge error for indirect tracking without
correction for the fifth and sixth pose remains curious.

3. The empirical measurements for indirect tracking without correction (cf. Ta-
ble 13.2) suggest a lower positional error but a higher rotational error for the
offset between mobile target and cameras. The lower positional error could be
explaned with the rather huge dimensions of the mobile target and the individual
spheres mounted on it; the elementary specification of uncertainty for positional
error was based on the rather small pointing device. A higher rotational error
on the contrary could also be explained. Unlike in the simulation and unlike in
Figure 10.1(b), the pose of the mobile setup was not varied freely in the real setup.
Due to practical reasons, in particular the used tripod and the fact that the mobile
target had to be visible for the stationary cameras, the orientation could only be
changed by approximately +/ − 30◦ about the yaw and pitch axes. Some of the
systematic effects therefore might have been missed. See also 10.1.1.

Probably, a combination of several effects was at work during validation.

An interesting aspect is the equal performance of the simple correction during vali-
dation (cf. Tables 13.1 and 13.2), as compared to the full correction. The simulation
however shows an advantage for the full correction, as one might intuitively assume.
However, the flat and lengthy layout of the mobile target was not implemented in the
simulation, due to the elementary specifiation of uncertainty having a 6DoF granularity.
On that condition, the simple correction could have performed better during verification.

For both correction approaches, coordinates were shifted to the COG of the mobile
target. Our recent findings suggest however that the COG is not ideal [Pust 10]. Neither
does the COG represent the point with the lowest positional uncertainty nor does it
provide a good separation (in terms of low correlation) between positional and rotational
uncertainty. See also 11.4. The correction approaches should be revisited in this respect.

To conclude, this subsequent verification is useful to understand some effects but it
quickly reaches its limits. The validation would certainly have been conducted with
more attention on certain aspects, especially the positions of the reference targets or the
registration of the offset between mobile target and cameras. Furthermore, the 6DoF
elementary specification of uncertainty seems to provide only a rough approximation.
Ideally, a proper assessment of the elementary uncertainties should be the first step.
Next, a subsequent verification step should be conducted to reveal important aspects for
accuracy. Then, validation can be performed, with the critical aspects properly defined
for maximum explanatory power of the results.

182

13.2. Example: Probe Tracking in the Airplane Cabin

Now, the accuracy of quantitative discrepancy checks using a metrological probe in the
airplane cabin (see 7.1.2) is analyzed [Keit 10b]. First, the expected performance in the
target environment is verified in 13.2.1. This step is based on exhaustive simulation and
can happen even before actual deployment of the hardware. Having this, the application
is validated in 13.2.2, based on some selected measurements in the target environment.
Both steps also include the relevant registration steps for the reference target (see 7.2.3).

13.2.1. Verification

Using the simulation setup, we do not only want to analyze a specified setup. Also,
critical design issues and purchase decisions are investigated in more detail. For verifi-
cation by simulation, we decided to use a non-isotropic Gaussian error distribution to
approximate the real error distribution, following the vendor’s elementary specification
of uncertainty with an overweight error in the depth direction. It has been shown above
in 12.4 that this is a reasonable elementary specification of uncertainty.

Simulation Setup

First of all, the level of abstraction in the elementary specification of uncertainty requires
to explicitly formulate the tracking algorithms needed to determine the 6DoF pose of
the Probe and Reference Target in real-time. They are actually performed inside the
black-box tracking system but have to be reproduced such that the sensor uncertainty
description for the individual LEDs can be used. For this, the SRG depicted in Figure 7.3
has been refined, resulting in Figure 13.11.

The bold edges are obtained by an absolute orientation each, according to 7.2.1. They
emulate the black-box marker tracking algorithms.

Based on this, simulation data flows were created, using the concepts described in 11.
Since the simulation has to cover the entire error chain, not only the application data
flow (cf. 7.1.2) but also several registration data flows (cf. 7.2.3) have to be incorporated.
The measurements for tracking the Probe Tip in the World (actual application data flow)
are depicted in red. The calibration of the offset between Reference Target (CAD) and
Reference Target (LED) is nested in the same SRG according to 11.2.5), unlike in 13.1.
The corresponding measurements for this task are depicted in orange. The remaining
static offsets depicted by green edges are taken from external sources.

The calibration of the Tip Offset was performed with the proprietary software of
the tracking system vendor. The routine also computes an RMS value for the tip; it
can therefore be perturbed accordingly in the monolithic main simulation data flow.
Similarly, the Offsets of 4 Probe Marker LEDs, 6 Reference Target LEDs, and 25 Tactile
Points are simply taken from the body calibration files and CAD model, respectively. No
error was assumed for the manufacturing of the reference target from its CAD model.

The World Registration of the Reference Target (CAD) with the World (aircraft) was
simulated externallyl, using the method described in 11.2. For the laser tracker, the
specified uncertainties (see above) were used.

183

Tracked [3D Position List]
Tracked [3D Position List]

Tactile Point Offset
[3D Position List]

Measurement [3D Position List]

World Registration [Static]

Ref. Target
Tracking

Probe Marker
Tracking

Fiducial Offset
[3D Position List]

[Static]

Tracked [3D Position List]
Tracked [3D Position List]

Probe Marker
Tracking

Ref. Target
Tracking

Result

Tip Offset
[3D Position]

[Static]

Ref. Target Offset

Fiducial Offset
[3D Position List]

[Static]

Figure 13.11.: Refined version of the SRG shown in Figure 7.3. The pose estimation
based on visible IR LEDs is explicitly modeled (bold edges). The SRGs
combines the spatial relationships for tracking of the Probe Tip in the
World at runtime (red measurements) with the spatial relationships needed
for calibration of the offset between Reference Target (LED) and Reference
Target (CAD) (orange).

An outline of the main simulation data flow algorithm is depicted in Algorithm 1. The
complete data flow can be found in Figure A.14 in Appendix A.3.

For the calibration of the reference target (orange edges in SRG), the Realtime Tracker
is virtually positioned such that the reference target is at an optimal distance (< 2 m)
for minimal LED tracking error. To apply the noise in our setup, we use the ground
truth data of the Probe, keeping the tip fixed on one of the 25 Tactile Points. We
derive the location of the 4 Probe Marker LEDs and the 6 Reference Target LEDs in the
coordinate frame of the real-time tracking. There, Gaussian noise is applied to each LED
position. Using an absolute orientation algorithm, error-prone estimates for the Probe
and the Reference Target (see above, cf. Figure 13.11) and consequently for the 25 Tactile
Points and the Probe Tip are computed. Iterating over the tactile points, we derive 25
corresponding 3D point pairs (inner loop in Algorithm 1). The erroneous calibration
of the offset between Reference Target (LED) and the Reference Target (CAD) is then
obtained by another absolute orientation between the 25 Tactile Points as given in the
CAD model and as measured by the real-time tracking.

A newly perturbed sample of the calibrated offset is incorporated in an enclosing
simulation loop, for the generation of samples for the runtime system (red edges in
SRG). We specify several poses of the Realtime Tracker with respect to the Reference
Target (LED, as well as grid of assumed Probe Tip poses in the tracking volume. The
simulation iterates over these poses, perturbing the pre-calibrated transformations as
well as of each of the currently visible LED positions to sample the covariances of the

184

Algorithm 1 Outline of data flow algorithm for the simulation of the uncertainty of tip
tracking in the target environment. All relevant errors are considered.
Require: Ground truth data: positions of Reference Target LEDs w.r.t. Reference Target, po-

sitions of Probe Marker LEDs w.r.t. Probe Marker, position offset of Probe Tip w.r.t.Probe
Marker, positions of 25 Reference Points w.r.t. Reference Target, pose of Reference Target w.r.t.
World, pose(s) of Realtime Tracker w.r.t. Reference Target, pose(s) of the Probe Tip w.r.t. the
Real Time Tracker, assumed poses of Probe Tip.
Uncertainties: elementary specification of uncertainty for 3D position of a single LED, covari-
ances of Reference Target LEDs w.r.t. Reference Target (from body calibration), covariances
of Probe Marker LEDs w.r.t. Probe Marker (from body calibration), covariance of Probe Tip
w.r.t. Probe Tip (from tip calibration), covariance of Reference Target w.r.t. World (from prior
simulation).
for all defined poses Realtime Tracker w.r.t. Realtime Tracker do

Derive g.t. Reference Points w.r.t. Realtime tracker
Initialize list of covariances
for all defined poses of Probe Tip do

Initialize covariance
for count = 1 to 1000 do

Perturb Reference Target LEDs w.r.t. Reference Target
Derive g.t. Reference Target LEDs w.r.t. Realtime Tracker
Perturb Reference Target LEDs w.r.t. Realtime Tracker
By Absolute Orientation, derive perturbed pose of Realtime Tracker w.r.t. Reference
Target
for all 25 Reference Points do

Perturb Probe Marker LEDs w.r.t. Probe Marker
Derive g.t. pose of Probe Tip w.r.t. Realtime Tracker for Reference Point
Derive g.t. Probe Marker LEDs w.r.t. Probe Marker
Perturb Probe Marker LEDs w.r.t Probe Marker
By Absolute Orientation, derive perturbed Probe Marker w.r.t. Realtime Tracker
Perturb Probe Tip w.r.t. Probe Marker
Derive perturbed Reference Point w.r.t. Reference Target (LED)

end for
Derive perturbed Reference Target (LED) w.r.t. Reference Target (CAD)
Perturb Reference Target LEDs w.r.t. Realtime Tracker
By Absolute Orientation, derive perturbed pose of Realtime Tracker w.r.t. Reference
Target
Derive g.t. pose of Probe Marker w.r.t. Realtime Tracker
Derive g.t. positions of Probe Marker LEDs w.r.t. Probe Tracker
Perturb Probe Marker LEDs w.r.t. Probe Marker
Perturb Probe Marker LEDs w.r.t. Realtime Tracker
By Absolute Orientation, derive perturbed pose of Probe Marker w.r.t.
Realtime Tracker
Derive perturbed Probe Tip w.r.t. World
Update covariance

end for
Append covariance to list of covariances

end for
Output list of covariances

end for

185

Probe Tip at the different positions in the tracking volume.

Verification Experiments & Results

The simulation results of 12.4 already pointed out that a reference marker dimensioned
to 300x300 mm2 seems to be a good optimum to get a high accuracy and still allow
handling in the aircraft.

Next we analyzed the world registration procedure using the FARO metrological sys-
tem that had an RMS error of 0.018 mm in our test case. To understand the impact
on the entire application, we use the simulation to propagate this error to the tip in
world coordinates. For different numbers of samples used for the registration procedure,
the resulting error in the tip is displayed in Table 13.4. When comparing the resulting
error for 4, 6, and 8 samples, it seems sufficient to rely on 4 since the over determination
allows one to identify user errors and the resulting error does not influence the entire
system error strongly.

Table 13.4.: Propagated RMS errors [mm] for the world registration

number of points min. error max. error

3 0.0790 0.690
4 0.0590 0.488
6 0.0547 0.475
8 0.0474 0.405

For the registration between the reference marker and it’s CAD model we depend on
the less accurate real-time tracking system with an RMS point error of 0.2 mm, computed
from the vendor specification using (10.14) assuming 2 m depth. To understand the
impact on the entire application, we again use the simulation to propagate this error to
the tip in world coordinates. In contrary to the prior analysis and due to the reduced
accuracy we decided to rely on more samples and to compare different designs of the
probing device. Table 13.5 indicates that for the registration of the reference target the
type of probe is less important.

Table 13.5.: Propagated RMS errors [mm] for the reference target

used probing device min. error max. error

small probe (5x5 cm2) 0.208 2.23
large probe (10x10x5 cm2) 0.192 2.11

A typical setup we want to validate has the reference target in the far field (Figure
12.5). Following the results from Figure 12.9, we prohibit the use of the probe too far
away from the reference target and therefore clip the front part of the pyramid to avoid
occlusion and a too high error value.

As Table 13.6 illustrates, the error in the worst case estimation of our scenario ranges
between 0.79 mm and 4.86 mm. As already stated, the error increases with the distance

186

Table 13.6.: Simulated RMS errors [mm] for the tip position

simulation setup min. error max. error

far reference target 0.789 4.86
far reference target (pro) 0.154 1.43

far multi target 0.710 1.57
far multi target (pro) 0.137 0.377

between probing device and reference target, as in Figure 12.9(b). This becomes clear
when we use four small 3 LED reference targets distributed in the working volume
(multi target); the maximum error drops to 1.57 mm whereas the minimum error is
nearly unchanged. This coincides with the basic rule in metrology to always measure
inside the cloud of reference points used for registration [Niem 08]. Also we simulated
the expected error for an alternative “pro” version of the hardware4. It has a much lower
uncertainty; in the horizontal/vertical/depth directions, it drops to 0.02/0.02/0.06 mm
(at 2 m) and 0.06/0.06/0.15 mm (at 6 m), compared to the 0.1/0.1/0.15 mm at 2 m
depth, 0.15/0.15/0.25 mm at 4 m depth, and 0.25/0.25/0.45 mm at 6 m depth of the
normal hardware.

13.2.2. Validation

As proposed we validate our simulation results in the real environment. Starting with the
noise of the direct and indirect probe tip tracking. In the direct probe tracking the results
matched the expected values and the standard deviation for various measurements was
0.03 to 0.04 mm.

When measuring the tactile points of one of the reference targets, the back projection
error was too large. Recalibration with the 25 tactile points solved that issue. Also for
the just calibrated reference targets, the accuracy was as expected, the error ranged from
1 mm to 3 mm with a standard deviation of approximately 0.5 mm over 100 samples -
depending on the distance between reference target and probe. If the application requires
a precision below 1 mm, the more expensive “pro” system needs to be used. Also, the
degradation in the quality of the calibration of the reference targets over time has to be
validated in a more detailed system analysis.

13.2.3. Discussion

Since complex tracking scenarios cannot be covered by a generic, application-level un-
certainty specification, an elementary specification of uncertainty has to be provided for
each of the involved sensors. By a propagation throughout the complete chain of errors,
an application-level uncertainty specification can be obtained. Unlike the elementary
specification of uncertainty which has to be provided for a certain kind of sensor only,
the application-level uncertainty specification depends on the concrete setup.

4NDI Optotrak Pro System

187

It has been demonstrated that using a simulation framework, design decisions in the
definition phase of an industrial tracking system become more transparent. Various
different hardware platforms and concepts can be easily benchmarked even without the
need to use real hardware. Furthermore, the task of validation in the target environment
could be simplified tremendously, since many critical aspects could be solved before the
actual deployment.

188

14. Runtime Error Mitigation

Error mitigation strategies are needed in the operation & maintenance phase of the
IAR application. Most tracking setups change physically over time, due to various rea-
sons such as temperature changes, fatigue of material, or (un)intentional mechanical
influences. Therefore, while the tracking system is operational, one would like to know
whether static transformations from previous registration steps are still valid. Further-
more, registration methods have to be robustified such that they can be used by on-site
personnel.

14.1. Robustifying Calibration & Registration Procedures

trackman provides a generic means to carry out registration procedures including the
necessary user interactions. SRGs can be directly instantiated in trackman such that no
additional implementation is necessary to solve the registration problem. A binding for
the Application Push Source Button components is provided for measurement acquisition.
Various data flows have been discussed in 7.2.

Especially for optical tracking systems, it is desirable to have feedback in the user
interface about the current refresh rate or timeliness of the last measurement received.
For example when using a probe such as in Figure 1.6(b) to collect point measurements,
this is of utmost importance. It is not sufficient to merely ensure that the probe tip
is at the correct position when the user presses the button. Additionally, it also has
to be ensured that preferably all fiducials are seen by the cameras to obtain a good
measurement. Intuitive tools are needed, tailored to the target user and also the IAR
application to adhere to this simple constraint. Examples are depicted in Figure 14.1.

Currently missing observations are indicated in red. The user has to actively remedy
such sitations, possibly by removing occlusion conditions. The timing of the visualization
has to be adapted to the update rate of the involved sensors.

Also, information about the quality of the current measurement residual can be dis-
played. It can be observed while collecting measurments to see whether it converges
against a reasonable value, see also 12.3.2. This is shown exemplarily for the absolute
orientation in Figures 14.2(a) (expected convergence) and 14.2(b) (outlier).

Despite these efforts, it remains a huge potential for improvements here, especially in
manual measurement acquisition for registration procedures. This becomes even more
crucial in case of several interdependent registration steps. To accomplish this tedious
task efficiently, all involved measurements have to be very accurate and outliers should be
avoided.Therefore, it is desirable to incorporate statistical tests (cf. 10.3.3) which provide
immediate feedback about the consistency of measurement data. Resulting actions can

189

(a) trackman (b) Web front-end

Figure 14.1.: Availability of Tracking Data. All relevant transformations should be
green. Red indicates currently missing observations.

(a) Expected convergence (b) Outlier

Figure 14.2.: Behavior of residual error in point-based registration. The expected char-
acteristics is plotted for several apriori uncertainty levels. The actual con-
vergence (red) is plotted on-the-fly, as new measurements are taken.

be the exclusion of single measurements or also the repetition of the whole measurement
sequence.

14.2. Example: Loops in the Spatial Relationship Graph

During runtime, loops in the SRG can help to perform online consistency checks. The
basic idea is to exploit redundancies in the SRG, similar to how over-determination of
a problem is exploited in adjustment theory to perform hypothesis tests on the input
data [Koch 97, Niem 08], see also 10.3.3. A similar strategy is used with coordinate
measurement machines (CMM) and laser trackers (see 1.2): from time to time, the tip
is moved to a dedicated calibration sphere mounted rigidly to the machine in order to

190

assure that the tip calibration is still valid and the CMM is working properly.

Assuming that a certain transformation is given by following two different paths in the
SRG, the two alternatives should ideally not deviate from each other. As an example,
consider the SRG depicted in Figure 13.2. It contains four different ways to track the
pointing device in the world. The deviation between these paths does not only reveal
how good indirect tracking with or without rotational correction works, it is also an
indicator for potential inconsistency in the setup [Keit 10a]. An increase suggests that
static transformations have changed over time and a re-calibration/re-registration of the
setup becomes necessary.

A comparison of two alternative SRG paths has been implemented exemplarily in
trackman. Again, a dedicated user interface would be required in a productive envi-
ronment. The reference measurement is thereby retrieved via an Application Push Sink
Pose, in our example the result obtained from direct tracking (cf. 13.1.2). The alter-
natives are retrieved via Application Pull Sink Pose components to ensure synchronized
measurements (cf. 5.4). They are compared relatively to the reference measurement. An
exemplary plot captured during in-vitro verification of indirect tracking (cf. 13.1.2) is
shown in Figure 14.3.

Figure 14.3.: Exemplary comparison plot showing positional deviations of three indirect
tracking variants (blue: no correction / red: simple correction / black: full
correction) from direct tracking. As the probe is moved further away from
the mobile cameras over time, the deviation with respect to the reference
increases.

The x-axis of the plot represents time. The y-axis represents positional deviations
(euclidean distance) of the three alternative paths (indirect tracking variants) in the
tracking data flow relative to the reference path (direct tracking). Similarly, orientational
deviations can be plotted based on the axis-angle representation (see Equation (10.18)).

191

14.3. Example: Error Mitigation in the Airplane Cabin

In the next example, we go one step further. The goal is not only to detect potential
system failures, but to describe strategies to trace back and eliminate them efficiently and
reliably. The expected accuracy and precision have been analyzed in the verification and
validation procedures (cf. 13.2). This allows one to define constraints within the tracking
setup’s SRG to compare current measurements with the expected system behavior at
run time.

The simplest way to perform a run-time test is a ground truth measurement. When
probing a known point it is possible to compare the measurement to the expected value.
Using the same statistical tests as during validation (cf. 13.2.2), it is possible to determine
whether a measured point set violates the expected confidence interval. In case the user
can reproduce the effect, it is not caused through a user error like imprecise probing as
for example slipping or measuring the incorrect point. This indicates a malfunction.

Figure 14.4.: Runtime checks, © represents the confidence interval.

To locate the error source in such a complex setup, it is possible to run the validation
tests simply in reverse order. The first step validates the probe tracking in the complete
system. Measuring with the probe tip on a known fixed point (ground truth) while
rotating the probe results in a position and a covariance ellipsoid of the tip in the world.

The resulting measurement can violate the specified error level in two ways. In case
the covariance is larger than the simulation predicts, the source of error should be in
the direct probe tracking (Figure 14.4, accurate & imprecise). Recalibration of the
probe target and the tip calibration should solve that issue. Otherwise, the error has the
correct magnitude of noise but the measured position is incorrect (Figure 14.4, inaccurate
& precise).

In the latter case a second test needs to be performed by probing at least three known
tactile points on the reference target and comparing the measurement to the ground
truth values from the CAD model in the coordinate frame of the reference target. If these
points violate the confidence interval, this indicates that the transformation between the
25 tactile points and the marker of the reference plate is invalid. Recalibration of the
reference target solves this issue.

If the test is passed and the points are correctly mapped, the only left registration is
between the reference marker and the aircraft (world). A recalibration of this reference
using the offline metrological system is necessary.

After this procedure, the final system test is repeated by measuring a known point
in the aircraft. In case the distance between the measured point and the ground truth

192

exceeds the confidence interval, there are two severe error sources left. Either the of-
fline metrological system was not registered properly to the aircraft in the calibration
procedure or the real-time tracking system is outside its specification.

Performing this procedure at runtime asserts that the tracking system and the work
procedures relying on the new application are in line with the specification. This cor-
resonds to repeately probing the calibration sphere with a CMM or laser tracker, as
described above in 14.2.

193

15. Discussion

From the review of standards available in the field of industrial metrology and measur-
ing technology in general, this thesis has formulated an approach for the treatment of
uncertainties in IAR tracking environments. The approach is based on a combination
of extensive verification by simulation paired with selected measurements in the target
environment of the IAR application. The simulation was integrated in the SRG and
Ubitrack concepts to benefit from the graphical modeling facilities described in Part II.

It has been shown that an elementary specification of all uncertainties is needed for the
simulation to yield realistic results. This specification should be as generic as possible,
for maximum reusability in similar scenarios and also for comparability of competing
accuracy assessments. Furthermore, it should incorporate both, systematic and random
errors, though without the need for an explicit separation. Methods have been described
to derive such generic specifications, on the example of optical IR tracking. The approach
has been demonstrated and shown to be useful in conjunction with two industrial scenar-
ios. However, the specification should also be specific enough to describe adequately the
behavior of the system. The specification based on 3D uncertainties yielded much more
accurate results than the specification based on 6DoF uncertainties. The author hopes
to motivate others to promote this generalization approach by formulating uncertainty
standards also for other types of sensors.

Additional complexity arises when looking at heterogeneous systems. In the considered
cases, only IR tracking systems have been considered. There was no need to consider
temporal calibration of tracking systems since either only one system was used, or they
were synchronized in hardware. Furthermore, all registrations and all measurements
were conducted with manual fixation to exclude the negative influence of lag. This
is not a restriction for interactive measurements such as for quantitative discrepancy
checks were objects have to be probed anyway but it is a restriction for classical AR
applications with interactive visualization. In general, combining measurements with
different timestamps requires inter-/extrapolation and therefore the error management
would have to be extended, too.

The described simulation framework was implemented mainly on the Ubitrack data
flow layer. This allows for graphical configuration using the trackman tool described
in II. However, standardized functionality for the preparation of ground truth data,
as well as the for the evaluation of simulation results are still missing. Mathematica
notebooks and other scripts were used for pre-/post-processing instead. A graphical
tool on the middleware layer would be desirable. It should allow one to arrange tracking
devices, markers, and other entities of the SRG directly in a 3D environment and also
present the simulation results in this environment.

It also turned out that modeling nested simulation data flows quickly becomes awk-

194

ward and difficult to debug. The data flow editor could provide graphical support for
nesting operations. As Figures 11.3 and 11.4 suggest, it would already help to present
different “push-paths” in the data flow with distinct colors. The meta-pattern concept
described in 8.2 could be extended to classify sets of patterns according to their affilia-
tion with such “push-paths”. Certain levels of detail could then be investigated in detail
or hidden completely.

An even more general approach could be to equip the middleare simulation tool with
a dedicated simulation workflow engine. In 4.2 it was claimed that the data flow is
stateless and that logic shall be dealt with on the middleware layer. This principle
has been somewhat softened by allowing for nested loops, though branches are still not
possible. The simulation workflow engine should be intertwined with the interactive
setup of the environment in 3D and visualization of the simulation results. Ideally,
it would automatically take care of the generation of synthetic measurements and the
proper sequence of data flow algorithms, depending on the user’s needs.

195

Part IV.

Conclusion

196

To conclude, the demonstrated methods are now discussed according to their eligibility
to solve the problems discussed in Part I. This encompasses the technical requirements
towards tracking in IAR setups in 16. Aspects regarding the integration into industrial
processes are reviewed separately in 17.

197

16. Fulfillment of Tracking Tasks

In 2.3, the technical requirements towards tracking in IAR setups have been discussed.

16.1. Guaranteed Performance

The “guaranteed performance” of the system comprises a warranty for its reliability, its
robustness, as well as its accuracy & precision.

To ensure reliability and robustness, concepts have been described in 14 that aim at
continual consistency checks at runtime, mainly based on loops in the SRG. In 14.3,
also ideas for a systematic traceback of system failures have been given. However, much
work remains to be done in this field.

Much effort has been put into pointing out relations to industrial metrology and
adjustment theory. For IAR to be successful, trusted methods from this field have
to be adopted and IAR has to be dovetailed with existing processes. Unfortunately,
real-time tracking equipment is often more complex to handle than offline metrologic
equipment, due to the odds described in 1.4. Available standards from metrology have
to be interpreted and adapted to IAR. As an important contribution to this problem, the
elementary specification of uncertainties has been introduced and shown to yield realistic
results in industrial scenarios. Hopefully, system vendors will adopt such a standardized
approach in the future.

A major contribution also is the description of an end-to-end error propagation frame-
work based on Monte Carlo simulation (cf. 11). It is based on the elementary specifi-
cation of uncertainties and gives concrete statements about the expected performance
of a proposed system (verification). It has been shown in 12.4 and 13 that the simula-
tion is consistent with empirical measurements in the target environment (validation).
The combination of verification and validation thus is an integrated means to provide a
guaranteed level of accuracy & precision.

To increase the realiability of (re-)registration procedures, the importance and re-
striction of measurement residuals has been pointed out in Chapter 10. This should
be better integrated in the future with error propagation techniques and guidelines to
collect meaningful point/pose correspondences. Also outlier detection and global hy-
pothesis tests from adjustment theory should be incorporated to increase robustness.

16.2. Sensor Fusion

Mainly cooperative and complementary fusion approaches have been treated. Compet-
itive fusion could also be helpful for IAR but has been neglected in this context. This

198

reflects the necessity of an integration of offline metrology and real-time tracking. It has
to be solved before complementary fusion can further increase the tracking performance.

The major contribution here consists of providing a graphical editor to quickly imple-
ment the registration and runtime data flows. Particularly registration quickly becomes
complex to handle. With trackman, setups of unprecedented complexity can be con-
structed with relative ease.

16.3. Modularization

Modularization is key to the provision and reuse of common best-practice solutions.
This in turn is needed for a maximum flexibility regarding the ad-hoc installation and
removal of components, including the implied calibration and registration procedures.

The modularization is accomplished to a big part by Ubitrack already. A Ubitrack
data flow runs almost as efficiently as a hard-wired solution. Patterns can be used either
in their time-expanded or in the implicitly/explicitly space-expanded form. Furthermore,
trigger components adapt themselves to various constellations of synchronization on their
input ports. This is a huge source of flexibility (cf. 5.3). trackman maps this flexibility
to a user interface that allows one to model new data flows with relative ease, making
use of the Ubitrack components and their flexible expansion variants.

A distinct lower level of modularization is introduced at a higher level of abstraction by
the meta-pattern concept (cf. 8.2) that allows one to provide best-practice solution pat-
terns for recurring registration and tracking problems. Various such solutions patterns
have been described throughout this thesis, e.g., in Chapter 7.

The modularized approach also eases wrapping any existing registration of tracking
data flow in a Monte Carlo simulation data flow (cf. 11.2). Though the provision of
ground truth data and the analysis of the simulation results are not yet solved in general
for arbitrarily complex setups (cf. Chapter 15), the provided methods are already quite
useful in many situations (cf. Chapter 13).

16.4. Maintainability

Maintainability during the definition and deployment stages mainly affects expert IAR-
engineers. They are supported by a graphical SRG and data flow editor that highly re-
duces the effort to realize a planned tracking setup (cf. Chapter 6). The proven spatial
correctness inherent to the pattern approach spares additional time for troubleshoot-
ing. The fact that some aspects (in particular related to data flow synchronization,
cf. 5.4) cannot be intuitively represented on the SRG level, is mitigated by a round-trip
engineering approach (cf. 6.4.3 and Chapter 9).

In the operation & maintenance stage, support for non-expert users is needed. They
should be able to operate setup and dismatingling procedures including the implied
calibration and registration procedures. Furthermore, they should be able to verify the
proper functioning of the system at all times. The challenge here is to find generic
solution patterns. It is beyond question that a tailored software solution can meet these

199

criteria. It is also beyond question that in a productive environment with non-expert
users, a tailored software solution is needed. The question rather is how the creation
of a tailored solution can be supported by generic best-practice solution patterns. Even
though several ideas are sketched throughout this thesis, no comprehensive answer has
been given so far. Ideas are sketched in the following.

To support calibration and registration procedures, the residual error resulting from
over-determination surely provides valuable information (cf. 12.3). Furthermore, the
number and distribution of measurements has to be controlled (cf. 10.3.3). Both concepts
can be found already in some specialized proprietary calibration routines of individual
system vendors. A more standardized approach would be desirable. Regardless the
chosen algorithm, a generic visualization of the convergence of residual error according
to Figure 14.2) can be provided to the user. What remains is a suitable guidance for
the acquisition of measurements, which heavily depends on the algorithm and involved
sensors; it cannot be handled in a generic way.

Unlike the calibration of an individual sensor, the registration of several sensors to
one another (cf. 7.2) incorporates a much higher risk of blunders during measurement
acquisition. This problem has already been solved in the field of metrology, by means of
a plethora of hypothesis tests that can be applied individually to single measurements
as well as globally to obtain a conclusive statement. These relationships have only been
mentioned briefly in 10.3. However, such strategies are typically applied by experts
during offline analysis of measurement data. More work is necessary in this area to
adapt the strategies to intuitive online procedures.

Finally, concepts for runtime surveillance have been provided, based on loops in the
SRG (cf. 14). Concepts for a systematic troubleshooting and traceback of errors have
been demonstrated exemplarily for the airplane cabin scenario (cf. 14.3).

200

17. Compliance with Industrial AR Design
Guidelines

In 2.3, phases in the implementation of new productive processes have been discussed.
For AR to spread in the industrial domain, support is needed during all these phases.
Answers have been given mainly in Part III.

First, an elementary specification of uncertainties is needed for all involved sensors
(cf. 10.3.5 and Chapter 12). It has to incorporate systematic and random error and shall
be as generic as possible and as specific as necessary. Methods for its acquisition have
been discussed in relation to existing standards for metrologic devices and demonstrated
for the case of optical IR tracking. It could be shown that the methodology of the GUM
to subsume systematic and random error in one quantity yields reasonable results. An
adaption to other sensors and measurement types remains to be done.

Based on the elementary specification of uncertainties, the definition phase can be
supported by extensive simulation (cf. Chapter 11). By this means, critical questions of
detail as well as the overall setup can be investigated before the actual purchase decision.
This highly simplifies the verification process.

During deployment, the installed setup has to be validated for the new process to
be approved. Due to the complexity of the tracking setups, the classic approach would
require many iterations with extensive empirical measurements to obtain a satisfactory
result. The knowledge from prior verification speeds up this process tremendously; much
less empirical measurements are needed.

After the setup has been consolidated by verification & validation, the determination
of admissible tolerances is straightforward. Their continual surveillance is indispensable
for the reliability of the industrial IAR process.

The concepts could be successfully demonstrated by means of two exemplary IAR
applications (cf. Chapter 13). These examples also show that a slightly more specific
(but still rather generic) elementary specification of uncertainty yields more acccurate
results in terms of compliance of the simulation with the empirical measurements in the
target environment (cf. 13.2).

Altogether, this thesis presents a very useful toolbox for the IAR-engineer. The generic
SRG/DFG modeling concepts allow for the flexible treatment of arbitrary tracking sit-
uations by simply combining the correct spatial relationship patterns in a graphical
editor. This allows one to realize scenarios with unforseen complexity with relative ease.
Furthermore, the pragmatic approach to the assessment and treatment of sensor errors
according to the GUM [ISO 08] provides valuable insights into the error characteristics
of a given setup at affordable costs, for the Monte Carlo simulation framework directly

201

integrates with the SRG/DFG modeling concepts. Although the presented toolbox is
not yet complete in various respects, this thesis provides a framework that can be ex-
tended in the future, in particular toward solutions for the proper time-synchronization
of sensors [Schl 11], generic methods for competitive filtering [Pust 08], and statistical
methods for outlier detection [Niem 08], as already described in 4.2.

202

Appendix

203

A. SRGs and DFGs

All SRGs and DFGs described throughout this thesis, are depicted in the remainder
of this appendix. Some of the graphics are rather small when viewed in the printed
version, due to their complexity. Furthermore, the graphics may not rasterize well,
depending on the used printer driver or PDF viewer. Nevertheless, they have been kept
in a vector-format such that zooming works properly when using the electronic version
of this document. It can be downloaded from the author’s website [Keit 11a].

All depicted SRG files can be downloaded from [Keit 11b] for inspection and editing in
trackman. They are compatible with trackman version 1.10.00 which can be downloaded
from [Ubi 11]. A subversion checkout of Ubitrack as of November 13, 2010 (revision
1453) from the Ubitrack subversion repository is also needed such that the pattern
templates are available for trackman [UbiS 11]. Ensure that the trackman.conf file
in your trackman installation points to the pattern template catalogue shipped with
Ubitrack, instead of the outdated catalogue shipped with the trackman release. To this
end, set option PatternTemplateDirectory to the full path of the doc/utql/patterns

subdirectory of your Ubitrack installation. See also the trackman user manual for the
setup and usage of trackman. A build of Ubitrack is not necessary to open and edit the
SRGs in trackman.

In order to actually instantiate the corresponding data flows, however, a build of Ubi-
track is needed. Please refer to the Ubitrack website for further information [Ubi 11].
Additional settings need to be done in trackman.conf to enable the data flow instanti-
ation facilities. Refer to the trackman user manual for details.

A.1. Application

The following SRGs and DFGs are discussed in 7.1.

204

Figure A.1.: SRG for indirect tracking of the intelligent welding gun

205

Figure A.2.: DFG for indirect tracking of the intelligent welding gun

206

Figure A.3.: SRG for probe tracking in the airplane

207

Figure A.4.: DFG for probe tracking in the airplane

208

A.2. Registration

The following SRGs and DFGs are discussed in 7.2.

Figure A.5.: SRG for absolute orientation based on user-triggered measurements

209

Figure A.6.: DFG for absolute orientation based on user-triggered measurements

210

Figure A.7.: SRG for hand-eye calibration based on user-triggered measurements

Figure A.8.: DFG for hand-eye calibration based on user-triggered measurements

211

Figure A.9.: SRG for tip calibration based on discrete measurements

Figure A.10.: DFG for tip calibration based on discrete measurements

212

A.3. Simulation

The following SRGs and DFGs are discussed in 11.2.

Figure A.11.: SRG for simulation of the 2D-6D pose estimation problem

213

Figure A.12.: DFG for simulation of the 2D-6D pose estimation problem

214

Figure A.13.: SRG for simulation of probe tracking in the airplane

215

Figure A.14.: DFG for simulation of probe tracking in the airplane

216

Figure A.15.: SRG for simulation of hand-eye calibration for indirect tracking of the
intelligent welding gun

217

Figure A.16.: DFG for simulation of hand-eye calibration for indirect tracking of the
intelligent welding gun

218

Figure A.17.: SRG for simulation of absolute orientation for indirect tracking of the
intelligent welding gun

219

Figure A.18.: DFG for simulation of absolute orientation for indirect tracking of the
intelligent welding gun

220

Figure A.19.: SRG for simulation of indirect tracking of the intelligent welding gun

221

Figure A.20.: DFG for simulation of indirect tracking of the intelligent welding gun

222

Bibliography

[Abaw 04] D. Abawi, J. Bienwald, and R. Dorner. “Accuracy in optical tracking with
fiducial markers: an accuracy function for ARToolKit”. In: Proc. 3rd
IEEE/ACM International Symposium on Mixed and Augmented Reality,
pp. 260–261, IEEE Computer Society Washington, DC, USA, 2004.

[Adob 11] “Adobe company website”. http://www.adobe.com. Accessed January 12,
2011.

[Albu 02] J. Albus. “4D/RCS: a reference model architecture for intelligent unmanned
ground vehicles”. In: Proc. SPIE, p. 303, SPIE, 2002.

[Alle 05] B. D. Allen and G. Welch. “A general method for comparing the expected
performance of tracking and motion capture systems”. In: Proc. ACM
symposium on Virtual reality software and technology (VRST), pp. 201–
210, ACM Press, New York, NY, USA, 2005.

[Alle 07] B. Allen. Hardware design optimization for human motion tracking systems.
PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA, 2007.

[ART 11] “Advanced Realtime Tracking company website”. http://www.

ar-tracking.com. Accessed January 12, 2011.

[ARVI 11] “ARVIKA project website”. http://www.arvika.de/www/index.htm. Ac-
cessed January 12, 2011.

[ASME 06] “Verification and Validation in Computational Solid Mechanics”. American
Society of Mechanical Engineering (ASME) Guide, October 2006.

[Atki 96] K. Atkinson, Ed. Close range photogrammetry and machine vision. Whittles
Publishing Caithness, UK, 1996.

[AVIL 11] “AVILUS project website”. http://www.avilus.de/. Accessed January
12, 2011.

[Azum 97] R. Azuma et al. “A survey of augmented reality”. Presence: Teleoperators
and Virtual Environments(1054-7460), Vol. 6, No. 4, pp. 355–385, 1997.

[Bail 03] Y. Baillot, S. Julier, D. Brown, and M. Livingston. “A tracker alignment
framework for augmented reality”. In: Proc. 2nd IEEE/ACM International
Symposium on Mixed and Augmented Reality (ISMAR’03), p. 142, IEEE
Computer Society, 2003.

223

http://www.adobe.com
http://www.ar-tracking.com
http://www.ar-tracking.com
http://www.arvika.de/www/index.htm
http://www.avilus.de/

[Baue 01] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riss,
C. Sandor, and M. Wagner. “Design of a Component-Based Augmented
Reality Framework”. In: Proc. International Symposium on Augmented
Reality (ISAR), Oct. 2001.

[Baue 06] M. Bauer, M. Schlegel, D. Pustka, N. Navab, and G. Klinker. “Predicting
and estimating the accuracy of n-occular optical tracking systems”. In:
IEEE/ACM International Symposium on Mixed and Augmented Reality,
2006. ISMAR 2006, pp. 43–51, 2006.

[Baue 07] M. Bauer. Tracking Errors in Augmented Reality. PhD thesis, Technische
Universität München, 2007.

[Beck 11] B. Becker. Efficient Application of Digital Models using Mixed Reality Tools.
PhD thesis, Technische Universität München, 2011.

[Bich 06] C. Bichlmeier, T. Sielhorst, and N. Navab. “The Tangible Virtual Mirror:
New Visualization Paradigm for Navigated Surgery”. In: AMIARCS—
The Tangible Virtual Mirror: New Visualization Paradigm for Navigated
Surgery, MICCAI Society, Copenhagen, Denmark, October 2006.

[Bimb 05] O. Bimber and R. Raskar. Spatial augmented reality: Merging real and
virtual worlds. AK Peters Ltd, 2005.

[Bles 06] G. Bleser, H. Wuest, and D. Strieker. “Online camera pose estimation
in partially known and dynamic scenes”. In: IEEE/ACM International
Symposium on Mixed and Augmented Reality, 2006. ISMAR 2006, pp. 56–
65, 2006.

[Blum 09] L. Blum, W. Broll, and S. Müller. “Augmented reality under water”. In:
SIGGRAPH’09: Posters, p. 97, ACM, 2009.

[Bouc 04] J. Bouchet, L. Nigay, and T. Ganille. “ICARE software components for
rapidly developing multimodal interfaces”. In: Proc. 6th international con-
ference on Multimodal interfaces, pp. 251–258, ACM, 2004.

[Broo 97] R. Brooks and S. Iyengar. “Real-time distributed sensor fusion for time-
critical sensor readings”. Optical Engineering, Vol. 36, p. 767, 1997.

[Buck 10] K. Buckl. “Stud-welding at Volkswagen using a mechanical measurement
arm”. personal communication, 2010.

[CATI 11] “Dassault Systemes CATIA website”. http://www.3ds.com/products/

catia. Accessed January 12, 2011.

[Caud 92] T. Caudell and D. Mizell. “Augmented reality: an application of heads-up
display technology tomanual manufacturing processes”. In: Proc. Twenty-
Fifth Hawaii International Conference on System Sciences, 1992.

224

http://www.3ds.com/products/catia
http://www.3ds.com/products/catia

[Chmi 08] C. Chmill. Untersuchungen zur Eignung eines Messgelenkarms mit op-
tionalem 3D-Scanner für die Flugzeugstrukturmontage bei Airbus. Master’s
thesis, Fachhochschule Oldenburg Ostfriesland Willhelmshaven, 2008.

[CL 11] “Website of Computer Laboratory at University of Cambridge”. http:

//www.cl.cam.ac.uk/. Accessed January 12, 2011.

[Clip 07] B. Clipp, G. Welch, J.-M. Frahm, and M. Pollefeys. “Structure from Motion
via a Two-Stage Pipeline of Extended Kalman Filters”. Proceedings of the
British Machine Vision Conference (BMVC 2007), September 10–13 2007.

[Coel 04] E. Coelho, B. MacIntyre, and S. Julier. “OSGAR: A Scene Graph with
Uncertain Transformations”. In: International Symposium on Mixed and
Augmented Reality (ISMAR 2004), pp. 6–15, 2004.

[Coqu 04] S. Coquillart and M. Göbel. “Authoring of Mixed Reality Applications
including Multi-Marker Calibration for Mobile Devices”. In: Proc. Euro-
graphics Symposium on Virtual Environments, pp. 1–9, Citeseer, 2004.

[Cox 06] M. Cox and P. Harris. “Software Support for Metrology Best Practice Guide
No. 6: Uncertainty Evaluation”. Tech. Rep. DEM-ES 011, ISSN: 1744-0475,
National Physical Laboratory, Teddington, UK, September 2006.

[Cruz 93] C. Cruz-Neira, D. Sandin, and T. DeFanti. “Surround-screen projection-
based virtual reality: the design and implementation of the CAVE”. In:
Proc. 20th annual conference on Computer graphics and interactive tech-
niques, p. 142, ACM, 1993.

[Dani 99] K. Daniilidis. “Hand-Eye Calibration Using Dual Quaternions”. The Inter-
national Journal of Robotics Research, Vol. 18, No. 3, p. 286, 1999.

[Darm 08] M. Darms, P. Rybski, C. Urmson, C. Inc, and M. Auburn Hills. “Classifica-
tion and tracking of dynamic objects with multiple sensors for autonomous
driving in urban environments”. In: Intelligent Vehicles Symposium, 2008
IEEE, pp. 1197–1202, 2008.

[Davi 03] L. Davis, E. Clarkson, and J. P. Rolland. “Predicting Accuracy in Pose
Estimation for Marker-based Tracking”. In: Proc. Second IEEE and ACM
International Symposium on Mixed and AugmentedReality (ISMAR), p. 28,
2003.

[Davi 04] L. Davis, F. G. Hamza-Lup, and J. P. Rolland. “A Method for Designing
Marker-Based Tracking Probes”. In: Proc. Third IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), pp. 120–129,
2004.

[Dey 01] A. Dey, G. Abowd, and D. Salber. “A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications”.
Human-Computer Interaction, Vol. 16, No. 2, 3 & 4, pp. 97–166, 2001.

225

http://www.cl.cam.ac.uk/
http://www.cl.cam.ac.uk/

[Dick 07] E. D. Dickmanns. Dynamic Vision for Perception and Control of Motion.
Springer Verlag, Berlin, 2007.

[Dimo 05] I. Dimov. Monte Carlo methods for applied scientists. World Scientific,
2005.

[Dorn 98] F. Dornaika and R. Horaud. “Simultaneous robot-world and hand-eye cali-
bration”. Robotics and Automation, IEEE Transactions on, Vol. 14, No. 4,
pp. 617–622, 1998.

[Douc 01] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods
in Practice. Springer-Verlag, 2001.

[Doyl 64] F. Doyle. “The historical development of analytical photogrammetry”. Pho-
togrammetric Engineering, Vol. 30, No. 2, pp. 259–265, 1964.

[Drag 01] P. Dragicevic and J. Fekete. “Input device selection and interaction con-
figuration with ICON”. In: People and Computer XV-Interaction without
Frontier (Joint proceedings of HCI 2001 and IHM 2001), pp. 543–448, 2001.

[Durr 88] H. Durrant-Whyte. “Sensor models and multisensor integration”. The In-
ternational Journal of Robotics Research, Vol. 7, No. 6, p. 97, 1988.

[DySe 11] “DySenNetz project website”. http://campar.in.tum.de/Chair/

ProjectDySenNetz. Accessed January 12, 2011.

[Echt 03] F. Echtler, F. Sturm, K. Kindermann, G. Klinker, J. Stilla, J. Trilk, and
H. Najafi. “The Intelligent Welding Gun: Augmented Reality for Experi-
mental Vehicle Construction”. In: S. Ong and A. Nee, Eds., Virtual and
Augmented Reality Applications in Manufacturing, Chapter 17, Springer
Verlag, 2003.

[Echt 08] F. Echtler, M. Huber, D. Pustka, P. Keitler, and G. Klinker. “Splitting the
Scene Graph—Using Spatial Relationship Graphs Instead of Scene Graphs
in Augmented Reality”. In: Proc. 3rd International Conference on Com-
puter Graphics Theory and Applications (GRAPP), Jan. 2008.

[Egge 97] D. Eggert, A. Lorusso, and R. Fisher. “Estimating 3-D rigid body trans-
formations: a comparison of four major algorithms”. Machine Vision and
Applications, Vol. 9, No. 5, pp. 272–290, 1997.

[Fack 91] P. Fackler. “Modeling interdependence: an approach to simulation and
elicitation”. American Journal of Agricultural Economics, Vol. 73, No. 4,
p. 1091, 1991.

[FAR 11] “Technische Universität München, Fachgebiet Augmented Reality web-
site”. http://campar.in.tum.de/Chair/ResearchAr. Accessed January
12, 2011.

226

http://campar.in.tum.de/Chair/ProjectDySenNetz
http://campar.in.tum.de/Chair/ProjectDySenNetz
http://campar.in.tum.de/Chair/ResearchAr

[Faro 11a] “FARO company website”. http://www.faro.com. Accessed January 12,
2011.

[Faro 11b] “FARO ION lasertracker website”. http://www.faro.com/

lasertracker/. Accessed January 12, 2011.

[Fisc 04] J. Fischer, M. Neff, D. Freudenstein, and D. Bartz. “Medical Augmented
Reality based on Commercial Image Guided Surgery”. In: Proc. Eurograph-
ics Symposium on Virtual Environments (EGVE), pp. 83–86, 2004.

[Fisc 81] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartog-
raphy”. Commun. ACM, Vol. 24, No. 6, pp. 381–395, 1981.

[Fitz 98] J. M. Fitzpatrick, J. B. West, and C. R. Maurer, Jr. “Predicting Error in
Rigid-Body Point-Based Registration”. TMI, Vol. 14, No. 5, pp. 694–702,
1998.

[Frie 04] W. Friedrich. ARVIKA: Augmented Reality für Entwicklung, Produktion
und Service. VCH, 2004.

[Gelb 74] A. Gelb. Applied optimal estimation. The MIT press, 1974.

[Geor 07] P. Georgel, P. Schroeder, S. Benhimane, S. Hinterstoisser, M. Appel, and
N. Nassir. “An Industrial Augmented Reality Solution For Discrepancy
Check”. In: Proc. 6th International Symposium on Mixed and Augmented
Reality (ISMAR), Nov. 2007.

[Grat 11] “Java Graticule 3D website”. http://derletztekick.com/software/

koordinatentransformation. Accessed January 12, 2011.

[Hart 00] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, Cambridge, UK, second Ed., June
2000.

[Hast 04] H. Hastedt, T. Luhmann, and W. Tecklenburg. “Bestimmung von
Einflussgrößen in der Nahbereichsphotogrammetrie mittels Monte-Carlo-
Simulation”. Publikationen der DGPF, Vol. 13, pp. 359–366, 2004.

[Hoff 00] W. Hoff and T. Vincent. “Analysis of Head Pose Accuracy in Augmented
Reality”. In: IEEE Transactions on Visualization and Computer Graphics,
pp. 319–334, IEEE Computer Society, 2000.

[Hohl 99] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm. “Next
Century Challenges: Nexus—An Open Global Infrastructure for Spatial-
Aware Applications”. In: Proc. Fifth Annual International Conference on
Mobile Computing and Networking (MobiCom), pp. 249–255, Universität
Stuttgart : Sonderforschungsbereich SFB 627 (Nexus: Umgebungsmodelle

227

http://www.faro.com
http://www.faro.com/lasertracker/
http://www.faro.com/lasertracker/
http://derletztekick.com/software/koordinatentransformation
http://derletztekick.com/software/koordinatentransformation

für mobile kontextbezogene Systeme), Seattle, WA, USA: not available,
August 1999.

[Holl 95] R. Holloway. Registration Errors in Augmented Reality Systems. PhD thesis,
University of North Carolina, 1995.

[Holl 97] R. Holloway. “Registration Error Analysis for Augmented Reality”. Pres-
ence: Teleoperators and Virtual Environments, Vol. 6, No. 4, pp. 413–432,
1997.

[Horn 87] B. Horn, H. Hilden, and S. Negahdaripour. “Closed-form solution of abso-
lute orientation using unit quaternions”. Journal of the Optical Society of
America A, Vol. 4, No. 4, pp. 629–642, 1987.

[Hube 07] M. Huber, D. Pustka, P. Keitler, F. Echtler, and G. Klinker. “A System
Architecture for Ubiquitous Tracking Environments”. In: Proc. 6th In-
ternational Symposium on Mixed and Augmented Reality (ISMAR), Nov.
2007.

[Hube 09] M. Huber, M. Schlegel, and G. Klinker. “Temporal Calibration in Multisen-
sor Tracking Setups”. In: Proc. Shortpapers and Posters of the 8th IEEE
and ACM International Symposium on Mixed and Augmented Reality (IS-
MAR 2009), Orlando, USA, October 2009.

[ICG 11] “Website of Institute for Computer Graphics and Vision at Technische Uni-
versität Graz”. http://www.icg.tu-graz.ac.at/. Accessed January 12,
2011.

[ISO 08] “Uncertainty of measurement—Part 3: Guide to the expression of uncer-
tainty in measurement (GUM)”. International Organization for Standard-
ization (ISO/IEC) norm 98-3:2008, 2008.

[Jage 05] R. Jäger, T. Müller, H. Saler, and R. Schwäble. Klassische und robuste
Ausgleichungsverfahren. Herbert Wichmann Verlag, Heidelberg, Germany,
2005.

[Juli 04] S. Julier, J. Uhlmann, I. Ind, and M. Jefferson City. “Unscented filtering
and nonlinear estimation”. Proc. IEEE, Vol. 92, No. 3, pp. 401–422, 2004.

[Kalm 60] R. Kalman. “A new approach to linear filtering and prediction problems”.
Journal of Basic Engineering, Vol. 82, No. 1, pp. 35–45, 1960.

[Kana 93] K. Kanatani. “Unbiased estimation and statistical analysis of 3-D rigid
motion from two views”. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Vol. 15, No. 1, pp. 37–50, 1993.

[Kana 96] K. Kanatani. Statistical optimization for geometric computation: theory
and practice. Elsevier Science Inc. New York, NY, USA, 1996.

228

http://www.icg.tu-graz.ac.at/

[Keit 08] P. Keitler, M. Schlegel, and G. Klinker. “Indirect Tracking to Reduce Oc-
clusion Problems”. In: Advances in Visual Computing, Fourth Interna-
tional Symposium, ISVC 2008 Las Vegas, USA, December 1-3, pp. 224–235,
Springer, Berlin, Deutschland, 2008.

[Keit 09] P. Keitler, F. Pankratz, B. Schwerdtfeger, D. Pustka, W. Rödiger,
G. Klinker, C. Rauch, A. Chathoth, J. Collomosse, and Y.-Z. Song. “Mo-
bile Augmented Reality based 3D Snapshots”. In: Proc. Sechster Work-
shop Virtuelle und Erweiterte Realität der GI-Fachgruppe VR/AR, Braun-
schweig, Germany, November 2009.

[Keit 10a] P. Keitler, D. Pustka, M. Huber, F. Echtler, and G. Klinker. The Engineer-
ing of Mixed Reality Systems, Chap. Management of Tracking for Mixed
and Augmented Reality Systems. Springer Verlag, 2010.

[Keit 10b] P. Keitler, B. Becker, and G. Klinker. “Management of Tracking for In-
dustrial AR Setups”. In: Proc. 9th International Symposium on Mixed and
Augmented Reality (ISMAR), October 2010.

[Keit 11a] P. Keitler. “Peter Keitler’s website at Technische Universität München”.
http://campar.in.tum.de/Main/PeterKeitler, 2011. Accessed January
12, 2011.

[Keit 11b] P. Keitler. “SRG files discussed in this thesis”. http://campar.in.tum.

de/twiki/pub/Main/PeterKeitler/SRGs.zip, 2011. Accessed January 16,
2011.

[Kenn 52] J. Kenney and E. Keeping. Mathematics of Statistics, Pt. 2. Princeton, NJ:
Van Nostrand, 1952.

[Kine 11] “New River Kinematics company website”. http://www.kinematics.com.
Accessed January 12, 2011.

[Kirk 83] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. “Optimization by simulated
annealing”. Science, Vol. 220, No. 4598, p. 671, 1983.

[Klei 07] G. Klein and D. Murray. “Parallel tracking and mapping for small AR
workspaces”. In: 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality, 2007. ISMAR 2007, pp. 1–10, 2007.

[Koch 97] K. Koch. Parameterschätzung und Hypothesentests in linearen Modellen.
Dümmlers Verlag, Bonn, Germany, third Ed., 1997.

[Kuip 02] J. Kuipers. Quaternions and rotation sequences: a primer with applications
to orbits, aerospace, and virtual reality. Princeton Univ Pr, 2002.

[lase 11] “Ascension laserBird 2 website”. http://www.ascension-tech.com/

realtime/laserBIRD2.php. Accessed January 12, 2011.

229

http://campar.in.tum.de/Main/PeterKeitler
http://campar.in.tum.de/twiki/pub/Main/PeterKeitler/SRGs.zip
http://campar.in.tum.de/twiki/pub/Main/PeterKeitler/SRGs.zip
http://www.kinematics.com
http://www.ascension-tech.com/realtime/laserBIRD2.php
http://www.ascension-tech.com/realtime/laserBIRD2.php

[Lieb 09] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. “A Dataset and
Evaluation Methodology for Template-based Tracking Algorithms”. In: IS-
MAR, 2009.

[Luhm 00a] T. Luhmann. Nahbereichsphotogrammetrie. Herbert Wichmann Verlag,
Heidelberg, Germany, 2000.

[Luhm 00b] T. Luhmann. “Photogrammetrische Verfahren in der industriellen
Messtechnik”. In: Publikationen der DGPF, DGPF, 2000.

[MacI 04] B. MacIntyre, M. Gandy, S. Dow, and J. Bolter. “DART: a toolkit for rapid
design exploration of augmented reality experiences”. In: Proc. 17th annual
ACM symposium on User Interface Software and Technology, pp. 197–206,
ACM, 2004.

[MacW 03] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Brgge. “Herding sheep: Live system development for distributed aug-
mented reality”. In: Proc. IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), Tokyo, Japan, October 2003.

[Malb 02] P. Malbezin, W. Piekarski, and B. Thomas. “Measuring ARTootKit accu-
racy in long distance tracking experiments”. In: Proc. 1st IEEE Interna-
tional Augmented Reality Toolkit Workshop, p. 2, 2002.

[Mann 02] S. Mann. “Mediated Reality with implementations for everyday life”. In:
Presence Connect, the on line companion to the MIT Press journal PRES-
ENCE: Teleoperators and Virtual Environments, MIT Press, 2002.

[Mark 04] F. Markley. “Multiplicative vs. additive filtering for spacecraft attitude
determination”. In: Proc. 6th Conference on Dynamics and Control of
Systems and Structures in Space (DCSSS), pp. 467–474, 2004.

[meta 11] “metaio company website”. http://www.metaio.de. Accessed January 12,
2011.

[Mete 49] N. Meteopolis and S. Ulam. “The monte carlo method”. Journal of the
American Statistical Association, Vol. 44, No. 247, pp. 335–341, 1949.

[Metr 53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
“Equations of State calculations by fast computing machines”. Journal of
Chemical Physics, Vol. 21, pp. 1087–1092, 1953.

[Meye 92] K. Meyer, H. Applewhite, and F. Biocca. “A survey of position trackers”.
In: Presence: Teleoperators and Virtual Environments, pp. 173–200, 1992.

[Micr 11] “Microvision company website”. http://www.microvision.com. Accessed
January 12, 2011.

230

http://www.metaio.de
http://www.microvision.com

[Milg 94] P. Milgram and F. Kishino. “A taxonomy of mixed reality visual displays”.
IEICE Transactions on Information and Systems E series D, Vol. 77,
pp. 1321–1321, 1994.

[Miss 08] S. Misslinger. Design, Implementation and Evaluation of a Workflow Sys-
tem for Augmented Reality Applications. Master’s thesis, Technische Uni-
versität München, 2008.

[Mora 09] R. Morales-Garćıa, P. Keitler, P. Maier, and G. Klinker. “An Underwa-
ter Augmented Reality System for Commercial Diving Operations”. In:
OCEANS 2009 MTS/IEEE, Biloxi, Mississippi, USA, November 2009,
2009.

[Morr 94] J. Morrison. Flow-based programming. Van Nostrand Reinhold, 1994.

[Muld 94] A. Mulder. “Human Movement Tracking Technology”. Tech. Rep. 94-1,
School of Kinesiology, Simon Fraser University, Burnaby, B.C., Canada,
1994.

[Nava 04] N. Navab. “Developing killer apps for industrial augmented reality”. In:
Computer Graphics and Applications, IEEE, pp. 16–20, 2004.

[Nava 07] N. Navab, J. Traub, T. Sielhorst, M. Feuerstein, and C. Bichlmeier. “Action-
and Workflow-Driven Augmented Reality for Computer-Aided Medical Pro-
cedures”. IEEE Computer Graphics and Applications, Vol. 27, No. 5,
pp. 10–14, September/October 2007.

[NDI 11] “NDI company website”. http://www.ndigital.com. Accessed January
12, 2011.

[Newm 04] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric, D. Beyer,
D. Pustka, F. Strasser, D. Schmalstieg, and G. Klinker. “Ubiquitous Track-
ing for Augmented Reality”. In: Proc. IEEE International Symposium on
Mixed and Augmented Reality (ISMAR’04), Arlington, VA, USA, Nov. 2004.

[Newm 07] J. Newman, A. Bornik, D. Pustka, F. Echtler, M. Huber, D. Schmalstieg,
and G. Klinker. “Tracking for Distributed Mixed Reality Environments”.
In: Proc. IEEE VR 2007 Workshop on ’Trends and Issues in Tracking for
Virtual Environments’, IEEE, Shaker Verlag, Aachen, Germany, 2007.

[Niem 08] W. Niemeier. Ausgleichsrechnung—Statistische Auswertungsmethoden.
Walter de Gruyter Verlag, Berlin, Germany, second Ed., 2008.

[Niko 11] “Nikon iSpace metrology and tracking system”. http://

www.nikonmetrology.com/products/large_volume_tracking_

_positioning/ispace/. Accessed January 12, 2011.

[Noll 06] S. Nölle. Augmented Reality als Vergleichswerkzeug am Beispiel der Auto-
mobilindustrie. PhD thesis, Technische Universität München, 2006.

231

http://www.ndigital.com
http://www.nikonmetrology.com/products/large_volume_tracking__positioning/ispace/
http://www.nikonmetrology.com/products/large_volume_tracking__positioning/ispace/
http://www.nikonmetrology.com/products/large_volume_tracking__positioning/ispace/

[Opto 11] “NDI Optotrak Certus HD website”. http://www.ndigital.com/

industrial/certushd.php. Accessed January 12, 2011.

[Pent 06] K. Pentenrieder, P. Meier, and G. Klinker. “Analysis of tracking accuracy
for single-camera square-marker-based tracking”. In: Proc. Dritter Work-
shop Virtuelle und Erweiterte Realitt der GI-Fachgruppe VR/AR, Koblenz,
Germany, 2006.

[Pent 07] K. Pentenrieder, C. Bade, F. Doil, and P. Meier. “Augmented Reality-based
factory planning-an application tailored to industrial needs”. In: 6th IEEE
and ACM International Symposium on Mixed and Augmented Reality, 2007.
ISMAR 2007, pp. 1–9, 2007.

[Pent 08] K. Pentenrieder and P. Meier. “Registration Approaches for Augmented
Reality—A Crucial Aspect for Successful Industrial Application”. In:
Third International Conference on Computer Graphics and Applications
(GRAPP), Funchal, Portugal, January 2008.

[Pent 09] K. Pentenrieder. Augmented Reality based Factory Planning. PhD thesis,
Technische Universität München, München, 2009.

[PRES 11] “PRESENCCIA project website”. http://www.presenccia.org. Accessed
January 12, 2011.

[Pust 04] D. Pustka. Handling Error in Ubiquitous Tracking Setups. Master’s thesis,
TU München, Munich, Germany, August 2004.

[Pust 06a] D. Pustka. “Construction of Data Flow Networks for Augmented Reality
Applications”. In: Proc. Dritter Workshop Virtuelle und Erweiterte Realität
der GI-Fachgruppe VR/AR, Koblenz, Germany, September 2006.

[Pust 06b] D. Pustka, M. Huber, M. Bauer, and G. Klinker. “Spatial Relationship
Patterns: Elements of Reusable Tracking andCalibration Systems”. In:
Proc. IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR’06), October 2006.

[Pust 07] D. Pustka, M. Huber, F. Echtler, and P. Keitler. “UTQL: The Ubiqui-
tous Tracking Query Language v1.0”. Tech. Rep. TUM-I0718, Institut für
Informatik, Technische Universität München, 2007.

[Pust 08] D. Pustka and G. Klinker. “Dynamic Gyroscope Fusion in Ubiquitous
Tracking Environments”. In: Proc. 7th International Symposium on Mixed
and Augmented Reality (ISMAR), September 2008.

[Pust 10] D. Pustka, J. Willneff, O. Wenisch, P. Lükewille, K. Achatz, P. Keitler,
and G. Klinker. “Determining the Point of Minimum Error for 6DOF Pose
Uncertainty Representation”. In: Proc. 9th International Symposium on
Mixed and Augmented Reality (ISMAR), October 2010.

232

http://www.ndigital.com/industrial/certushd.php
http://www.ndigital.com/industrial/certushd.php
http://www.presenccia.org

[Pust 11] D. Pustka. Automatic Data Flow Construction for Ubiquitous Tracking
Systems. PhD thesis, Technische Universität München, 2011.

[Rege 07] H. Regenbrecht. “Industrial Augmented Reality Applications”. In: Emerg-
ing Technologies of Augmented Reality: Interfaces and Design, pp. 283–304,
Idea Group, 2007.

[Reit 01] G. Reitmayr and D. Schmalstieg. “An open software architecture for virtual
reality interaction”. In: Proc. ACM symposium on Virtual reality software
and technology, pp. 47–54, ACM New York, NY, USA, 2001.

[Reit 07] G. Reitmayr and T. Drummond. “Initialisation for visual tracking in urban
environments”. In: IEEE/ACM International Symposium on Mixed and
Augmented Reality (ISMAR’07), 2007.

[Robe 04] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag,
2004.

[Rohl 94] R. Rohling, P. Munger, J. M. Hollerbach, and T. Peters. “Comparison of
Relative Accuracy Between a Mechanical and an Optical Position Tracker
for Image-Guided Neurosurgery”. In: Journal of Image Guided Surgery,
pp. 277–282, Wiley and Sons Inc, 1994.

[Roll 00] J. Rolland, L. Davis, and Y. Baillot. Augmented Reality and Wearable Com-
puters, Chap. A survey of Tracking Technology for Virtual Environments.
Lawrence Erlbaum Press, 2000.

[Samp 82] P. Sampson. “Fitting conic sections to very scattereddata: An iterative
refinement of the Bookstein algorithm”. Computer Graphics and Image
Processing, Vol. 18, No. 1, pp. 97–108, 1982.

[Sand 05] C. Sandor and G. Klinker. “A Rapid Prototyping Software Infrastructure
for User Interfaces in Ubiquitous Augmented Reality”. In: Journal for
Personal and Ubiquitous Computing, Springer Verlag, 2005.

[Sato 06] K. Satoh, K. Takemoto, S. Uchiyama, and H. Yamamoto. “A registration
evaluation system using an industrial robot”. In: IEEE/ACM International
Symposium on Mixed and Augmented Reality,2006. ISMAR 2006, pp. 79–
87, 2006.

[Scha 09] G. Schall, E. Mendez, E. Kruijff, E. Veas, S. Junghanns, B. Reitinger, and
D. Schmalstieg. “Handheld augmented reality for underground infrastruc-
ture visualization”. Personal and Ubiquitous Computing, Vol. 13, No. 4,
pp. 281–291, 2009.

[Schl 11] M. Schlegel. Zeitkalibrierung in Augmented Reality Anwendungen. PhD
thesis, Technische Universität München, 2011.

233

[Schm 09] J. Schmidt, D. Berg, H. Ploeg, and L. Ploeg. “Precision, repeatability and
accuracy of OptotrakSUP alignright174;/SUP optical motion tracking sys-
tems”. International Journal of Experimental and Computational Biome-
chanics, Vol. 1, No. 1, pp. 114–127, 2009.

[Schw 07] B. Schwerdtfeger and G. Klinker. “Hybrid Information Presentation: Com-
bining a Portable Augmented Reality Laser Projector and a Conventional
Computer Display”. In: Proc. Shortpapers and Posters of the 13th Euro-
graphics Symposium on Virtual Environments, 10th Immersive Projection
Technology Workshop (IPT - EGVE 2007), July 2007.

[Schw 09] B. Schwerdtfeger, R. Reif, W. A. Günthner, G. Klinker, D. Hamacher,
L. Schega, I. Böckelmann, F. Doil, and J. Tümler. “Pick-by-Vision: A First
Stress Test”. In: Proc. 10th IEEE and ACM International Symposium on
Mixed and Augmented reality (ISMAR’09), October 2009.

[Schw 10] B. Schwerdtfeger. Pick-by-Vision: Bringing HMD-based Augmented Re-
ality into the Warehouse. PhD thesis, Technische Universität München,
München, 2010.

[Serr 08] M. Serrano, D. Juras, and L. Nigay. “A three-dimensional characterization
space of software components for rapidly developing multimodal interfaces”.
In: Proc. 10th international conference on Multimodal interfaces, pp. 149–
156, ACM New York, NY, USA, 2008.

[Simu 11] “Mathworks Matlab Simulink website”. http://www.mathworks.com/

products/simulink/. Accessed January 12, 2011.

[Stra 92] P. Strauss and R. Carey. “An Object-Oriented 3D Graphics Toolkit”. Com-
puter Graphics, Vol. 26, No. 2, pp. 341–349, July 1992. Siggraph ’92.

[Tayl 01] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T.
Helser. “VRPN: a device-independent, network-transparent VR peripheral
system”. In: Proc. ACM symposium on Virtual reality software andtechnol-
ogy, pp. 55–61, ACM Press, 2001.

[Thru 05] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). MIT press, Cambridge, Massachusetts,
USA, 2005.

[Tonn 09] M. Tönnis and M. Huber. “May AR Manipulate Users Subconsciously?”. In:
Proc. 1st European Future Technologies Conference and Exhibition (FET),
Apr. 2009.

[trac 11] “trackframe project website”. http://www.trackframe.de. Accessed Jan-
uary 12, 2011.

234

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.trackframe.de

[Tsai 87] R. Tsai. “A versatile camera calibration technique for high-accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses”. IEEE
Journal of robotics and Automation, Vol. 3, No. 4, pp. 323–344, 1987.

[Tsai 88] R. Tsai and R. Lenz. “Real time versatile robotics hand/eye calibration
using 3 D machine vision”. In: Proc. IEEE International Conference on
Robotics and Automation, pp. 554–561, Philadelphia, USA, 1988.

[Tuce 02] M. Tuceryan, Y. Genc, and N. Navab. “Single-Point Active Alignment
Method (SPAAM) for Optical See-Through HMD Calibration for Aug-
mented Reality”. Presence: Teleoperators and Virtual Environments,
Vol. 11, No. 3, pp. 259–276, June 2002.

[Ubi 11] “Ubitrack and trackman project website”. http://campar.in.tum.de/

UbiTrack/WebHome. Accessed January 12, 2011.

[UbiS 11] “Ubitrack project subversion repository”. https://camplinux.in.tum.

de/ubitrack. Accessed January 12, 2011.

[UTPa 11a] “UTQL data types XML schema”. http://ar.in.tum.de/static/files/
ubitrack/utql/utql_types.xsd. Accessed January 12, 2011.

[UTPa 11b] “UTQL pattern template XML schema”. http://ar.in.tum.de/static/

files/ubitrack/utql/utql_templates.xsd. Accessed January 12, 2011.

[UTQL 11] “UTQL XML schema”. http://ar.in.tum.de/static/files/ubitrack/
utql/utql.xsd. Accessed January 12, 2011.

[VDI 02] “Optical 3D measuring system—imaging systems with point-by-point prob-
ing”. VDI/VDE guideline 2634/1, 2002.

[VeVa 11] “Verification and Validation in Mathworks Matlab Simulink web-
site”. http://www.mathworks.com/products/simverification/. Ac-
cessed January 12, 2011.

[Vico 11] “Vicon company website”. http://www.vicon.com. Accessed January 12,
2011.

[Wagn 05] M. Wagner. Tracking With Multiple Sensors. PhD thesis, Technische Uni-
versität München, 2005.

[Wagn 08] D. Wagner, G. Reitmayr, A. Mulloni, and D. Drummond, T. andSchmal-
stieg. “Pose tracking from natural features on mobile phones”. In: 7th
IEEE/ACM International Symposium on Mixed and Augmented Reality,
2008. ISMAR 2008, pp. 125–134, 2008.

[Wagn 10] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg. “Real-time
Panoramic Mapping and Tracking on Mobile Phones”. In: Proc. IEEE
Virtual Reality, Boston, USA, 2010.

235

http://campar.in.tum.de/UbiTrack/WebHome
http://campar.in.tum.de/UbiTrack/WebHome
https://camplinux.in.tum.de/ubitrack
https://camplinux.in.tum.de/ubitrack
http://ar.in.tum.de/static/files/ubitrack/utql/utql_types.xsd
http://ar.in.tum.de/static/files/ubitrack/utql/utql_types.xsd
http://ar.in.tum.de/static/files/ubitrack/utql/utql_templates.xsd
http://ar.in.tum.de/static/files/ubitrack/utql/utql_templates.xsd
http://ar.in.tum.de/static/files/ubitrack/utql/utql.xsd
http://ar.in.tum.de/static/files/ubitrack/utql/utql.xsd
http://www.mathworks.com/products/simverification/
http://www.vicon.com

[Welc 01] G. Welch and G. Bishop. “An Introduction to the Kalman Filter”. In:
Computer Graphics, Annual Conference on Computer Graphics & Inter-
active Techniques (SIGGRAPH 2001), ACM Press, Addison-Wesley, Los
Angeles, CA, USA, August 2001.

[Welc 02] G. Welch and E. Foxlin. “Motion tracking: No silver bullet, but a re-
spectable arsenal”. IEEE Computer Graphics and Applications, Vol. 22,
No. 6, pp. 24–38, 2002.

[Welc 96] G. Welch. SCAAT: Incremental Tracking with Incomplete Information.
PhD thesis, University of North Carolina at Chapel Hill, TR 96-051, 1996.

[Welc 97] G. Welch and G. Bishop. “SCAAT: Incremental tracking with incomplete
information”. In: Proceedings of the 24th annual conference on computer
graphics and interactive techniques, pp. 333–344, ACM Press/Addison-
Wesley Publishing Co., 1997.

[Wern 93] J. Wernecke. The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor (TM), Release 2. Addison-Wesley, Reading,
MA, 1993.

[Wile 05] A. Wiles, D. Frantz, D. Swart, et al. “NDI Accuracy Assessment Kit Guide-
lines”. Tech. Rep., Northern Digital Inc., 2005.

[Wolt 85] H. Woltring, R. Huiskes, A. De Lange, and F. Veldpaus. “Finite centroid and
helical axis estimation from noisy landmark measurements in the study of
human joint kinematics”. Journal of biomechanics, Vol. 18, No. 5, pp. 379–
389, 1985.

[Wust 07a] H. Wüst, A. Pagani, and D. Stricker. “Feature management for efficient
camera tracking”. In: Proc. 8th Asian conference on computer vision,
pp. 769–778, Springer-Verlag, 2007.

[Wust 07b] H. Wüst, F. Wientapper, and D. Stricker. “Adaptable model-based tracking
using analysis-by-synthesis techniques”. In: Computer Analysis of Images
and Patterns, pp. 20–27, Springer, 2007.

[XSen 11] “XSens website”. http://www.xsens.com. Accessed January 12, 2011.

[Zach 97] G. Zachmann. “Distortion correction of magnetic fields for position track-
ing”. In: Proc. Cmputer Graphics International, pp. 213–220, 1997.

[Zaeh 06] M. Zaeh and W. Vogl. “Interactive laser-projection for programming in-
dustrial robots”. In: Proc. Fifth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR), pp. 125–128, IEEE Computer
Society, 2006.

236

http://www.xsens.com

[Zhan 02] X. Zhang, S. Fronz, and N. Navab. “Visual marker detection and decoding in
AR systems: A comparative study”. In: Proc. 1st International Symposium
on Mixed and Augmented Reality, p. 97, IEEE Computer Society, 2002.

[Zhua 94] H. Zhuang and Z. Qu. “A new identification Jacobian for robotic hand/-
eye calibration”. Systems, Man and Cybernetics, IEEE Transactions on,
Vol. 24, No. 8, pp. 1284–1287, 1994.

237

Glossary

accuracy The degree of absence of systematic error in overall error. Or, the “closeness
of the agreement between the result of a measurement and a true value of the
measurand [ISO 08]. 99, 101, 248

backward-propagation Propagation of uncertainties toward the parameters of a func-
tional model the result of which is known, effectively inverting the functional model.
113

base pattern Spatial relationship pattern that only has an output section. Typically,
such a pattern represents some tracking system or a static transformation (cf.
Figure 5.7(a)). 49, 239–241, 244, 246

base SRG Spatial relationship graph that consists of base patterns only and therefore
does not contain any deduced spatial relationships (cf. Figure 5.2(a)). 43, 241

calibration Estimation of the constants that describe the behavior of a physical system
or device. 82

chain of uncertainty Errors of various sources contribute to the overall error of the
result in typical functional models (or data flow graphs) for IAR. 124, 243

competitive fusion An over-determined problem is solved by the fusion of measurements
by some statistical means that minimizes the uncertainty of the result. Also called
concurrent fusion. 28, 53, 239

complementary fusion Two measurements are combined to obtain a result that none
of the involved tracking systems could deliver alone. 28, 53

component Short form of data flow component. 244, 245

component key Unique identifier of a logical data flow component belonging to a mod-
ule. In case of a single tracking system observing multiple markers, for example,
the component keys are given in terms of the IDs of the observed markers (cf.
Figure 5.2(a)). 56, 239

concurrent fusion Synonym for competitive fusion. 28

cooperative fusion One tracking system provides measurements that are needed by the
other tracking system to work. In some cases, one tracking system is needed to

239

initialize the other, e.g., to constrain the search window for fiducials (see also detec-
tion), in other cases, just several spatial transformations need to be concatenated
to obtain the desired result. 28, 53

corresponding measurement A pair of measurements provided by two distinct modal-
ities, e.g., tracking systems, that adheres to certain temporal and/or spatial con-
straints. Typically needed for registration. 52, 84, 150, 164, 241, 245, 246

data flow component Operational counterpart of a spatial relationship pattern. Each
data flow component represents the implementation of a driver or algorithm in
Ubitrack. Measurements are consumed on the input ports and produced on the
output ports. Data flow components corresponding to base patterns only have
output ports whereas data flow components corresponding to query patterns only
have input ports. 46, 47, 239–243, 245, 247

data flow graph Directed, cyclic graph with data flow components as its nodes and
communication pathes between data flow components as edges. It represents the
operational perspective of a full SRG (cf. Figure 5.4). It can be instantiated using
the Ubitrack library to obtain a real-time tracking data flow network. 239–243

data flow network Instance of a data flow graph. 240, 246

data type Type of a measurement, particularly important are position, orientation, or
pose. Both, edges in the spatial relationship graph and ports in the data flow graph
are normally annotated with the data type in square brackets, for example [3D
Position] for position. An absent data type implies type pose. An input edge/input
port can only be matched against / connected with an output edge/output port if
the data types are equal. 43, 44, 54, 240–244, 246, 247

detection The initialization of tracking. Often detection is a harder problem than track-
ing. In computer vision, for example, known fiducials have to be initially found
in the first frame before they can be tracked in subsequent frames. Also called
localization. 2, 10, 240, 247

discrete measurement Automatic acquisition of measurements in a discrete time inter-
val. 83, 85

dynamic Opposite of static. A dynamic spatial transformation may change over time.
This is the default and not explicitly stated in the graphical representation of the
corresponding edge (cf. Figure 5.2(b)). 240, 246

edge See input edge and output edge. 240, 241, 243, 244, 246

edge matching User interface metaphor used for the identification of exactly one input
edge (the matching edge) with exactly one output edge (the matched edge) be-
longing to distinct spatial relationship patterns (cf. Figure 6.3). Edge matching

240

implies node unification on the respective source and sink nodes of both involved
edges. This operation effectively constructs the data flow graph.. 69, 246, 247

elementary specification of sensor uncertainty Specification of the granularity (data
type) as well as the magnitude of error that should be reasonably expected for
an assumed tracking system. Should be as generic as possible but as specific as
necessary. 98, 119, 137

error “Result of a measurement minus the true value of the measurand” [ISO 08]. 101,
102, 239, 241, 244–247

estimation error Norm of the estimated minus the true parameters. 142

expansion Mechanism to group similar measurements having the same data type and
synchronization type on the expansion input ports of a data flow component. Used
in particular by registration patterns to form two groups of corresponding mea-
surements. There are mainly two expansion types, space-expansion and time-
expansion. 241, 246, 247

expansion input port Special type of input port that allows for different ways of aggre-
gation of similar measurements by expansion. 58, 241

explicit space-expansion Variant of space-expansion to group a smaller, fixed number
of similar measurements that are already known at configuration time. Each mea-
surements is represented explicitly by a distinct input edge in the corresponding
explicitly space-expanded spatial relationship pattern (cf. Figure 5.12(b)). 58, 246

fiducial Characteristic object or feature used for tracking. 11, 240, 242, 244, 247

forward propagation Propagation of uncertainties toward the result of a functional
model the parameters of which are known. 113, 243

full pattern Spatial relationship pattern that has a non-empty input section and a non-
empty output section. Typically, such a pattern represents some tracking algorithm
(cf. Figure 5.6(a)). 49, 241, 242, 244, 246

full SRG Spatial relationship graph that consists of base patterns, full patterns, and
query patterns, and which in particular contains all the spatial relationships needed
by the AR application, as opposed to the base SRG (cf. Figure 5.2(b)). For each
full SRG, a data flow graph exists that represents the operational perspective
corresponding to this semantic description of spatial relationships. 43, 46, 240

functional model Mathematical description that maps a measurement (parameters) to
another measurement (result). In this context, the functional model is given in
terms of a data flow graph. 114, 239, 241, 243, 244

241

functionally complementary fusion Combination of measurements with different data
types resulting in a more general measurement. For example, a position and an
orientation can be combined to a pose. 28

fusion Combination of measurements from different tracking systems. 239, 246

heterogeneous tracking environment Environment equipped with various tracking sys-
tems of distinct types. 24

input edge Spatial transformation that is assuemed to be given by a pattern, associated
with a distinct data type and synchronization type. Part of the pattern’s input
section. Graphically represented by a dashed arrow between two input nodes (cf.
Figure 5.5(a)). Counterpart of an input port in the data flow graph. 48, 240–242,
244–247

input node Coordinate frame contained in the pattern’s input section. Both, input
edges and output edges can originate in or point at an input node. Graphically
represented by a dashed circle (cf. Figure 5.5(a)). 48, 242, 243

input port Measurement input consuming the parameters needed for the computations
inside a data flow component, associated with a distinct data type and synchro-
nization type. Counterpart of an input edge in the spatial relationship graph. 46,
47, 240–242, 244–247

input section Constellation of input nodes and input edges that fully determines the pre-
requisites for embedment of the pattern in a spatial relationship graph. Graphically
represented by dashed arrows and circles. Only full patterns (cf. Figure 5.6(a))
and query patterns Figure 5.8(a) have an input section. 48, 241, 242, 244–246

inside-in Combination of the outside-in and inside-out paradigms. 14, 19

inside-out Variant of tracking where the sensors are rigidly mounted to the moving
object and observe static fiducials in the environment. 13, 242

marker Special object providing several fiducials for tracking. 239, 242–244, 246

marker-based Optical tracking using markers. 11

marker-less Optical tracking without using markers, i.e., solely based on natural features
as fiducials. 12

measurement In this context, typically a spatial information of type position, orienta-
tion, or pose that is provided by a tracking system. 44, 239–248

measurement tool Synonym for pointing device. 10

242

meta-pattern Part of a spatial relationship graph (i.e. a combination of patterns),
typically represents a reusable best-practice solution for a common problem (cf.
Figure 8.3). 38, 89, 90

module Concept used in Ubitrack to manage multiple logical data flow components
belonging to a single physical resource, for example a tracking system observing
multiple markers. 56, 61, 239, 243

module key Unique identifier of the physical resource represented by a module. In case
of a single tracking system observing multiple markers, the module key is given
in terms of the ID of the single node that remained after the node unification of
all output nodes representing the same single physical tracking system (cf. Fig-
ure 5.2(a)). 56

Monte Carlo Method for the forward propagation of uncertainties along the chain of
uncertainty by systematic variation of the input measurements based on an as-
sumed statistical model and repeated evaluation of the given functional model.
Does not require analytical treatment of the functional model. 117

node See input node and output node. 241, 246

node unification User interface metaphor used for the identification of various input
nodes and output nodes belonging to distinct spatial relationship patterns in the
spatial relationship graph (cf. Figure 6.2). 68, 241, 243, 246

offline Not allowing for real-time tracking. 13

online Allowing for real-time tracking. 13

orientation Data type describing the 3D orientation of an object in space, represented
by a [3D Rotation] label on the edge/port. 162, 240, 242, 244, 247

output edge Spatial transformation that is provided by a pattern, associated with a
distinct data type and synchronization type. Part of the pattern’s output section.
Graphically represented by a solid arrow originating from an input node or output
node and pointing at an input node or output node (cf. Figure 5.5(a). Counterpart
of an output port in the data flow graph. 48, 240, 242–245, 247

output node Coordinate frame contained in the pattern’s output section. Only output
edges can originate in or point at an output node. Graphically represented by a
solid circle (cf. Figure 5.7(a)). 48, 243, 244

output port Measurement output providing the computational result of a data flow
component, associated with a distinct data type and synchronization type. Coun-
terpart of an output edge in the spatial relationship graph. 46, 240, 243–245,
247

243

output section Constellation of output nodes and output edges that fully determines
the additional spatial relationships added to a spatial relationship graph by the
embedment of this pattern. Graphically represented by solid arrows. Only base
patterns (cf. Figure 5.7(a)) and full patterns (cf. Figure 5.6(a)) have an output
section. 48, 239, 241, 243, 244, 246

outside-in Variant of tracking where the sensors are rigidly mounted to the environment
and observe moving fiducials. 13, 242

pattern Short form of spatial relationship pattern. 241–245

pattern signature Syntactical properties of a pattern, as determined by its input section
and output section. 49

point probing The activity of touching a certain point with a pointing device to measure
its position. 107, 121, 172, 244

point-by-point probing Point probing of multiple points in sequential order. 4

pointing device Device with a tip to point at certain points to measure their position,
equipped with a marker for tracking. 10, 11, 242, 244

port See input port and output port. 243, 244, 246

pose Data type describing the 6DoF position and orientation of an object, represented
by a [Pose] label on the edge/port (cf. Figures 5.2(b) and 5.4). If not explicitly
stated otherwise, edges/ports in this context have data type pose (cf. Figure 7.2).
240, 242, 244, 247

position Data type describing the 3D position of an object in space, represented by a
[3D Position] label on the edge/port (cf. Figure 7.3). 163, 240, 242, 244, 247

precision The degree of absence of random error in overall error. 99, 248

probing device Synonym for pointing device. 11

propagation of uncertainties Investigation of the error behavior of a certain measure-
ment that is related to some other measurement with an associated statistical
model by a known functional model. Also called error propagation. 239, 241

PULL Measurement updates are triggered (requested) on some input edge/input port
upon demand, typically by the AR application. Graphically represented by a light
green (cf. Figure 7.4). 44, 244–247

pull-push conversion By a pull-push conversion pattern/component, a measurement of
synchronization type PULL on the input edge/input port can be converted to
PUSH on the output edge/output port. For example, the Sampler component can
be used. 61, 244

244

PUSH Measurement updates are provided on some output edge/output port with a con-
stant update rate, typically by a tracking system driver. Graphically represented
by a reddish color associated with the corresponding push source, typically a light
red, or another reddish color in case of multiple push sources (cf. Figure 7.4). 44,
244–247

push source Source of PUSH measurement events that features a distinct timing and
update rate, consisting of at least one data flow component. A synchronization
of push sources may be beneficial, if supported. It is typically accomplished in
hardware by using a common clock and sync signal, or in software by a relative
harmonization of timestamps. All output edges/output ports belonging to the
same push source share the same reddish color in their graphical representation.
In addition to that, the respective data flow component or data flow components
that generate the events, are also represented in the same red (cf. Figures 5.2(b)
and 5.4). 245, 247

push-pull conversion By a push-pull conversion pattern/component, a measurement of
synchronization type PUSH on the input edge/input port can be converted to
PULL on the output edge/output port. Any interpolation component can be
used, e.g., the Linear Interpolation component. 61, 245

query pattern Spatial relationship pattern that only has an input section. Typically,
such a pattern represents an interface to the AR application (cf. Figure 5.8(a)).
49, 240–242, 246

random error Characterization of a jittery or Gaussian error behavior. Or, the “result
of a measurement minus the mean that would result from an infinite number of
measurements of the same measurand carried out under repeatability conditions”
[ISO 08]. “Random error is equal to error minus systematic error.” [ISO 08]. Also
called non-systematic or dynamic error [Azum 97]. 102, 244, 245, 247

registration Estimation of the static spatial transformation between two coordinate
frames. 82, 240, 241

repeatability The “closeness of the agreement between the results of successive mea-
surements of the same measurand carried out under the same conditions of mea-
surement” [ISO 08]. 100, 102, 245, 247

reproducibility The “closeness of the agreement between the results of measurements
of the same measurand carried out under changed conditions of measurement”
[ISO 08]. 100, 102

reproduction of measurement A pair of corresponding measurements is recoreded at
different points in time. 85

residual error Norm of the measured minus the estimated parameters. 104, 142

245

sensor Device, e.g., a camera, that allows for the measurement of spatial parameters
of an object using some physical principle. A sensor or a combination of sensors
constitutes a tracking system. 242, 244, 246, 247

sensor fusion See fusion. 24

simplified space-expansion Variant of space-expansion to group larger, previously un-
known numbers of similar measurements. The whole group of measurements is
represented by a single input edge having a list data type in the corresponding
simply space-expanded spatial relationship pattern (cf. Figure 5.12(c)). 58, 246

simultaneous measurement A pair of corresponding measurements is recoreded at the
same time. 84, 86

space-expansion Opposite of time-expansion. Variant of expansion where multiple sim-
ilar measurements are provided simultaneously. Can be accomplished either by
explicit space-expansion or by simplified space-expansion. 56, 241, 246, 247

spatial relationship graph Directed, cyclic graph that describes the spatial arrangement
of tracking systems, markers, and other real or virtual objects of a tracking in-
frastructure. Nodes represent coordinate frames, edges represent transformations
between these coordinate frames. The spatial relationship graph is constructed
from spatial relationship patterns, using the node unification (cf. Figure 6.2) and
edge matching (cf. Figure 6.3) user interface metaphors. 239–244, 246

spatial relationship pattern Directed, cyclic graph that describes the spatial arrange-
ment of coordinate frames that is relevant for a given particular tracking system
or tracking algorithm. A full pattern consists of an input section and an output
section whereas a base pattern lacks the input section and a query pattern lacks
the output section. 34, 40, 47, 239–241, 243–247

spatially or temporarily complementary fusion Combination of measurements with
identical data types to overcome temporal or spatial restrictions of the involved
tracking systems. For example, Two identical optical tracking systems cover two
distinct tracking volumes that form a common working area. 28

static Opposite of dynamic. A static spatial transformation is assumed to be rigid and
must not change over time. This is explicitly stated in the graphcial represen-
tation of the edge in the spatial relationship pattern by the [Static] keyword (cf.
Figure 7.2), if applicable.. 239, 240, 242, 245, 246

statistical model Specification of the error behavior attributed to a measurement. 114,
243, 244

synchronization type Describes how measurement updates are processed in the data
flow network, either PUSH or PULL. Graphically represented by the color of the
corresponding edge/port (cf. Figure 7.4). An input edge/input port can only be

246

matched against / connected with an output edge/output port if the synchroniza-
tion types are equal. 44, 54, 241–245, 247

synchronized-PUSH A spatial relationship pattern/data flow component may specify
some or all of its PUSH input edges/input ports to have equal timestamps. In this
case, they have to belong to the same trigger group, i.e., they have to originate
from the same push source. 59

systematic error Characterization of an error that does not have an expectation of 0.
Or, the “mean that would result from an infinite number of measurements of the
same measurand carried out under repeatability conditions minus a true value of
the measurand” [ISO 08]. It is “equal to error minus random error” [ISO 08]. Fur-
thermore, “like the true value, systematic error and its causes cannot be completely
known” [ISO 08]. Also called static error [Azum 97]. 102, 239, 245, 247

time-expansion Opposite of space-expansion. Variant of expansion where multiple sim-
ilar measurements are provided sequentially, represented by a single input edge
having a primitive (non-list) data type in the corresponding time-expanded spatial
relationship pattern (cf. Figure 5.12(a)). 56, 241, 246

tracking In this context: the continual determination of an object’s position, orientation,
or pose in real-time. In computer vision, for example, the movement of fiducials
is tracked between consecutive frames. Successful detection is a prerequisite for
tracking. 2, 10, 240–244, 247

tracking system Technical system consisting of sensors that allows for tracking. In the
context of Ubitrack, a tracking system is a black-box system that typically provides
position, orientation, or pose measurements. Also called tracker . 2, 239–243, 245,
246

trackman Graphical SRG and DFG editor and Ubitrack frontend. 34, 42, 66

trigger component Special type of a data flow component where the synchronization
types of all input ports and the single output port of the trigger group are not
hard-coded but determined at configuration time. Corresponding input edges and
input ports are depicted in black and gray, as long as their synchronization type
is not yet determined (cf. Figure 5.6), red or green otherwise (cf. Figures 5.2(b)
and 5.4). 59, 247

trigger group A subset of all input ports, as well as the single output port of a trigger
component together form the trigger group. Typically, all input ports of the trigger
component belong to the trigger group, e.g., in the Multiplication component. Two
simple rules apply. First, if at least on input port is forced by edge matching to
have synchronization type PUSH, the single output port must also have synchro-
nization type PUSH. Second, if the single output port is forced by edge matching
to have synchronization type PULL, all input ports automatically must also have
synchronization type PULL. 59, 62, 247

247

Ubitrack Tracking framework and library developed at Fachgebiet Augmented Reality
[FAR 11]. 34, 40, 240, 243, 247

uncertainty A “parameter, associated with the result of a measurement, that charac-
terizes the dispersion of the values that could reasonably be attributed to the
measurand” [ISO 08], thus a reasonable combination of precision and accuracy in
one single quantity. 101, 102, 105, 239, 243

user-triggered measurement The acquisition of each measurement is triggered by the
user. 83

248

Acronyms

DFG data flow graph. 46, 247

DFN data flow network. 46

SRG spatial relationship graph. 34, 40, 42, 46, 247

249

	Abstract
	Zusammenfassung
	Acknowledgment
	Overview
	Industrial Augmented Reality
	Motivation
	Mixed- and Augmented Reality
	Architecture of an Augmented Reality Setup
	Taxonomy of Mixed Reality Systems

	Prerequisites for Industrial Augmented Reality
	Virtual Content
	Visualization Techniques
	Interaction
	Tracking Systems

	Importance of Augmented Reality in Industry
	Basic Benefit of Augmented Reality Techniques
	Applications
	Relations to Classical Mixed- and Augmented Reality
	Relations to Virtual Reality
	Relations to Metrology

	The Tracking Challenge

	Tracking to Meet Industrial Criteria
	Requirements in the Literature
	IAR Design Phases
	Requirements for Management of Tracking
	Guaranteed Performance
	Sensor Fusion
	Modularization
	Maintainability

	Related Work
	Approach
	General Approach
	Focus
	Relations to other Aspects of IAR Applications
	Sensor Fusion
	Dynamic Reconfiguration of Sensors
	Dynamic State Changes
	Relations to Metrology

	Contribution

	Data Flow Management
	The Ubitrack Tracking Middleware
	Spatial Relationship Graphs
	Definition
	Edge Characteristics
	Related Concepts

	Data Flow Networks
	Spatial Relationship Patterns
	Definition
	A Catalogue of Spatial Relationship Patterns
	Node/Edge/Pattern Attributes
	The Module Mechansim
	Time-/Space-Expansion

	Data Flow Synchronization
	Synchronization of Data Flow Components
	Synchronization of the Data Flow Network
	The Time-Synchronization Problem

	SRG Design Activities

	Graphical Data Flow Modeling
	Graphical Layout
	trackman Architecture
	Interactive SRG generation
	Interactive Deduction of Spatial Relationships
	Edge Matching
	Ordering of Design Activities
	Round-Trip Engineering in SRG and DFG
	Automatic Sync Propagation

	trackman Editor Functionality

	Common Modeling Tasks
	Application SRG
	Example: Indirect Tracking for the Intelligent Welding Gun
	Example: Discrepancy Checks in the Airplane Cabin

	Calibration and Registration
	Basic Solution Patterns
	Example: Hand-Eye Calibration for Indirect Tracking Setup
	Example: Registration of the Reference Target in the Airplane Cabin

	Application Interfaces

	Advanced Graphical Modeling Concepts
	Semi-Automatic Modeling
	Meta-Patterns
	Definition
	Applications
	Integration in trackman

	Discussion
	Summary
	Advantages and Limitations of Graphical SRG Modeling
	Relationship between trackman and Dynamic SRG Modifications
	Possible Improvements

	Error Management
	Quantifying Measurement Uncertainties
	Representation and Categorization of Uncertainties
	Categorization(s) of Errors
	Basic Error Statistics
	Root-Mean-Square Error
	Expressing Orientation and Pose Error

	Error Standards for Spatial Measurements
	Propagation of Uncertainties
	Short Survey of Parameter Estimation
	Propagation of Uncertainties in the Literature
	Linear Propagation of Uncertainties
	Monte Carlo Simulation
	Elementary Specification of Uncertainty

	Conquering the Complexity of IAR Applications
	Proposed Approach
	Focus
	Outline

	Ubitrack Monte Carlo Simulation Framework
	The Chain of Uncertainty
	Simulation Data Flow
	Ground Truth Data
	Synthetic Measurements
	Registration/Tracking Algorithm:
	Covariance Estimation
	Data Flow Synchronization

	Computational Complexity
	Example: Comparison of Monte Carlo with Online Error Propagation

	Sensor Errors
	Assessment of Uncertainties in the Literature
	Elementary Specifiation of Uncertainties for Sensors
	Residual Error from Point-Based Registration
	General Non-Linear Solution: Helmert Transformation
	A Linear Approximation
	Practical Considerations

	Example: Specification of Elementary Uncertainty for the Airplane Cabin
	Setup
	Noise
	Systematic Effects
	Indirect Tracking Experiment
	Summary

	Verification & Validation
	Example: Indirect Tracking of the Intelligent Welding Gun
	Correcting Rotational Errors
	In-vitro Validation of Indirect Tracking
	In-situ Validation of Application
	Verification of Mobile Tracking Setup
	Verification of Application
	Discussion

	Example: Probe Tracking in the Airplane Cabin
	Verification
	Validation
	Discussion

	Runtime Error Mitigation
	Robustifying Calibration & Registration Procedures
	Example: Loops in the Spatial Relationship Graph
	Example: Error Mitigation in the Airplane Cabin

	Discussion

	Conclusion
	Fulfillment of Tracking Tasks
	Guaranteed Performance
	Sensor Fusion
	Modularization
	Maintainability

	Compliance with Industrial AR Design Guidelines

	Appendix
	SRGs and DFGs
	Application
	Registration
	Simulation

	Glossary
	Acronyms

