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Abstract 

This thesis describes a simulator that models the groups of neurons, the constituent 

elements of the brain, hypothesized to be involved in Parkinson’s disease. In other words, this 

thesis describes a simulator for the neural pathology of Parkinson’s disease. The thesis first 

describes Parkinson’s disease, wades into the biological background of neurons, clarifies the 

equations used to simulate interactions between neurons, describes the basic structure of the 

Matlab file and C library involved, and showcases the resulting output and how that matches 

with real-life readings. 

Introduction 

Parkinson’s disease "is a progressive disorder of the 

nervous system that affects movement" (Mayo Clinic Staff). 

It can manifest itself in tremors, slow movement, stiff 

muscles, poor balance, and changes in speech, making life 

very frustrating for people who have it (Parkinson's Disease 

Foundation). The image to the right shows where such 

symptoms may show (“Parkinson's Disease Nursing Care 

Plan”). Although it can appear at any age, Parkinson’s is 

most likely to show up in the elderly or those who are over 

fifty years old (BSDPF). Indeed, about one million 

Americans have Parkinson's, with about 60,000 Americans 

being "diagnosed with Parkinson's disease each year” 



	  

(Parkinson's Disease Foundation). Unfortunately, because it is a progressive and chronic disease, 

it only becomes worse and worse.  

There are treatments to Parkinson’s that are effective in varying degrees. The “most 

common” one is medication that addresses “the shortage of the brain chemical (neurotransmitter) 

dopamine” which is said to cause the symptoms of Parkinson’s." When medication does not 

work, brain surgery is an option. The safest, least harmful method of surgery is Deep Brain 

Stimulation, a.k.a. DBS. This entails sending “electrical impulses” into target regions through 

electrodes inserted into the brain (Mayo Clinic Staff).  

Dr. Richard Murrow, a neurologist at UNC hospitals, uses DBS systems to treat some of 

his patients who have Parkinson's. His desire to better understand and teach how the constituent 

elements of the brain interact with each other in Parkinson's disease spurred the development of 

the simulator described in this thesis. No one is sure what the exact mechanisms behind 

Parkinson’s are. In this thesis, I explore one hypothesized mechanism. In doing so, I needed to 

develop a model to simulate the building blocks of the brain, neurons.  

There is a vast body of literature in the modeling of the brain and its elements. People 

have developed a variety of models. Even as all of these models are greatly simplified versions 

of biological neurons, some exhibit higher degrees of complexity than others (Abbott et. al). On 

the lower end of complexity is the Integrate and Fire neuron, which is computationally efficient 

but not as biologically accurate. Another sort of neuron, the FitzHugh-Nagumo neuron, is both 

moderately costly and effective. For the purposes of designing a simulator for Dr. Murrow, I 

opted to use a Hodgkin-Huxley sort of neuron, which is very computationally expensive but very 

plausible biologically as well (Brunel). Experimenting with using a simpler neuron model did not 



	  

result in good results. The Hodgkin-Huxley style of implementing a neuron is very flexible. One 

can add/remove different features of the neurons easily, adjusting them to the sort of neuron 

being modeled. As I designed my model of an individual neuron before meeting with Dr. 

Murrow and Dr. Favorov to work on the larger simulator, I was selective in choosing and 

modifying neural features so that the model would produce appropriate behavior. Consequently, 

this thesis spells out a new model for neurons.  

The figure above portrays the building block of the nervous system, the neuron (“Neuron 

Basics”). A neuron consists of dendrites, a soma, and an axon. Neurons receive signals from 

other neurons; the input devices that receive these signals are called dendrites. In a computer, 

they would be the keyboard and the mouse. Analogously, the soma is the main processing unit; 

when received signals pass a threshold, the soma creates an output signal. Furthermore, the axon 

can be thought of an output device that goes about delivering the resulting signal to other devices 



	  

(other neurons). Finally, the junction between any two neurons is called the synapse; this can be 

thought of as a connection between two devices, i.e. a USB wire. 

The electrical charge outside the membrane of a neuron is positive, while the charge 

within the membrane is negative. The difference between these two charges is the membrane 

potential of the neuron (Gerstner and Kistler). In the model described in this report, I simulate 

the changing membrane potentials of neurons as they interact with each other. 

 

The figure above shows how the membrane potential of a neuron changes as it receives 

inputs (“Action Potential”). Without any inputs, the neuron is resting at some constant potential. 

However, an incoming input changes its membrane potential. In the figure above, the neuron is 

receiving inputs in the time period between 1 and 2 seconds, causing its membrane potential to 

increase. At about 2.5 seconds, the membrane potential passes a certain threshold, causing the 

neuron to release an action potential.  



	  

In order for this to make more sense, think about a person who has anger issues but is 

trying to contain himself. As others slight him through the day, he gets more and more frustrated, 

but he does not act on his building resentment. Then, someone upsets him and he deems the 

offense his final straw – he explodes. Analogously, the neuron will have to receive many inputs 

before it releases its output, an action potential. It is an all or nothing event. After a neuron 

“spikes,” or releases an action potential, it returns back to resting potential.  

In the figure above, the neuron receives inputs that cause a positive change in the 

membrane potential. This means that the synapse connecting this receiving neuron to the 

outputting neuron is excitatory. Interestingly, certain inputs can cause a negative change. If this 

happens, the synapse is said to be inhibitory (Gerstner and Kistler). In the above figure, the 

neuron spikes when it receives many excitatory inputs. Even as that mechanism describes a good 

deal of how neurons spike, literature also showed us that are a variety of other ways to cause a 

neuron to spike – a professor at Indiana University noted that there were “20 ways to spike your 

neuron” (Yaeger). Out of these, two ways particularly caught our attention, namely the 

“Rebound Spike,” which is a “spike upon release from inhibitory inputs” and the “Rebound 

Burst,” which is a “burst of spikes upon release from inhibitory inputs,” as portrayed in the 



	  

figure above (Yaeger).  Consider the angry man again. Say he is receiving a constant stream of 

compliments (inhibiting inputs), as opposed to insults (excitatory inputs). As he encounters 

kindness, his frustration levels continue to decrease. When the nice words suddenly stop 

however, he becomes so shocked and confused that he immediately becomes angry and releases 

his rage. Analogously, when an inhibiting current “is suddenly turned off” it results “in an 

overshoot of the membrane potential, triggering one or more action potentials.” We can refer to 

these action potentials produced as “low-threshold spikes” (Destexhe et al). This name captures 

the fact that the low-threshold calcium current (It or Ipir) is the chief player in post-inhibitory 

rebound, “a major characteristic” of the neurons hypothesized to be involved in Parkinson’s 

disease (Modolo et al).  

 

 

 

 

 

 

 

 

 

 

 

 



	  

 

Model 

As I indicated earlier, no one is certain what the causes of Parkinson's are. With the help 

of Dr. Murrow and Dr. Favorov, I have designed a simulator for the interactions between certain 

groups of neurons in the brain that are hypothesized to be crucial in Parkinson's.  

The figure above is a view of the brain that shows regions that are all likely players in 

Parkinson's (Aziz and Pereira). In order to be computationally efficient, I only modeled the 

Subthalmic Nucleus (STN), Cortex, Striatum (STR), and the External Globus Pallidus (GPe). The 

hypothesis I model involves a loop between neurons in two sections of the brain, the STN and 

the GPe. Referring to the “powerful reciprocal loop between the STN and Gpe,” Wilson and 



	  

Bevan write, “This nominates the STN and GPe as a likely source of persistent activity in the 

basal ganglia, and particularly oscillations” and that the “emergence of rhythmic bursting in the 

STN and its targets in Parkinson’s disease” has “raised much interest in the potential importance 

of” this “network in the pathophysiology of that disease.”  

Consequently, my program implements a model of STN 

and GPe neurons. There are multiple parameters that can be 

manipulated to produce different results. In the schema to the 

left1, the white synapses reflect excitatory connections, while as 

the black synapses reflect inhibitory connections. Thus there are: 

excitatory connections from the STN to the Gpe, inhibitory 

connections from the GPe to the STN, and excitatory 

connections from the Cerebral Cortex to the STN. While as all 

other connections in our model are simulated through modeling 

action potentials and synapses, we model the cerebral cortex 

input by a simple injection of current; this is for simplicity purposes. In addition to what is 

reflected in the schema, we model inhibitory connections within the neurons in the GPe and 

excitatory connections within the neurons in the STN. Finally, there is an option to add a 

constant injection of inhibitory current from the Striatum. 

Parameters 

 It is computationally expensive to simulate every nanosecond of time. Consequently, the 

model updates all the neurons in the model on a reasonably sized time interval dt. The default 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Schema	  provided	  by	  Dr.	  Murrow	  



	  

value is 0.05 milliseconds. The smaller the value, the more accurate the results of numerically 

integrating the differential equations in the model. (I use Euler's method.) However, decreasing 

dt will increase the completion time of the simulation by a linear factor. 

 A very important parameter is the input scaling factor of the low threshold calcium 

current. In effect, increasing the value of this will mean increase the impact of post-inhibitory 

rebound (the spiking of a neuron after being released from inhibitory inputs). When Dr. Oleg 

Favorov and Dr. Murrow were experimenting with the model, they increased this parameter as 

research suggested, and we immediately saw output that very closely resembled real life readings 

recorded in the operating room.  Other parameters include the sparsity of connections between 

the STN and the GPE, as well as a scaling factor for the constant input received from the cerebral 

cortex, IappliedStimulus. 

Currents Modeled 

 Designing how to model the neurons in the STN and GPE entails a tradeoff. Increased 

realism necessitates waiting longer for the simulation to finish. Because a less realistic model 

resulted in output that did not smoothly correspond with real life readings, I settled on using 

more biologically realistic models of neurons. Below are the currents modeled and the respective 

equations: 

1) The equations responsible for changing membrane potential: 

  

Where  Isyn, Il, Ipir, IK, and INa are as follows. 



	  

2) The sodium (Na+) current (Shaikh et al): This is responsible for causing rapid 

increase of the membrane potential once the voltage of a neuron passes a threshold.  

 

3) The potassium (K+) current (Pospischil et al): This is responsible for the decreasing 

of a neuron’s membrane potential once an action potential is fired. 

 

4) The low threshold calcium current, also known as the Ipir current: This is responsible 

for causing post-inhibitory rebound, which is the physiological phenomenon that 

describes a neuron firing after being released from inhibiting inputs.  



	  

 

Note: The variable fIt is an addition of mine. Even as literature was very helpful in 

learning about the transient calcium current and other important features of post-

inhibitory rebound, there were holes in the literature. Models that were presented 

comprehensively either were not accurate given other features of the model or did not 

specify enough parameters to work appropriately. In one model, post inhibitory 

rebound would not occur unless the neuron had been inhibited for a long time, much 

more than necessary. Another model’s internal variables would be activated and 

inactivated almost immediately, creating for interesting situations such as: (a) a 

perpetual burst phase, and (b) depolarization before being released from inhibition 

(Models: Shakik vs. Wang, et al). Consequently, I had to modify existing models. 



	  

With other literature in mind, I created a fatigue factor for the Ipir circuit so as to 

prevent perpetual bursting. While the equations are not experimentally determined, 

the idea behind the fatigue factor is not arbitrary. Literature shows that a half-center 

neuron exhibits adaptation properties which contribute to fatigue, which manifests 

itself in increased spacing between action potentials as is shown in the results (Enoka 

pg. 277). In any case, the fatigue factor primarily controls for the number of spikes in 

one burst, and does not really impact the other voltage-dependent aspects of the 

transient calcium current. Moreover, other researches have used a fatigue factor in 

modeling neurons (Perkel, Mulloney).  

5) The leakage current, which is responsible for slowly dragging the membrane potential 

back to the resting potential of the neuron. In the angry man analogy, this corresponds 

with a person cooling down over time.  

 

6) The Synaptic Currents: These currents describe the synapse, and how incoming inputs 

are translated into changes in membrane potential. 

 



	  

For all the 4 above currents, the R corresponds to number of channels open, and is 

modeled via a differential equation. In this equation, C turns from 0 to 1mM when 

there is an action potential in a presynaptic neuron. C retains this value for a duration 

of 1 ms for the GABAa and AMPA currents. For the GABAb current, C retains this 

value for 84 ms. Finally, Dr. Murrow and Dr. Favorov asked me to retain the C value 

for 20 ms for the NMDA current. For simplicity purposes, this model assumes that an 

action potential has occurred when the voltages passes 0 mV.  

 



	  

Simulator 

My simulator is a Matlab program where the user enters in his desired parameters. 

Because Matlab is very slow, I have split up the actual computational part of the program into a 

C library which Matlab calls.  

C Library 

When the Matlab program runs, it calls the function “mexFunction” which initializes the 

simulator, loads the appropriate parameters from Matlab, runs the simulation and returns the 

results of the simulator to Matlab. When the simulator runs, it generates connections between 

neurons using a random number generator. Crucially, the seed used is always the same, so that 

when we compare the results of the simulation we know that changes in the output display are a 

result of changes in parameters, not changes in random number sequences that permeate through 

the simulation. The neurons and the connections having been initialized, the program enters into 

a ‘for’ loop where the increment is delta t. At each time step, the program simulates each neuron. 

My C Library is very object oriented in that I have classes representing neurons and their 

connections. In particular, I have two object classes – neuron and synapse. The synapse object 

keeps track of the parameters of that particular synapse. Namely, it records the strength of the 

synapse, the scaling factors of the different synaptic currents, whether it receives a constant 

injection of current or a stream of action potentials as its input, pointers to the outputting neuron 

and the receiving neuron, and the time duration in which the synapse is active. Most importantly, 

the neuron object keeps track of the many variables that listed above in the currents modeled 

section. When the program simulates the neuron, it calls its “updateNeuron” function with time 

and delta time arguments. The updateNeuron function is basically an implementation of the 



	  

Euler’s method in simulating the dV/dt function. Once the simulator finishes simulating every 

time step, it calculates a weighted average of the membrane potentials of the different neurons in 

the model. By weighting different neurons differently, I simulate a real-life reading where an 

electrode is able to pick up the membrane potentials of close neurons really well but farther away 

neurons less so. These graphs are supposed to match up with Dr. Murrow sees on his screen in 

the hospital when recorded as described below. When the simulator finishes it produces several 

graphs showing different weighted averages of the same network of neurons. The different 

weights simulate placing the electrodes in different parts of the intended region of the brain. 

In addition to these graphs, my program has on option to simulate the sound of the 

readings. In order to achieve this, I scale the membrane potential graph and send it to an audio 

output function. Both Dr. Murrow and Dr. Favorov were impressed at how this sound resembled 

many features of the sounds that they hear in the hospital when they are working with patients 

with Parkinsons’. According to Dr. Murrow, even more so than the visuals, the sound can be 

used to get a feel for the pathological oscillations in Parkinson’s.  



	  

Experiments 

When Dr. Murrow works with patients with Parkinson’s, he sometimes inserts an 

electrode into their brains and takes readings of the voltage potentials there. Below is a 

screenshot that one of the graphs my model produces in comparison to a real-life reading of a 

patient with Parkinson’s. When comparing my graph to his, consider only the top half of his 

reading, as the top half of his reading is a mirror of its bottom counterpart. According to Dr. 

Murrow, this graph does a good job reflecting what he sees in the hospital. For instance, the 

graph shows valleys of low activity interspersed by semi-chaotic bursting, something that he also 

sees in patients with Parkinson’s:  

 

One of the primary motivations behind creating a simulator for the pathology of 

Parkinson's was to experiment with changing parameters and seeing what the results would like. 

When the input from the cerebral cortex is turned off, activity comes to a halt, as shown below:  



	  

 

This is expected as the cerebral cortex plays an important part of the loop I modeled. In 

addition, when the ability of GPe neurons to inhibit each other is turned off, the simulator 

produces non-oscillatory activity, as shown below: 

 

This may indicate that the degree of GPe neurons inhibiting each other plays a significant 

role in producing tremor. Furthermore, when we set nmda, an excitatory current, to 0, we get the 

below graph: 

	  

According to Dr. Murrow, this is not a result that reflects activity in a patient with 

Parkinson’s. Because changing the nmda current to 0 did not result in Parkinsonian behavior, this 

indicates that the nmda current may play a necessary role in producing Parkinson’s.  

 

 

 

 



	  

Conclusion 

Parkinson's disease negatively impacts millions of individuals; resulting tremor and other 

symptoms makes life very difficult. Often medication is not effective, compelling those suffering 

with Parkinson's to try the expensive surgery that is Deep Brain Simulation (DBS). Even as DBS 

produces improvement in symptoms, why and how exactly it works is still difficult to understand 

and quantify. In describing a model for the neural pathology of that disease in this thesis, I hope 

to help Dr. Murrow and others better grasp the internal neural dynamics behind Parkinson's and 

consequently lay some of the foundations for improving DBS in the future. As for future steps, if 

someone were to expand on this research, they could further investigate why manipulating 

certain parameters results in behavior that looks or does not look Parkinsonian. Moreover, 

someone can try to map the activity produced in these graphs to actual tremor movement 

activity, and thus further connect this simulator with real-life behavior. Finally, someone can 

expand the model with more networks of neurons, and try to match it up with the attributes of 

both healthy and Parkinsonian brains. That would be a long, challenging endeavor, but one that 

may promise much fruit for patients with Parkinson’s. 
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