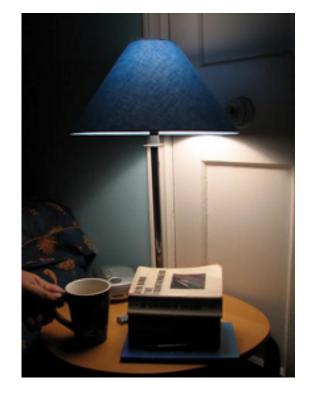


Figure 1: GoogLeNet [1], a much deeper, wider, and sparser network, with 12 times fewer parameters than AlexNet [2]. (Figure is from [1])

OVERVIEW

- Feature representation is crucial for vision. Change from hand-crafted feature (e.g. SIFT, Bag-of-Words) to feature learned from data (e.g. CNN) can improve performance on various tasks.
- CNN becomes a hot topic for vision task since 2012. Going deeper and wider is the trend.
- Computation time is important. Using 1x1 convolution as dimension reduction makes GoogLeNet possible to train fast enough and a success in ILSVRC2014 classification and detection track.
- Detection includes two major blocks: region proposal + CNN (R-CNN [3]).
- Pretrain CNN using classification images, and fine-tune on detection images using bounding boxes can improve detection performance dramatically using GoogLeNet.

CLASSIFICATION AND DETECTION EXAMPLES



Groundtruth: • coffee mug GoogLeNet: table lamp

- Iamp shade
- printer
- projector
- desktop computer

Groundtruth: • Police car <u>GoogLeNet</u>:

- laptop • hair drier
- binocular
- ATM machine
- seat belt

Figure 4: Classification examples using GoogLeNet.

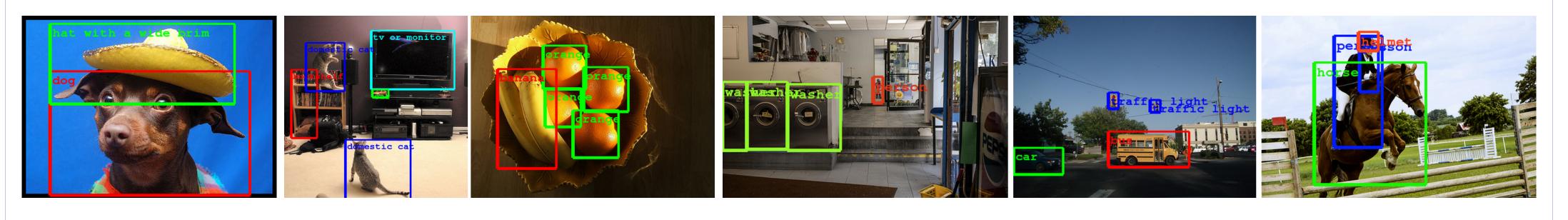


Figure 5: Detection examples using GoogLeNet.

GOOGLENET: GOING DEEPER WITH CONVOLUTIONS

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich

Groundtruth:

GoogLeNet:

• <u>warthog</u>

<u>gaselle</u>

<u>sorrel (horse)</u>

• Arabian camel

hartebeest

• <u>hay</u>

Table

R	EF
[1]	Cł ho
[2]	Al Nl
[3]	Rc
	sei

R-CNN FOR DETECTION

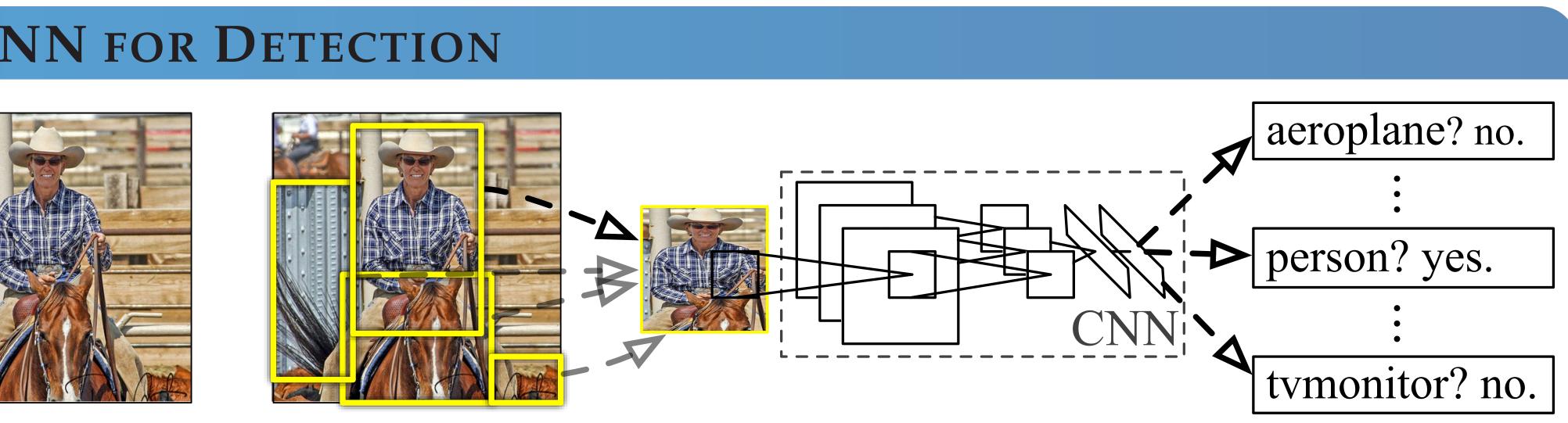


Figure 3: R-CNN for detection. (Figure is from [3])

Place	Team Name	Top5 Error		Place	Team Name	mA
012 1st	SuperVision	15.3%		2013 1st	UvA-Euvision	22.6
013 1st	Clarifai	11.2%		2014 3rd	Deep Insight	40.5
.014 3rd	MSRA	8.1%		2014 2nd	CUHK	40.79
014 2nd	VGG	7.3%			DeepID-Net	
2014 1st	GoogLeNet	6.7%		2014 1st	GoogLeNet	43.9

FERENCES

hristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanoucke, and Andrew Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

lex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *IPS*, 2012.

oss Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and emantic segmentation. *arXiv preprint arXiv:1311.2524*, 2013.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

3x3 max pooling introduces invariance. (Fig. from [1])